原文地址: http://www.cnblogs.com/leoo2sk/archive/2011/08/11/consistent-hashing-intro.html
Consistent hashing算法非常简洁,如果你有一系列服务器,需要把很多 keys (objects)映射到这些
服务器上。这时Constent hashing就派上用场了。典型的例子包括 memcached 或者一些分布式系统。
余数映射方法
server = serverlist[ hash(key) % N ]
余数计算的方法简单,数据的分散性也相当优秀,但也有其缺点。那就是当添加或者移除服务器时,
缓存重组的代价相当巨大。现假设一台服务器宕机了,把它从列表中移除,为了填补空缺,后面的
服务器按顺序前移一位并将编号减1,此时每个key就要按照 server = serverlist[ hash(key) % (N-1) ]
重新计算。同样,如果新增一台服务器,虽然原有服务器的编号不用改变,但是所有关键字要按照
server = serverlist[ hash(key) % (N+1) ] 重新映射。因此,系统中一旦有服务器变更,大量的key被
重定位到不同的节点,从而造成大量的缓存不命中,这在分布式系统中是非常糟糕的。
为了说明这个问题,我们来看一个例子。
将 a, b, c, d, e, f, g, h, i, j, k, l 映射到 三台服务器 node1, node2, node3,结果为
node1: a, d, g, j
node2: b, e, h, k
node3: c, f, i, l
然后添加一台服务器 node4,重新映射,结果为
node1: a, e, i
node2: b, f, j
node3: c, g, k
node4: d, h, l
对比发现,添加一台服务器后,只有键 a, b, c 还是映射到原来的服务器。
其他键都移到了其他服务器,如果访问这些键,就会发生缓存失效。像这样,
添加节点后,键映射到的服务器会发生巨大的变化,导致缓存效率瞬间大幅度
下降。后果是灾难性的。
Constent Hashing 方法
一致性哈希算法(Consistent Hashing)最早在论文《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》中被提出。简单来说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0 - 232-1(即哈希值是一个32位无符号整形),整个哈希空间环如下:
整个空间按顺时针方向组织。0和232-1在零点中方向重合。
下一步将服务器使用H进行哈希(具体可以选择服务器的ip或主机名作为关键字进行哈希),映射到哈希环上的某个位置,这里假设将上文中三台服务器使用ip地址哈希后在环空间的位置如下:
接下来使用如下算法映射数据到相应服务器:将数据key使用相同的函数H计算出哈希值h,根据h确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该映射到的服务器。
例如我们有A、B、C、D四个数据对象,经过哈希计算后,在环空间上的位置如下:
根据一致性哈希算法,数据A会被定为到Server 1上,D被定为到Server 3上,而B、C分别被定为到Server 2上。
容错性与可扩展性分析
下面分析一致性哈希算法的容错性和可扩展性。现假设Server 3宕机了:
可以看到此时A、C、B不会受到影响,只有D节点被重定位到Server 2。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其前一台服务器(即逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
下面考虑另外一种情况,如果我们在系统中增加一台服务器Memcached Server 4:
此时A、D、C不受影响,只有B需要重定位到新的Server 4。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其前一台服务器(即逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。
虚拟节点
一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如我们的系统中有两台服务器,其环分布如下:
此时必然造成大量数据集中到Server 1上,而只有极少量会定位到Server 2上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,在每个计算的结果位置都放置一个服务节点,称为虚拟节点。具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,我们决定为每台服务器计算三个虚拟节点,于是可以分别计算“Memcached Server 1#1”、“Memcached Server 1#2”、“Memcached Server 1#3”、“Memcached Server 2#1”、“Memcached Server 2#2”、“Memcached Server 2#3”的哈希值,于是形成六个虚拟节点:
同时数据映射算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Memcached Server 1#1”、“Memcached Server 1#2”、“Memcached Server 1#3”三个虚拟节点的数据均定位到Server 1上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。
Memcached的分布式
memcached 虽然称为分布式缓存服务器,但服务器端并没有“分布式”的功能。服务器端仅包含内存的存储
功能和网络接口层。至于Memcached 的分布式,则完全由客户端实现。这种分布式是Memcached最大的特
点。
总结
目前一致性哈希基本成为了分布式系统组件的标准配置,例如Memcached的各种客户端都提供内置的一致性哈希支持。
分享到:
相关推荐
### 一致性哈希算法及其在分布式系统中的应用 #### 摘要 一致性哈希算法是一种用于解决分布式系统中节点动态变化导致的数据重新分布问题的关键技术。它通过将哈希空间映射到一个循环的空间中,实现了数据节点的高效...
一致性哈希算法是一种在分布式系统中用于解决数据分发和负载均衡问题的算法。随着互联网技术的快速发展,分布式系统已经成为支撑大规模服务的关键技术之一。在分布式系统中,多个节点通过网络协同工作,提供高可用性...
