- 浏览: 291850 次
- 性别:
- 来自: 上海
文章分类
最新评论
-
wahahachuang5:
web实时推送技术使用越来越广泛,但是自己开发又太麻烦了,我觉 ...
java以post发送方式实现百度Sitemap实时推送代码分享 -
fmpoffice:
发来感谢!准备尝试!https://m.yooshifu.co ...
java以post发送方式实现百度Sitemap实时推送代码分享 -
playboyhaolei:
爱死博主了 学习了 已经成功的推送了 ...
java以post发送方式实现百度Sitemap实时推送代码分享 -
playboyhaolei:
爱死博主了 学习了 已经成功的推送了 ...
java以post发送方式实现百度Sitemap实时推送代码分享 -
真三武侯:
爱死博主了
java以post发送方式实现百度Sitemap实时推送代码分享
本篇文章依旧采用小例子来说明,因为我始终觉的,案例驱动是最好的,要不然只看理论的话,看了也不懂,不过建议大家在看完文章之后,在回过头去看看理论,会有更好的理解。
下面开始正文。
【案例1】通过一个对象获得完整的包名和类名
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
package
Reflect;
/**
* 通过一个对象获得完整的包名和类名
* */
class
Demo{
//other codes...
}
class
hello{
public
static
void
main(String[] args) {
Demo demo=
new
Demo();
System.out.println(demo.getClass().getName());
}
}
|
【运行结果】:Reflect.Demo
添加一句: 所有类的对象其实都是 Class 的实例。
【案例2】实例化 Class 类对象
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
package
Reflect;
class
Demo{
//other codes...
}
class
hello{
public
static
void
main(String[] args) {
Class<?> demo1=
null
;
Class<?> demo2=
null
;
Class<?> demo3=
null
;
try
{
//一般尽量采用这种形式
demo1=Class.forName(
"Reflect.Demo"
);
}
catch
(Exception e){
e.printStackTrace();
}
demo2=
new
Demo().getClass();
demo3=Demo.
class
;
System.out.println(
"类名称 "
+demo1.getName());
System.out.println(
"类名称 "
+demo2.getName());
System.out.println(
"类名称 "
+demo3.getName());
}
}
|
【运行结果】:
类名称 Reflect.Demo
类名称 Reflect.Demo
类名称 Reflect.Demo
【案例3】 通过 Class 实例化其他类的对象
通过无参构造实例化对象
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
package
Reflect;
class
Person{
public
String getName() {
return
name;
}
public
void
setName(String name) {
this
.name = name;
}
public
int
getAge() {
return
age;
}
public
void
setAge(
int
age) {
this
.age = age;
}
@Override
public
String toString(){
return
"["
+
this
.name+
" "
+
this
.age+
"]"
;
}
private
String name;
private
int
age;
}
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
Person per=
null
;
try
{
per=(Person)demo.newInstance();
}
catch
(InstantiationException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
catch
(IllegalAccessException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
per.setName(
"Rollen"
);
per.setAge(
20
);
System.out.println(per);
}
}
|
【运行结果】:
[Rollen 20]
但是注意一下,当我们把 Person 中的默认的无参构造函数取消的时候,比如自己定义只定义一个有参数的构造函数之后,会出现错误:
比如我定义了一个构造函数:
1
2
3
4
|
public
Person(String name,
int
age) {
this
.age=age;
this
.name=name;
}
|
然后继续运行上面的程序,会出现:
java.lang.InstantiationException : Reflect.Person
at java.lang.Class.newInstance0( Class.java:340 )
at java.lang.Class.newInstance( Class.java:308 )
at Reflect.hello.main( hello.java:39 )
Exception in thread "main" java.lang.NullPointerException
at Reflect.hello.main( hello.java:47 )
所以大家以后再编写使用 Class 实例化其他类的对象的时候,一定要自己定义无参的构造函数
【案例】通过 Class 调用其他类中的构造函数 (也可以通过这种方式通过 Class 创建其他类的对象)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
package
Reflect;
import
java.lang.reflect.Constructor;
class
Person{
public
Person() {
}
public
Person(String name){
this
.name=name;
}
public
Person(
int
age){
this
.age=age;
}
public
Person(String name,
int
age) {
this
.age=age;
this
.name=name;
}
public
String getName() {
return
name;
}
public
int
getAge() {
return
age;
}
@Override
public
String toString(){
return
"["
+
this
.name+
" "
+
this
.age+
"]"
;
}
private
String name;
private
int
