`

红黑树 学习

    博客分类:
  • web
 
阅读更多

之前看了很多写红黑树的博客,但是感觉都讲的不太清楚!没说这样操作如何使他保持平衡的,于是疑惑重重,就看不下去了,一次不经意看到一个人说维基百科的红黑树讲的好,我就随便点了一下一看——这下疯了~,怎么讲的这么好!可以说是把一个复杂的问题,讲得简单化!这太幸福了! 于是我就慢慢学会了!强烈推荐维基的这个讲解,再也找不到比这还好的讲解了!不知道它上边其它的怎么样,反正这个很好!!既然学会了,走过来了,我也要留下脚印!

下面将是我对红黑树的总结,里面的性感的图片都是维基百科红黑树上的^_^!我讨论的红黑树需建立在会平衡二叉树的基础上去学,即若不懂“旋转”操作,请看平衡二叉树的旋转操作。

红黑树(RBT)的定义:它或者是一颗空树,或者是具有一下性质的二叉查找树:

1.节点非红即黑。

2.根节点是黑色。

3.所有NULL结点称为叶子节点,且认为颜色为黑

4.所有红节点的子节点都为黑色。

5.从任一节点到其叶子节点的所有路径上都包含相同数目的黑节点。

看完红黑树的定义是不是可晕?怎么这么多要求!!这怎么约束啊?我刚看到这5条约束,直接无语了,1-3、4还好说,第5点是怎么回事啊?怎么约束?整这么复杂的条件好干啥啊?我来简单说说呵:第3条,显然这里的叶子节点不是平常我们所说的叶子节点,如图标有NIL的为叶子节点,为什么不按常规出牌,因为按一般的叶子节点也行,但会使算法更复杂;第4条,即该树上决不允许存在两个连续的红节点;第5条,比如图中红8到1左边的叶子节点的路径包含2个黑节点,到6下的叶子节点的路径也包含2个黑节点。所有性质1-5合起来约束了该树的平衡性能--即该树上的最长路径不可能会大于2倍最短路径。为什么?因为第1条该树上的节点非红即黑,由于第4条该树上不允许存在两个连续的红节点,那么对于从一个节点到其叶子节点的一条最长的路径一定是红黑交错的,那么最短路径一定是纯黑色的节点;而又第5条从任一节点到其叶子节点的所有路径上都包含相同数目的黑节点,这么来说最长路径上的黑节点的数目和最短路径上的黑节点的数目相等!而又第2条根结点为黑、第3条叶子节点是黑,那么可知:最长路径<=2*最短路径。一颗二叉树的平衡性能越好,那么它的效率越高!显然红黑树的平衡性能比AVL的略差些,但是经过大量试验证明,实际上红黑树的效率还是很不错了,仍能达到O(logN),这个我不知道,我现在不可能做过大量试验,只是听人家这样说,O(∩_∩)O哈哈~但你至少知道他的时间复杂度一定小于2O(logN)!

上边的性质看个10遍,看懂看透彻再看操作!

插入操作

由于性质的约束:插入点不能为黑节点,应插入红节点。因为你插入黑节点将破坏性质5,所以每次插入的点都是红结点,但是若他的父节点也为红,那岂不是破坏了性质4?对啊,所以要做一些“旋转”和一些节点的变色!另为叙述方便我们给要插入的节点标为N(红色),父节点为P,祖父节点为G,叔节点为U。下边将一一列出所有插入时遇到的情况:

情形1该树为空树,直接插入根结点的位置,违反性质1,把节点颜色有红改为黑即可

情形2插入节点N的父节点P为黑色,不违反任何性质,无需做任何修改

 情形1很简单,情形2中P为黑色,一切安然无事,但P为红就不一样了,下边是P为红的各种情况,也是真正要学的地方!

情形3N为红,P为红,(祖节点一定存在,且为黑,下边同理)U也为红,这里不论P是G的左孩子,还是右孩子;不论N是P的左孩子,还是右孩子

操作:如图把P、U改为黑色,G改为红色,未结束。

解析:N、P都为红,违反性质4;若把P改为黑,符合性质4,显然左边少了一个黑节点,违反性质5;所我们把G,U都改为相反色,这样一来通过G的路径的黑节点数目没变,即符合4、5,但是G变红了,若G的父节点又是红的不就有违反了4,是这样,所以经过上边操作后未结束,需把G作为起始点,即把G看做一个插入的红节点继续向上检索----属于哪种情况,按那种情况操作~要么中间就结束,要么知道根结点(此时根结点变红,一根结点向上检索,那木有了,那就把他变为黑色吧)。