一致性哈希算法最初由麻省理工学院的K等人提出,并被广泛应用于分布式系统中,以解决节点动态变化时数据一致性问题。其核心思想是通过引入哈希环,将数据对象均匀分布在哈希环上的不同节点中,以此降低节点变更对...
一致性哈希算法是在分布式系统中广泛使用的一种数据定位算法,尤其适用于分布式缓存系统,如Redis。传统的哈希算法在分布式存储系统中有一个缺点,即当系统扩展或缩减节点时,数据的迁移量过大。一致性哈希算法通过...
【摘要】中的“高效扩展”和“分布式数据库”是本文的核心话题,研究的是如何利用一致性哈希算法在大数据时代高效地扩展分布式数据库。一致性哈希算法最初由Karger等人提出,目的是解决分布式缓存的问题,它弥补了...
本文将详细介绍一致性哈希的概念、原理以及在分布式系统中的应用。 一致性哈希为分布式系统提供了一种高效且灵活的数据分布机制。通过本文的介绍,我们学习了一致性哈希的概念、原理、应用场景以及如何实现它。一致...
一致性哈希算法由David Karger等人在1997年提出,它是一种特殊的哈希算法,主要用于分布式系统中实现负载均衡。与传统的哈希算法不同,一致性哈希算法在处理节点增减时,能够最小化重新分配数据的数量,从而提高系统...
一致性哈希算法是一种分布式哈希(Distributed Hash Table, DHT)技术,它解决了在分布式环境中数据分片和负载均衡的问题。在传统的哈希算法中,如果增加或减少服务器节点,会导致大量数据重新分配,而一致性哈希...
一致性哈希算法是一种在分布式系统中解决数据分片和负载均衡问题的算法,它主要解决了在动态添加或移除节点时,尽可能少地改变已经存在的数据分布。在云计算和大数据处理领域,一致性哈希被广泛应用,例如在分布式...
1. **一致性哈希算法**:一致性哈希是一种解决分布式系统中数据分布问题的算法,它的主要特点是能够尽可能地减少数据迁移。在WebSocket服务的分布式扩展中,一致性哈希用于确定每个连接应该路由到哪个服务器,使得在...
总的来说,Ketama一致性哈希算法是分布式系统中解决数据分布问题的重要工具,通过巧妙的设计实现了在节点变化时尽可能少的数据迁移,提高了系统的稳定性和扩展性。通过深入理解并运用这种算法,我们可以构建更加健壮...
通过运行此项目,你可以看到随着节点数量的变化,数据项的分布如何动态调整,这有助于深入理解一致性哈希算法在实际应用中的价值。此外,C#语言的实现使得代码易于阅读和学习,对于熟悉或想要学习C#编程的人来说,这...
在实际的分布式系统中,如CDN网络、分布式缓存系统等,一致性哈希算法得到了广泛应用。例如,在CDN环境中,通过一致性哈希算法可以将用户请求路由到最近的服务器,不仅减少了网络延迟,还实现了资源的高效利用。 ##...
一致性哈希算法(Consistent Hashing)是一种常用于分布式系统中的数据分片策略,它有效地解决了数据在多台服务器间均匀分布的问题,同时减少了因节点加入或离开时的数据迁移成本。 首先,一致性哈希的基本原理是将...
一致性哈希算法(Consistent Hashing)是一种在分布式系统中实现负载均衡的算法,尤其在分布式缓存如Memcached和Redis等场景下广泛使用。它解决了传统哈希算法在节点增减时导致的大量数据迁移问题,提高了系统的可用...
Mycat一致性哈希算法广泛应用于分布式缓存、负载均衡、数据库分片等场景,特别是在大数据、高并发的互联网应用中,能够有效提升系统的处理能力和稳定性。 总结,Mycat的一致性哈希分片算法是实现高效分布式数据库的...
本项目以“基于NIO-EPOOL模型netty实现的具备一致性哈希算法的NAT端口映射器”为主题,深入探讨了Netty在NAT端口映射中的应用,以及一致性哈希算法在此过程中的作用。 首先,我们来了解NIO(Non-blocking I/O,非...
在了解一致性哈希算法之前,需要了解一个经典的分布式缓存应用场景。假设,我们有三台缓存服务器,用于缓存图片,我们希望这些图片被均匀的缓存在这三台服务器上,以便它们能够分摊缓存的压力。那么,我们应该怎样做...