age;
}
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
Person per1=
null
;
Person per2=
null
;
Person per3=
null
;
Person per4=
null
;
//取得全部的构造函数
Constructor<?> cons[]=demo.getConstructors();
try
{
per1=(Person)cons[
0
].newInstance();
per2=(Person)cons[
1
].newInstance(
"Rollen"
);
per3=(Person)cons[
2
].newInstance(
20
);
per4=(Person)cons[
3
].newInstance(
"Rollen"
,
20
);
}
catch
(Exception e){
e.printStackTrace();
}
System.out.println(per1);
System.out.println(per2);
System.out.println(per3);
System.out.println(per4);
}
}
|
【运行结果】:
[null 0]
[Rollen 0]
[null 20]
[Rollen 20]
【案例】
返回一个类实现的接口:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
package
Reflect;
interface
China{
public
static
final
String name=
"Rollen"
;
public
static
int
age=
20
;
public
void
sayChina();
public
void
sayHello(String name,
int
age);
}
class
Person
implements
China{
public
Person() {
}
public
Person(String sex){
this
.sex=sex;
}
public
String getSex() {
return
sex;
}
public
void
setSex(String sex) {
this
.sex = sex;
}
@Override
public
void
sayChina(){
System.out.println(
"hello ,china"
);
}
@Override
public
void
sayHello(String name,
int
age){
System.out.println(name+
" "
+age);
}
private
String sex;
}
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
//保存所有的接口
Class<?> intes[]=demo.getInterfaces();
for
(
int
i =
0
; i < intes.length; i++) {
System.out.println(
"实现的接口 "
+intes[i].getName());
}
}
}
|
【运行结果】:
实现的接口 Reflect.China
(注意,以下几个例子,都会用到这个例子的 Person 类,所以为节省篇幅,此处不再粘贴 Person 的代码部分,只粘贴主类 hello 的代码)
【案例】: 取得其他类中的父类
1
2
3
4
5
6
7
8
9
10
11
12
13
|
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
//取得父类
Class<?> temp=demo.getSuperclass();
System.out.println(
"继承的父类为: "
+temp.getName());
}
}
|
【运行结果】
继承的父类为: java.lang.Object
【案例】: 获得其他类中的全部构造函数
这个例子需要在程序开头添加 import java.lang.reflect.*;
然后将主类编写为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
Constructor<?>cons[]=demo.getConstructors();
for
(
int
i =
0
; i < cons.length; i++) {
System.out.println(
"构造方法: "
+cons[i]);
}
}
}
|
【运行结果】:
构造方法: public Reflect.Person()
构造方法: public Reflect.Person(java.lang.String)
但是细心的读者会发现,上面的构造函数没有 public 或者 private 这一类的修饰符
下面这个例子我们就来获取修饰符
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
Constructor<?>cons[]=demo.getConstructors();
for
(
int
i =
0
; i < cons.length; i++) {
Class<?> p[]=cons[i].getParameterTypes();
System.out.print(
"构造方法: "
);
int
mo=cons[i].getModifiers();
System.out.print(Modifier.toString(mo)+
" "
);
System.out.print(cons[i].getName());
System.out.print(
"("
);
for
(
int
j=
0
;j<p.length;++j){
System.out.print(p[j].getName()+
" arg"
+i);
if
(j<p.length-
1
){
System.out.print(
","
);
}
}
System.out.println(
"){}"
);
}
}
}
|
【运行结果】:
构造方法: public Reflect.Person(){}
构造方法: public Reflect.Person(java.lang.String arg1){}
有时候一个方法可能还有异常,呵呵。下面看看:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
class
hello{
public
static
void
main(String[] args) {
Class<?> demo=
null
;
try
{
demo=Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
Method method[]=demo.getMethods();
for
(
int
i=
0
;i<method.length;++i){
Class<?> returnType=method[i].getReturnType();
Class<?> para[]=method[i].getParameterTypes();
int
temp=method[i].getModifiers();
System.out.print(Modifier.toString(temp)+
" "
);
System.out.print(returnType.getName()+
" "
);
