Hibernate采用低侵入式的设计,它对持久化类几乎不做任何要求。也就是说hibernate操作的持久化类基本都是普通java对象。对于持久化类的要求这里不做说明。只就持久化对象的状态和各个状态之间的转换。
Hibernate持久化对象有如下几种状态:
1、瞬态:对象有new操作符创建,但是并没与HibernateSession关联。处于瞬态的对象是不会被持久化到数据库中的。如果程序中失去了瞬态对象的引用,瞬态对象就会被垃圾回收机制销毁。
2、持久化:持久化实力在数据库中有对应的记录,并且拥有一个持久化标识。对于持久化对象,它必须要与指定的HibernateSession关联起来。
3、托管:该对象曾经处于持久化装填,但随着与之关联的Session被关闭了,那么该对象也就变为了托管状态。
下图是hibernate持久化实例的状态演化图:
1、瞬态转变为持久化状态
当我们通过new新建一个实例时,这个实例就处于瞬态。瞬态可以通过以下几个方法转换为持久化状态。
save(Objectobj):将对象变为持久化状态,该对象的属性将被保存到数据库中。
persist(Objectobj):将对象变为持久化状态,该对象的属性将被保存到数据库中
save(Objectobj,Objectpk):将对象保存到数据库,保存到数据库时,指定主键值
persist(Objectobj,Objectpk):将对象保存到数据库,保存到数据库时,指定主键值
如果对象的标识属性是generated类型的,那么hibernate将会在执行save()方法时自动生成标识属性值,并且将该标识属性值分配给该对象,并且标识属性值会在sava()被调用时自动产生并分配给该对象。如果对象的标识属性是assigned类型的,或者是复合主键,那么该标识属性值应该在调用save()方法之前手动赋予给该对象。
在使用save()和persist()方法的时候,有一个区别:使用save()方法保存持久化对象时,该方法返回持久化对象的标识属性值。但是persist不会返回任何值。
2、加载持久化实例
我们可以使用load()方法来加载一个持久化实例,这种加载时根据持久化类的标识属性值加载持久化实例的,其实质就是根据主键从数据表中加载一条新的纪录。
同时也可以使用get()方法加载一个持久化实例。它和load方法的相同点在于两者都是根据主键装载持久化实例的。不同就在于get()会立即访问数据库,而laod()会延迟加载,不会立即访问数据库。
一旦加载了该持久化实例后,该实例就会处于持久化状态,这是如果对该持久化实例所做的修改将会保持到数据库中。
如:
这段代码会在session.flush之前自动保持到数据库中。也就是说,修改对象最简单的方法就是在Session处于打开状态时加载它,然后只见修改即可。
如下:
2、托管
当一个对象处于脱管的状态后,程序应该使用新的session来保存这些修改。hibernate提供了update()、merge()和updateOrSace()等方法来保存这些修改。
如下:
当我们用另一个session来保存这种修改后,该脱管对象会再次回到持久化状态。
当需要使用update来保存程序对持久化对象所在的修改时,如果不清楚该对象是否曾经持久化过,那么可以选择updateOrSave()方法,该方法会自动判断该对象是否曾经持久化过,如果持久化过,则使用update()来操作,否是使用save()方法。
读李刚《轻量级JavaEE 企业应用实战》
分享到:
相关推荐
ysoserial是一个用于生成利用不安全的Java对象反序列化的有效负载的概念验证工具。它包含一系列在常见Java库中发现的"gadget chains",可以在特定条件下利用执行不安全的反序列化操作的Java应用程序。ysoserial项目最初在2015年AppSecCali会议上提出,包含针对Apache Commons Collections(3.x和4.x版本)、Spring Beans/Core(4.x版本)和Groovy(2.3.x版本)的利用链
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
**Oracle 10g DBA学习手册:安装Oracle和构建数据库** **目的:** 本章节旨在指导您完成Oracle数据库软件的安装和数据库的创建。您将通过Oracle Universal Installer (OUI)了解软件安装过程,并学习如何利用Database Configuration Assistant (DBCA)创建附加数据库。 **主题概览:** 1. 利用Oracle Universal Installer (OUI)安装软件 2. 利用Database Configuration Assistant (DBCA)创建数据库 **第2章:Oracle软件的安装与数据库构建** **Oracle Universal Installer (OUI)的运用:** Oracle Universal Installer (OUI)是一个图形用户界面(GUI)工具,它允许您查看、安装和卸载机器上的Oracle软件。通过OUI,您可以轻松地管理Oracle软件的安装和维护。 **安装步骤:** 以下是使用OUI安装Oracle软件并创建数据库的具体步骤:
消防验收过程服务--现场记录表.doc
数据库管理\09-10年第1学期数据库期末考试试卷A(改卷参考).doc。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
职业暴露后的处理流程.docx
Java Web开发短消息系统
项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
这是一款可以配置过滤目录及过滤的文件后缀的工具,并且支持多个项目同时输出导出,并过滤指定不需要导出的目录及文件后缀。 导出后将会保留原有的路径,并在新的文件夹中体现。
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
YOLO算法-挖掘机与火焰数据集-7735张图像带标签-挖掘机.zip
操作系统实验 Ucore lab5
IMG_5950.jpg
竞选报价评分表.docx
java系统,mysql、springboot等框架
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
内容概要:本文详细讲解了搜索引擎的基础原理,特别是索引机制、优化 like 前缀模糊查询的方法、建立索引的标准以及针对中文的分词处理。文章进一步深入探讨了Lucene,包括它的使用场景、特性、框架结构、Maven引入方法,尤其是Analyzer及其TokenStream的实现细节,以及自定义Analyzer的具体步骤和示例代码。 适合人群:数据库管理员、后端开发者以及希望深入了解搜索引擎底层实现的技术人员。 使用场景及目标:适用于那些需要优化数据库查询性能、实施或改进搜索引擎技术的场景。主要目标在于提高数据库的访问效率,实现高效的数据检索。 阅读建议:由于文章涉及大量的技术术语和实现细节,建议在阅读过程中对照实际开发项目,结合示例代码进行实践操作,有助于更好地理解和吸收知识点。