情形4:N为红,P为红,U为黑,P为G的左孩子,N为P的左孩子(或者P为G的右孩子,N为P的左孩子;反正就是同向的)。

操作:如图P、G变色,P、G变换即左左单旋(或者右右单旋),结束。

解析:要知道经过P、G变换(旋转),变换后P的位置就是当年G的位置,所以红P变为黑,而黑G变为红都是为了不违反性质5,而维持到达叶节点所包含的黑节点的数目不变!还可以理解为:也就是相当于(只是相当于,并不是实事,只是为了更好理解;)把红N头上的红节点移到对面黑U的头上;这样即符合了性质4也不违反性质5,这样就结束了。

 

情形5:N为红,P为红,U为黑,P为G的左孩子,N为P的右孩子(或者P为G的右孩子,N为P的左孩子;反正两方向相反)。

 

操作:需要进行两次变换(旋转),图中只显示了一次变换-----首先P、N变换,颜色不变;然后就变成了情形4的情况,按照情况4操作,即结束。

解析:由于P、N都为红,经变换,不违反性质5;然后就变成4的情形,此时G与G现在的左孩子变色,并变换,结束。

 

 

删除操作

我们知道删除需先找到“替代点”来替代删除点而被删除,也就是删除的是替代点,而替代点N的至少有一个子节点为NULL,那么,若N为红色,则两个子节点一定都为NULL(必须地),那么直接把N删了,不违反任何性质,ok,结束了;若N为黑色,另一个节点M不为NULL,则另一个节点M一定是红色的,且M的子节点都为NULL(按性质来的,不明白,自己分析一下)那么把N删掉,M占到N的位置,并改为黑色,不违反任何性质,ok,结束了;若N为黑色,另一个节点也为NULL,则把N删掉,该位置置为NULL,显然这个黑节点被删除了,破坏了性质5,那么要以N节点为起始点检索看看属于那种情况,并作相应的操作,另还需说明N为黑点(也许是NULL,也许不是,都一样),P为父节点,S为兄弟节点(这个我真想给兄弟节点叫B(brother)多好啊,不过人家图就是S我也不能改,在重画图,太浪费时间了!S也行呵呵,就当是sister也行,哈哈)分为以下5中情况:

情形1S为红色(那么父节点P一定是黑,子节点一定是黑),N是P的左孩子(或者N是P的右孩子)。

操作:P、S变色,并交换----相当于AVL中的右右中旋转即以P为中心S向左旋(或者是AVL中的左左中的旋转),未结束。

解析:我们知道P的左边少了一个黑节点,这样操作相当于在N头上又加了一个红节点----不违反任何性质,但是到通过N的路径仍少了一个黑节点,需要再把对N进行一次检索,并作相应的操作才可以平衡(暂且不管往下看)。

 

 

情形2:P、S及S的孩子们都为黑。

操作:S改为红色,未结束。
解析:S变为红色后经过S节点的路径的黑节点数目也减少了1,那个从P出发到其叶子节点到所有路径所包含的黑节点数目(记为num)相等了。但是这个num比之前少了1,因为左右子树中的黑节点数目都减少了!一般地,P是他父节点G的一个孩子,那么由G到其叶子节点的黑节点数目就不相等了,所以说没有结束,需把P当做新的起始点开始向上检索。

 

情形3:P为红(S一定为黑),S的孩子们都为黑。

 

操作:P该为黑,S改为红,结束。

解析:这种情况最简单了,既然N这边少了一个黑节点,那么S这边就拿出了一个黑节点来共享一下,这样一来,S这边没少一个黑节点,而N这边便多了一个黑节点,这样就恢复了平衡,多么美好的事情哈!

 

 

情形4:P任意色,S为黑,N是P的左孩子,S的右孩子SR为红,S的左孩子任意(或者是N是P的右孩子,S的左孩子为红,S的右孩子任意)。


操作:SR(SL)改为黑,P改为黑,S改为P的颜色,P、S变换--这里相对应于AVL中的右右中的旋转(或者是AVL中的左左旋转),结束。
解析:P、S旋转有变色,等于给N这边加了一个黑节点,P位置(是位置而不是P)的颜色不变,S这边少了一个黑节点;SR有红变黑,S这边又增加了一个黑节点;这样一来又恢复了平衡,结束。

 

 

情形5:P任意色,S为黑,N是P的左孩子,S的左孩子SL为红,S的右孩子SR为黑(或者N是P的有孩子,S的右孩子为红,S的左孩子为黑)。

 

操作:SL(或SR)改为黑,S改为红,SL(SR)、S变换;此时就回到了情形4,SL(SR)变成了黑S,S变成了红SR(SL),做情形4的操作即可,这两次变换,其实就是对应AVL的右左的两次旋转(或者是AVL的左右的两次旋转)。
解析:这种情况如果你按情形4的操作的话,由于SR本来就是黑色,你无法弥补由于P、S的变换(旋转)给S这边造成的损失!所以我没先对S、SL进行变换之后就变为情形4的情况了,何乐而不为呢?