System.out.print(method[i].getName()+
" "
);
System.out.print(
"("
);
for
(
int
j=
0
;j<para.length;++j){
System.out.print(para[j].getName()+
" "
+
"arg"
+j);
if
(j<para.length-
1
){
System.out.print(
","
);
}
}
Class<?> exce[]=method[i].getExceptionTypes();
if
(exce.length>
0
){
System.out.print(
") throws "
);
for
(
int
k=
0
;k<exce.length;++k){
System.out.print(exce[k].getName()+
" "
);
if
(k<exce.length-
1
){
System.out.print(
","
);
}
}
}
else
{
System.out.print(
")"
);
}
System.out.println();
}
}
}
|
【运行结果】:
public java.lang.String getSex ()
public void setSex (java.lang.String arg0)
public void sayChina ()
public void sayHello (java.lang.String arg0,int arg1)
public final native void wait (long arg0) throws java.lang.InterruptedException
public final void wait () throws java.lang.InterruptedException
public final void wait (long arg0,int arg1) throws java.lang.InterruptedException
public boolean equals (java.lang.Object arg0)
public java.lang.String toString ()
public native int hashCode ()
public final native java.lang.Class getClass ()
public final native void notify ()
public final native void notifyAll ()
【案例】 接下来让我们取得其他类的全部属性吧,最后我讲这些整理在一起,也就是通过 class 取得一个类的全部框架
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
class
hello {
public
static
void
main(String[] args) {
Class<?> demo =
null
;
try
{
demo = Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
System.out.println(
"===============本类属性========================"
);
// 取得本类的全部属性
Field[] field = demo.getDeclaredFields();
for
(
int
i =
0
; i < field.length; i++) {
// 权限修饰符
int
mo = field[i].getModifiers();
String priv = Modifier.toString(mo);
// 属性类型
Class<?> type = field[i].getType();
System.out.println(priv +
" "
+ type.getName() +
" "
+ field[i].getName() +
";"
);
}
System.out.println(
"===============实现的接口或者父类的属性========================"
);
// 取得实现的接口或者父类的属性
Field[] filed1 = demo.getFields();
for
(
int
j =
0
; j < filed1.length; j++) {
// 权限修饰符
int
mo = filed1[j].getModifiers();
String priv = Modifier.toString(mo);
// 属性类型
Class<?> type = filed1[j].getType();
System.out.println(priv +
" "
+ type.getName() +
" "
+ filed1[j].getName() +
";"
);
}
}
}
|
【运行结果】:
=============== 本类属性 ========================
private java.lang.String sex;
=============== 实现的接口或者父类的属性 ========================
public static final java.lang.String name;
public static final int age;
【案例】 其实还可以通过反射调用其他类中的方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
class
hello {
public
static
void
main(String[] args) {
Class<?> demo =
null
;
try
{
demo = Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
try
{
//调用Person类中的sayChina方法
Method method=demo.getMethod(
"sayChina"
);
method.invoke(demo.newInstance());
//调用Person的sayHello方法
method=demo.getMethod(
"sayHello"
, String.
class
,
int
.
class
);
method.invoke(demo.newInstance(),
"Rollen"
,
20
);
}
catch
(Exception e) {
e.printStackTrace();
}
}
}
|
【运行结果】:
hello ,china
Rollen 20
【案例】 调用其他类的 set 和 get 方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
class
hello {
public
static
void
main(String[] args) {
Class<?> demo =
null
;
Object obj=
null
;
try
{
demo = Class.forName(
"Reflect.Person"
);
}
catch
(Exception e) {
e.printStackTrace();
}
try
{
obj=demo.newInstance();
}
catch
(Exception e) {
e.printStackTrace();
}
setter(obj,
"Sex"
,
"男"
,String.
