`
hellobin
  • 浏览: 66293 次
  • 性别: Icon_minigender_1
社区版块
存档分类
最新评论

最大连续子序列和

 
阅读更多

最大连续子序列和问题是个很老的面试题了,最佳的解法是O(N)复杂度,当然其中的一些小的地方还是有些值得注意的地方的。这里还是总结三种常见的解法,重点关注最后一种O(N)的解法即可。需要注意的是有些题目中的最大连续子序列和如果为负,则返回0;而本题目中的最大连续子序列和并不返回0,如果是全为负数,则返回最大的负数即可。

 

问题描述

 

求取数组中最大连续子序列和,例如给定数组为A={1, 3, -2, 4, -5}, 则最大连续子序列和为6,即1+3+(-2)+ 4 = 6。

 

解法1—O(N^2)解法

因为最大连续子序列和只可能从数组0到n-1中某个位置开始,我们可以遍历0到n-1个位置,计算由这个位置开始的所有连续子序列和中的最大值。最终求出最大值即可。

更详细的讲,就是计算从位置0开始的最大连续子序列和,从位置1开始的最大连续子序列和。。。直到从位置n-1开始的最大连续子序列和,最后求出所有这些连续子序列和中的最大值就是答案。

解法2—O(NlgN)解法

该问题还可以通过分治法来求解,最大连续子序列和要么出现在数组左半部分,要么出现在数组右半部分,要么横跨左右两半部分。因此求出这三种情况下的最大值就可以得到最大连续子序列和。

解法3—O(N)解法

还有一种更好的解法,只需要O(N)的时间。因为最大 连续子序列和只可能是以位置0~n-1中某个位置结尾。当遍历到第i个元素时,判断在它前面的连续子序列和是否大于0,如果大于0,则以位置i结尾的最大连续子序列和为元素i和前面的连续子序列和相加;否则,则以位置i结尾的最大连续子序列和为元素i。

 

参考http://blog.csdn.net/ssjhust123/article/details/8032464

 

例题:

 

 

题目描述:
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
输入:

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K< 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。

输出:

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

样例输入:
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
样例输出:
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0

http://ac.jobdu.com/problem.php?pid=1011

 

AC code:

 

#define RUN
#ifdef RUN

/**
http://ac.jobdu.com/problem.php?pid=1011
*/


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <vector>
#include <list>
#include <cctype> 
#include <algorithm>
#include <utility>
#include <math.h>

using namespace std;

#define MAXN 10001


int buf[MAXN];



//O(n2)
void maxsequence(int n){
	int max_ = buf[0];
	int max_start = buf[0];
	int max_end = buf[0];

	for(int i=0; i<n; i++){
		int sum_ = 0;
		for(int j=i; j<n; j++){
			sum_ += buf[j];
			if(sum_ > max_){
				max_ = sum_;
				max_start = buf[i];
				max_end = buf[j];
			}
		}
	}

	printf("%d %d %d\n", max_, max_start, max_end);
}


/*求三个数最大值*/ 
int max3(int i, int j, int k){
	int max_ = i;
	if(j > max_){
		max_ = j;
	}
	if(k > max_){
		max_ = k;
	}
	return max_;
}



int maxsequence2(int a[], int l, int u){
	if(l > u){
		return 0;
	}
	if(l == u){
		return a[0];
	}
	int m = (l+u)/2;

	// 求横跨左右的最大连续子序列左半部分
	int lmax = a[m], lsum = 0;
	for(int i=m; i>=0; i--){
		lsum += a[i];
		if(lsum > lmax){
			lmax = lsum;
		}
	}

	/*求横跨左右的最大连续子序列右半部分*/ 
	int rmax = a[m+1], rsum = 0;
	for(int i=m+1; i<=u; i++){
		rsum += a[i];
		if(rsum > rmax){
			rmax = rsum;
		}
	}

	return max3(lmax+rmax, maxsequence2(a, 0, m), maxsequence2(a, m+1, u));
}


void maxsequence3(int a[], int len)  
{
	int maxsum, maxhere;  
	maxsum = maxhere = a[0];   //初始化最大和为a[0]  
	int max_start = buf[0];
	int max_end = buf[0];

	int tmp = buf[0];

	for (int i=1; i<len; i++) {
		if (maxhere < 0){
			maxhere = a[i];  //如果前面位置最大连续子序列和小于等于0,则以当前位置i结尾的最大连续子序列和为a[i]
			tmp = a[i];
		}
		else{
			maxhere += a[i]; //如果前面位置最大连续子序列和大于0,则以当前位置i结尾的最大连续子序列和为它们两者之和  
		}
		if (maxhere > maxsum) {  
			maxsum = maxhere;  //更新最大连续子序列和
			max_start = tmp;
			max_end = a[i];
		}  
	}

	printf("%d %d %d\n", maxsum, max_start, max_end);
}

int main(){

#ifndef ONLINE_JUDGE
	freopen("1011.in", "r", stdin);
	freopen("1011.out", "w", stdout); 
#endif


	int n;
	while(scanf("%d", &n)==1 && n!=0){
		memset(buf, 0, sizeof(buf));
		for(int i=0; i<n; i++){
			scanf("%d", &buf[i]);
		}

		//maxsequence(n);
		//printf("%d\n", maxsequence2(buf, 0, n-1));
		maxsequence3(buf, n);
	}


}


#endif


对于解法2仍存在问题,待解决。解法一和三顺利AC

 

 

分享到:
评论

相关推荐

    分治算法-求解最大连续子序列和问题-python实现

    - 应用:在求解最大连续子序列和问题时,分治算法通过将数组分为两个子数组,分别求解每个子数组的最大连续子序列和,然后考虑跨越子数组的元素,最终合并得到整个数组的最大连续子序列和。 2. 算法步骤 - 初始化...