 

好了,这五种情况都讨论完了,我想强调的是:注意哪些分方向的情况,每个分方向的情形就两种情况,不要搞迷了!下边我写的代码,不用关心是什么方向,我主要是用一个指针数组即child[2],0代表左,1代表右,进行两个节点的变换(旋转)的时候只需向conversion(&T,direction);传入父节点指针的地址及子节点在父节点的方位(0或1);有兴趣可以看代码.

欢迎大家留言指正哦^_^

下边贴上我的C代码:
简介:主要是用递归实现插入、删除,回溯时检索并恢复平衡。

 

 

1 #include <stdio.h>
  2 #include <stdlib.h>
  3 
  4 #define RED 0
  5 #define BACK 1
  6 
  7 typedef int Elemtype;
  8 
  9 //定义一个红黑树的结点
 10 typedef struct Red_Back_Tree
 11 {
 12     Elemtype e;
 13     int color;
 14     struct Red_Back_Tree * child[2];
 15 }* RBT;
 16 
 17 //    两个节点变换函数
 18 void conversion(RBT *T,int direction);
 19 
 20 //    删除一个节点的所用函数
 21 int DeleteRBT(RBT *T,Elemtype e);                                //    删除主(接口)函数
 22 int find_replace_point(RBT gogal,RBT *l);                        //    寻找替代点
 23 int keep_balance_for_delete(RBT *T,int direction);                //    删除的平衡操作
 24 int do_with_start_point(RBT gogal,RBT *T,int direction);                    //    处理第一个起始点
 25 
 26 //    插入一个节点的所用函数
 27 int InsertRBT(RBT *T,Elemtype e);                                //    插入接口函数
 28 int _InsertRBT(RBT *T,Elemtype e);                                //    插入主函数
 29 int keep_balance_for_insert(RBT *T,int firdirection,Elemtype e);//    插入的平衡操作
 30 RBT create_one_node(Elemtype e);                                //    新建一个节点
 31 
 32 
 33 
 34 void conversion(RBT *T,int direction)
 35 {
 36     RBT f=(*T),s=f->child[direction],ss=s->child[!direction];
 37 
 38     f->child[direction]=ss;
 39     s->child[!direction]=f;
 40     *T=s;
 41 }
 42 
 43 //★★★★★★★★★★★★★★★★★删除操作★★★★★★★★★★★★★★★★★★★★★★★★★★★
 44 
 45 int do_with_start_point(RBT gogal,RBT *T,int direction)
 46 {
 47     gogal->e=(*T)->e;
 48     if(BACK==((*T)->color))
 49     {
 50         if(NULL!=(*T)->child[direction])
 51         {
 52             (*T)->e=(*T)->child[direction]->e;
 53             free((*T)->child[direction]);
 54             (*T)->child[direction]=NULL;
 55             return 1;
 56         }
 57         else
 58         {
 59             free((*T));
 60             *T=NULL;
 61             return 0;
 62         }
 63     }
 64     else
 65     {
 66         free((*T));
 67         (*T)=NULL;
 68         return 1;
 69     }
 70 }
 71 
 72 int keep_balance_for_delete(RBT *T,int direction)
 73 {
 74     RBT p=(*T),b=p->child[!direction];
 75     
 76     if(RED==b->color)
 77     {
 78         p->color=RED;
 79         b->color=BACK;
 80 //        conversion(&p,!direction);//很恐怖的一个写法,偶然中发现:这里传的地址是假的!不是T!!
 81 //                                    考我怎么这么傻逼!!如果不是及时发现,到调试时将是无限恐怖
 82 //                                    将是一个巨大的隐藏的BUG!!!将会带来巨大的麻烦!!!
 83         conversion(T,!direction);
 84         return keep_balance_for_delete(&((*T)->child[direction]),direction);
 85     }
 86     else if(BACK==p->color && BACK==b->color && 
 87         (NULL==b->child[0] || BACK==b->child[0]->color) && 
 88         (NULL==b->child[1] || BACK==b->child[1]->color))    //这里感觉不美,就一次为NULL却每次要
 89     {                                                        //判断是否为NULL,不美……
 90         b->color=RED;
 91         return    0; 
 92     }
 93     else if(RED==p->color && 
 94         (NULL==b->child[0] || BACK==b->child[0]->color) &&
 95         (NULL==b->child[1] || BACK==b->child[1]->color))
 96     {
 97         p->color=BACK;
 98         b->color=RED;
 99         return 1;
100     }
101 //    第一次调试
102 //    调试原因:由于删除0点未按预料的操作应该是情况④,却按⑤操作
103 //    错误的地方:RED==b->child[!direction] ! 丢了->color 这个错误我上边错了几次,不过编译器报错改了过来