class
);
getter(obj,
"Sex"
);
}
/**
* @param obj
* 操作的对象
* @param att
* 操作的属性
* */
public
static
void
getter(Object obj, String att) {
try
{
Method method = obj.getClass().getMethod(
"get"
+ att);
System.out.println(method.invoke(obj));
}
catch
(Exception e) {
e.printStackTrace();
}
}
/**
* @param obj
* 操作的对象
* @param att
* 操作的属性
* @param value
* 设置的值
* @param type
* 参数的属性
* */
public
static
void
setter(Object obj, String att, Object value,
Class<?> type) {
try
{
Method method = obj.getClass().getMethod(
"set"
+ att, type);
method.invoke(obj, value);
}
catch
(Exception e) {
e.printStackTrace();
}
}
}
// end class
|
【运行结果】:
男
【案例】 通过反射操作属性
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
class
hello {
public
static
void
main(String[] args)
throws
Exception {
Class<?> demo =
null
;
Object obj =
null
;
demo = Class.forName(
"Reflect.Person"
);
obj = demo.newInstance();
Field field = demo.getDeclaredField(
"sex"
);
field.setAccessible(
true
);
field.set(obj,
"男"
);
System.out.println(field.get(obj));
}
}
// end class
|
【案例】通过反射取得并修改数组的信息:
1
2
3
4
5
6
7
8
9
10
11
12
|
import
java.lang.reflect.*;
class
hello{
public
static
void
main(String[] args) {
int
[] temp={
1
,
2
,
3
,
4
,
5
};
Class<?>demo=temp.getClass().getComponentType();
System.out.println(
"数组类型: "
+demo.getName());
System.out.println(
"数组长度 "
+Array.getLength(temp));
System.out.println(
"数组的第一个元素: "
+Array.get(temp,
0
));
Array.set(temp,
0
,
100
);
System.out.println(
"修改之后数组第一个元素为: "
+Array.get(temp,
0
));
}
}
|
【运行结果】:
数组类型: int
数组长度 5
数组的第一个元素 : 1
修改之后数组第一个元素为: 100
【案例】 通过反射修改数组大小
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
class
hello{
public
static
void
main(String[] args) {
int
[] temp={
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
};
int
[] newTemp=(
int
[])arrayInc(temp,
15
);
print(newTemp);
System.out.println(
"====================="
);
String[] atr={
"a"
,
"b"
,
"c"
};
String[] str1=(String[])arrayInc(atr,
8
);
print(str1);
}
/**
* 修改数组大小
* */
public
static
Object arrayInc(Object obj,
int
len){
Class<?>arr=obj.getClass().getComponentType();
Object newArr=Array.newInstance(arr, len);
int
co=Array.getLength(obj);
System.arraycopy(obj,
0
, newArr,
0
, co);
return
newArr;
}
/**
* 打印
* */
public
static
void
print(Object obj){
Class<?>c=obj.getClass();
if
(!c.isArray()){
return
;
}
System.out.println(
"数组长度为: "
+Array.getLength(obj));
for
(
int
i =
0
; i < Array.getLength(obj); i++) {
System.out.print(Array.get(obj, i)+
" "
);
}
}
}
|
【运行结果】:
数组长度为: 15
1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 =====================
数组长度为: 8
a b c null null null null null
动态代理
【案例】 首先来看看如何获得类加载器:
1
2
3
4
5
6
7
8
9
|
class
test{
}
class
hello{
public
static
void
main(String[] args) {
test t=
new
test();
System.out.println(
"类加载器 "
+t.getClass().getClassLoader().getClass().getName());
}
}
|
【程序输出】:
类加载器 sun.misc.Launcher$AppClassLoader
其实在 java 中有三种类类加载器。
1 ) Bootstrap ClassLoader 此加载器采用 c++ 编写,一般开发中很少见。