    计算机算法分析与设计最大连续子序列

    计算机算法分析与设计最大连续子序列 计算机算法分析与设计最大连续子序列是计算机...解决该问题需要使用动态规划法,读取输入数据,记录最大和和历史最大的和,并输出最大和、最大连续子序列的第一个和最后一个元素。

    算法实验-串匹配问题-采用分治法求解最大连续子序列和问题-用分治策略求众数问题-最近点对问题

    在本实验中,我们将探讨四个核心的算法问题:串匹配问题、最大连续子序列和问题、求众数问题以及最近点对问题。这些问题都属于算法设计与分析的范畴,通过解决这些问题,我们可以深入理解分治法和其他算法策略。 1....

    3种方法求 最大连续子序列和

    解法1—O(N^2)解法 解法2—O(NlgN)解法 解法3—O(N)解法 可以直接在记事本运行

    zyq2652192993zyq#Advance-Algorithm#动态规划——最大连续子序列和1

    动态规划——最大连续子序列和一维最大连续子序列和[x] LeetCode 53 Maximum Subarray设$d[i]$表示以序列中$s[i]$结尾的最大

    Python语言描述最大连续子序列和

    在编程领域,特别是数据分析和算法设计中,"最大连续子序列和"问题是一个经典的问题,它经常出现在面试和算法竞赛中。这个问题的核心是找到一个数组(在Python中通常表示为列表)中的最大连续子集,使得这个子集的...

    连续子序列最大和与乘积问题的分析

    在IT领域,特别是算法设计和分析中,"连续子序列最大和与乘积问题"是一个经典的话题。这类问题经常出现在数据结构和算法的面试中,也是优化和解决复杂计算问题的关键。本文将深入探讨这个问题,并结合提供的Java源码...

    求解子序列的最大和问题

    文件给出了四种方式求解子序列的最大和,并给出了具体的代码实现。对于深入探讨算法和程序性能非常有帮助。

    三种方法实现最大连续子序列

    三种方法实现最大子序列,时间复杂度分别是O(n^3),o(n^2),o(n)

    最大子段和问题 蛮力法 分治法 动态规划法

    最大子段和问题是一个经典的计算机科学中的算法问题,它的目标是找到一个整数数组中连续子数组的最大和。这个问题在很多实际应用中都有所体现,比如在数据分析、股票投资策略等领域。下面我们将深入探讨解决这一问题...

    C++求最大子序列的和

    C++求最大子序列的和 问题:求一个数组 / 序列的满足条件的子数组 / 子序列。 条件: 1. 子数组必须是连续的。 2. 求和即可,不需要返回子数组是哪段。 3. 数组元素为整数。

    算法分析与设计.最近对问题.最大子段和(分治法最大子段和(动态规划)

    算法分析与设计最近对问题最大子段和(分治法最大子段和动态规划) 最近对问题最大子段和(分治法)是算法设计与分析中一个重要的知识点,它是指在一组点集中找到最近对点的距离。该问题可以通过分治法和动态规划来...

    算法系列之六:最长公共子序列(LCS)问题(连续子序列)的三种解法.doc

    算法系列之六:最长公共子序列(LCS)问题(连续子序列)的三种解法 本文档总结了解决最长公共子序列(LCS)问题的三种解法,针对连续子序列的情况。LCS 问题有两种定义子序列的方式:一是子序列不要求连续,二是子...

    一个整数序列,求最大子序列的和C++

    一个整数序列,求最大子序列的和,C++,The max sub sum of an array.

    maxsum.rar_最大子段和

    最大子段和问题,也称为“最大连续子序列和”问题,是计算机科学中的一个经典算法问题,尤其在动态规划领域具有重要的地位。该问题旨在寻找一个数组或序列中的连续子序列,使得这个子序列的元素之和最大。这个问题...

    动态规划最大子序列和 Gabe

    最大子序列和问题可以描述为:给定一个序列{ N1, N2, ..., NK },找到其中的最大连续子序列,使其元素和最大。例如,给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为 20。 为了...

    南华大学算法分析与设计实验

    这部分未给出具体细节,但可以想象,学生会编写Java或其他编程语言的代码来实现这两个问题的解决方案,并在实验报告中记录执行结果,包括输出的最大连续子序列和以及多数元素。 ### 实验总结 通过实验,学生能够...

    91、1285:最大上升子序列和(2020.03.14)A.pdf

    ### 一、最大上升子序列和问题定义及背景 #### 问题背景: 题目编号1285:“最大上升子序列和”来源于CSP-J NOIP(全国青少年信息学奥林匹克联赛普及组)相关试题。此题旨在考察学生的算法设计与实现能力。 #### ...

Global site tag (gtag.js) - Google Analytics