2 ) Extension ClassLoader 用来进行扩展类的加载,一般对应的是 jre\lib\ext 目录中的类
3 ) AppClassLoader 加载 classpath 指定的类,是最常用的加载器。同时也是 java 中默认的加载器。
如果想要完成动态代理,首先需要定义一个 InvocationHandler 接口的子类,已完成代理的具体操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
package
Reflect;
import
java.lang.reflect.*;
//定义项目接口
interface
Subject {
public
String say(String name,
int
age);
}
// 定义真实项目
class
RealSubject
implements
Subject {
@Override
public
String say(String name,
int
age) {
return
name +
" "
+ age;
}
}
class
MyInvocationHandler
implements
InvocationHandler {
private
Object obj =
null
;
public
Object bind(Object obj) {
this
.obj = obj;
return
Proxy.newProxyInstance(obj.getClass().getClassLoader(), obj
.getClass().getInterfaces(),
this
);
}
@Override
public
Object invoke(Object proxy, Method method, Object[] args)
throws
Throwable {
Object temp = method.invoke(
this
.obj, args);
return
temp;
}
}
class
hello {
public
static
void
main(String[] args) {
MyInvocationHandler demo =
new
MyInvocationHandler();
Subject sub = (Subject) demo.bind(
new
RealSubject());
String info = sub.say(
"Rollen"
,
20
);
System.out.println(info);
}
}
|
【运行结果】:
Rollen 20
类的生命周期
在一个类编译完成之后,下一步就需要开始使用类,如果要使用一个类,肯定离不开 JVM 。在程序执行中 JVM 通过装载,链接,初始化这 3 个步骤完成。
类的装载是通过类加载器完成的,加载器将 .class 文件的二进制文件装入 JVM 的方法区,并且在堆区创建描述这个类的 java.lang.Class 对象。用来封装数据。 但是同一个类只会被类装载器装载以前
链接就是把二进制数据组装为可以运行的状态。
链接分为校验,准备,解析这 3 个阶段
校验一般用来确认此二进制文件是否适合当前的 JVM (版本),
准备就是为静态成员分配内存空间,。并设置默认值
解析指的是转换常量池中的代码作为直接引用的过程,直到所有的符号引用都可以被运行程序使用(建立完整的对应关系)
完成之后,类型也就完成了初始化,初始化之后类的对象就可以正常使用了,直到一个对象不再使用之后,将被垃圾回收。释放空间。
当没有任何引用指向 Class 对象时就会被卸载,结束类的生命周期
将反射用于工厂模式
先来看看,如果不用反射的时候,的工厂模式吧:
http://www.cnblogs.com/rollenholt/archive/2011/08/18/2144851.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
/**
* @author Rollen-Holt 设计模式之 工厂模式
*/
interface
fruit{
public
abstract
void
eat();
}
class
Apple
implements
fruit{
public
void
eat(){
System.out.println(
"Apple"
);
}
}
class
Orange
implements
fruit{
public
void
eat(){
System.out.println(
"Orange"
);
}
}
// 构造工厂类
// 也就是说以后如果我们在添加其他的实例的时候只需要修改工厂类就行了
class
Factory{
public
static
fruit getInstance(String fruitName){
fruit f=
null
;
if
(
"Apple"
.equals(fruitName)){
f=
new
Apple();
}
if
(
"Orange"
.equals(fruitName)){
f=
new
Orange();
}
return
f;
}
}
class
hello{
public
static
void
main(String[] a){
fruit f=Factory.getInstance(
"Orange"
);
f.eat();
}
}
|
这样,当我们在添加一个子类的时候,就需要修改工厂类了。如果我们添加太多的子类的时候,改的就会很多。
现在我们看看利用反射机制:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
package
Reflect;
interface
fruit{
public
abstract
void
eat();
}
class
Apple
implements
fruit{
public
void
eat(){
System.out.println(
"Apple"
);
}
}
class
Orange
implements
fruit{
public
void
eat(){
System.out.println(
"Orange"
);
}
}
class
Factory{
public
static
fruit getInstance(String ClassName){
fruit f=
null
;
try
{
f=(fruit)Class.forName(ClassName).newInstance();
}
catch
(Exception e) {
e.printStackTrace();
}
return
f;
}
}
class
hello{
public
static
void
main(String[] a){
fruit f=Factory.getInstance(
"Reflect.Apple"
);
if
(f!=
null
){
f.eat();
}
}
}
|
现在就算我们添加任意多个子类的时候,工厂类就不需要修改。
上面的爱吗虽然可以通过反射取得接口的实例,但是需要传入完整的包和类名。而且用户也无法知道一个接口有多少个可以使用的子类,所以我们通过属性文件的形式配置所需要的子类。
下面我们来看看: 结合属性文件的工厂模式
首先创建一个 fruit.properties 的资源文件,
内容为:
1
2
|
apple=Reflect.Apple
orange=Reflect.Orange
|
然后编写主类代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
package
Reflect;
import
java.io.*;
import
java.util.*;
interface
fruit{
public
abstract
void
eat();
}
class
Apple
implements
fruit{
public
void
eat(){
System.out.println(
"Apple"
);
}
}
class
Orange
implements
fruit{
public
void
eat(){
System.out.println(
"Orange"
);
}
}
//操作属性文件类
class
init{
public
static
Properties getPro()
throws
FileNotFoundException, IOException{
Properties pro=
new
Properties();
File f=
new
File(
"fruit.properties"
);
if
(f.exists()){
pro.load(
new
FileInputStream(f));
}
else
{
pro.setProperty(
"apple"
,
"Reflect.Apple"
);
pro.setProperty(
"orange"
,
"Reflect.Orange"
);
pro.store(
new
FileOutputStream(f),
"FRUIT CLASS"
);
}
return
pro;
}
}
class
Factory{
public
static
fruit getInstance(String ClassName){
fruit f=
null
;
try
{
f=(fruit)Class.forName(ClassName).newInstance();
}
catch
(Exception e) {
e.printStackTrace();
}
return
f;
}
}
class
hello{
public
static
void
main(String[] a)
throws
FileNotFoundException, IOException{
Properties pro=init.getPro();
fruit f=Factory.getInstance(pro.getProperty(
"apple"
));
if
(f!=
null
){
f.eat();
}
}
}
|
【运行结果】: Apple
发表评论
-
java以post发送方式实现百度Sitemap实时推送代码分享
2015-06-21 09:48 9255怎么实现百度sitemap实时推送,首先,得拥 ... -
[Java]读取文件方法大全
2012-12-22 16:39 11521、按字节读取文件内容 2、按字符读取文件内容 3、按行读 ... -
Dom4j创建XML文件,对该文件进行修改、格式化以及读取的Demo
2012-11-22 18:04 1796import java.io.File; import ... -
JAVA的文件操作【转】
2012-11-22 14:28 190011.3 I/O 类使用 由于在 IO 操作 ... -
Java文件file操作总结
2012-11-22 14:14 17432010-08-31 15:55 1106人阅读 ... -
Java反射机制的学习
2012-11-22 10:27 1565Java反射机制是 Java 语言被视为准动态语言的关键性 ... -
JAVA:注解(一)
2012-11-20 20:52 1207JAVA:注解(一) (2010-06-24 08:52 ... -
lucene3.6.1 经典案例 入门教程
2012-09-12 10:47 17390第一步:下载lucene的核心包 lucene-core-3 ... -
JAVA 反射详细讲解 实例
2012-08-17 16:06 2599一、反射的含义: Java类的一种自审机制, ... -
Eclipse快捷键大全 (转载)
2012-07-13 19:11 1061eclipse快捷键详细介绍 用的最多Ctrl+1 快 ... -
java时间格式大全1!
2012-07-10 17:13 1150java时间格式大全1! 2007年10月22日 星期 ... -
JUnit 4 使用 Java 5 中的注解(annotation),以下是JUnit 4 常用的几个 annotation 介绍
2012-05-28 17:46 2214JUnit 4 中的Before After Ign ... -
java 静态块、非静态块、静态函数、构造函数 执行顺序
2012-04-01 16:25 9784java中经常有一些静态块 ... -
c:foreach 标签的属性 详细解释
2012-03-27 09:00 2681<c:forEach>标签的使用 2007年03 ... -
java中equals 方法和 == 的区别 (详细)
2012-03-26 11:05 3434equal 和 == 的区别 java中eq ... -
java 创建线程的方法 继承Thread类和实现Runnable接口
2011-12-06 10:51 10165要产生一个线程,有两种方法: ◆需要从Java.lang.T ... -
Java HashMap和Hashtable的区别
2011-11-06 16:07 17691、 继承和实现区别 Hashtable是基于陈旧 ... -
java String和StringBuffer的区别
2011-11-06 15:44 1332在java中有3个类来负责字符的操作。 1.Characte ... -
Java int Integer 详解
2011-11-06 15:36 39511.int是基本的数据类 ... -
overload和override的区别 (精简)
2011-11-05 16:04 1144overload和override的区别 overri ...
相关推荐
### JAVA反射详解 Java反射是Java编程语言的一个强大特性,允许程序在运行时检查和操作类、接口、字段和方法等。本文章旨在深入解析Java反射机制,包括其原理、应用以及常见用法。 #### 了解Class对象 在Java中,...
Java反射机制是Java编程语言中的一个重要特性,它允许程序在运行时检查和操作类、接口、对象等的内部信息。通过反射,我们可以动态地创建对象、访问和修改字段、调用方法,甚至执行私有方法和访问包内可见的元素。...
Java反射是Java编程语言中的一个强大特性,它允许运行时的程序访问并操作类、接口、字段和方法等对象,即使这些对象在编译时并未被明确地引用。这一特性使得Java具有高度的动态性,使得代码能够在运行时检查类的信息...
"java反射机制详解" Java 反射机制是 Java 语言中的一种功能,它允许程序员在运行时检查和修改一个类的结构和行为。 Java 反射机制提供了一种获取类的信息、创建对象、调用方法和获取字段值的方式。 在 Java 中,...
反射机制是Java语言中一个非常重要的特性,它允许程序在运行时通过特定的API动态地访问对象的属性和方法。反射机制是Java编程的强大工具之一,但它也带来了安全性和性能问题,因此需要谨慎使用。在Java中,反射主要...
Java反射是Java语言的一个强大特性,它允许程序在运行时动态地获取类的信息(如类名、方法、字段等)并进行操作。反射在许多场景下都非常有用,例如在框架开发、插件系统、序列化、动态代理等方面。本文将通过三个...
Java反射是Java编程语言中的一个强大特性,它允许运行时检查类、接口、字段和方法的信息,甚至在程序运行过程中动态地创建对象和调用方法。这个特性使得Java具有高度的灵活性,尤其在处理元数据、插件系统、序列化、...
Java反射是Java编程语言中的一个强大工具,它允许程序在运行时检查并操作类、接口、字段和方法的信息。这使得开发者能够在不事先知道具体类名或方法名的情况下,动态地创建对象并调用方法。Java反射机制是Java动态性...
Java反射是Java编程语言中的一个强大特性,它允许在运行时检查类、接口、字段和方法的信息,并且能够在运行时动态地创建对象和调用方法。这个特性使得Java程序具有了高度的灵活性和动态性,尤其在框架开发、插件系统...
Java反射详解 在Java编程语言中,反射是一个强大的工具,它允许程序在运行时检查类、接口、字段和方法的信息,甚至能够在运行时创建和访问这些对象。这种能力使得Java成为一种动态语言,增强了代码的灵活性和可扩展...
Java 反射机制是 Java 语言中的一个重要特性,它允许程序在运行时动态地获取类的信息(如类名、属性、方法等)并调用对象的方法,甚至修改对象的状态。这一机制极大地增强了 Java 程序的灵活性和可扩展性,尤其是在...
(通过反射获取无参构造方法并使用) (通过反射获取带参构造方法并使用) (通过反射获取私有构造方法并使用) (通过反射获取成员变量并使用) (通过反射获取无参无返回值成员方法并使用) (通过反射获取带参带返回值成员...
Java反射机制是Java语言的一种强大的特性,它允许程序在运行时动态地获取类的信息并操作类的对象。在Java中,反射主要涉及到`java.lang.Class`类、`java.lang.reflect`包中的类(如Constructor、Method、Field)以及...
Java反射机制是Java语言的一项强大功能,它允许程序在运行时动态地获取类的信息并操作类的对象。这一特性使得Java具有高度的灵活性和强大的扩展性,尤其是在开发框架和库时,反射机制起到了至关重要的作用。本文将...
Java反射详解是Java编程中一个重要的高级特性,它允许运行中的Java程序对自身进行检查并且可以直接操作程序的内部属性。在Java的笔试和面试中,反射是一个常见的考察点,因此理解并掌握反射机制对于开发者来说至关...
### Java反射机制详解 #### 一、反射机制是什么 反射机制是Java编程语言的一个核心特性,它允许程序在运行时动态地获取类的信息,并且能够动态地创建对象和调用对象的方法。简单来说,反射机制使得Java程序可以...
Java反射机制是Java编程语言中的一个重要特性,它允许程序在运行时动态地获取类的信息并调用其方法。反射机制提供了对Java类和对象的元数据的访问,从而增加了代码的灵活性和动态性。 首先,要理解Java反射的预备...