104 //    这次的编译器不报错,看代码也看不错来,最后追究到这里,一一对照才发现!!!
105 //    else if(BACK==b->color && (NULL!=b->child[!direction] && RED==b->child[!direction]))
106     else if(BACK==b->color && (NULL!=b->child[!direction] && RED==b->child[!direction]->color))
107     {
108         b->color=p->color;
109         p->color=BACK;
110         b->child[!direction]->color=BACK;
111         conversion(T,!direction);
112         return 1;
113     }
114     else
115     {
116         b->child[direction]->color=p->color;
117         p->color=BACK;
118         conversion(&(p->child[!direction]),direction);//这里的p写的才算不错!即p也(*T)都行,一样!
119         conversion(T,!direction);
120         return 1;
121     }
122 
123 }
124 
125 int find_replace_point(RBT gogal,RBT *l)
126 {
127     if(NULL!=(*l)->child[0])
128     {
129         if(find_replace_point(gogal,&(*l)->child[0]))    return 1;
130         return keep_balance_for_delete(l,0);
131         //...
132     }
133 //    第二次调试---其实没F5,F10,F11,根据结果猜测,到这里看看还真是的!
134 //    调试原因:删除0好了,删除1又错了---2不见了,1还在
135 //    错误的地方:就在这里,找到替代点,却没有“替代”,这等于把替代点删了...
136 //                这里很明显,gogal这个删除点指针根本就没用...我当时忘了吧!!修改如下!
137 //    else    //替代点为起始点
138 //    {
139 //        return do_with_start_point(l,1);
140 //    }
141     else
142     {
143         return do_with_start_point(gogal,l,1);
144     }
145 }
146 
147 int DeleteRBT(RBT *T,Elemtype e)
148 {
149     if(!(*T))    return -1;
150     else if(e>(*T)->e)
151     {
152         if(DeleteRBT(&((*T)->child[1]),e))    return 1;
153         return keep_balance_for_delete(T,1);
154         //...
155     }
156     else if(e<(*T)->e)
157     {
158         if(DeleteRBT(&((*T)->child[0]),e))    return 1;
159         return keep_balance_for_delete(T,0);
160         //...
161     }
162     else
163     {
164         if(NULL!=(*T)->child[1])    //真正的删除点不是起始点,需找替代点
165         {
166             if(find_replace_point((*T),&((*T)->child[1])))    return 1;
167             return keep_balance_for_delete(T,1);
168             //...
169         }
170         else    //真正的删除点就是起始点
171         {
172             return do_with_start_point((*T),T,0);
173         }
174     }
175 }
176 //★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
177 
178 
179 //★★★★★★★★★★★★★★★★★★★插入操作★★★★★★★★★★★★★★★★★★★★★★★★★
180 
181 RBT create_one_node(Elemtype e)
182 {
183     RBT p=(RBT)malloc(sizeof(struct Red_Back_Tree));
184     p->e=e;    p->color=RED;
185     p->child[0]=p->child[1]=NULL;
186     return p;
187 }
188 
189 int keep_balance_for_insert(RBT *T,int firdirection,Elemtype e)
190 {
191     RBT p=(*T)->child[firdirection],u=(*T)->child[!firdirection];
192     int secdirection=( (e>p->e) ? 1 : 0 );    //    查处第二个方向
193     
194     if(NULL!=u && RED==u->color)    /*****③叔节点为红色*****/    
195     {
196         p->color=BACK;
197         u->color=BACK;
198         (*T)->color=RED;
199         return 1;    //继续...
200     }
201     else                            /*****④叔节点为黑色*****/    
202     {
203         if(firdirection!=secdirection)    conversion(&((*T)->child[firdirection]),secdirection);
204         (*T)->color=RED;    (*T)->child[firdirection]->color=BACK;
205         conversion(T,firdirection);
206         return 0;
207     }
208 }
209 
210 int _InsertRBT(RBT *T,Elemtype e)
211 {
212     int info=0;
213     if(NULL==(*T))                    /*****①插入到根节点*****/        //这里只是包含这种情况
214     {
215         *T=create_one_node(e);
216         (*T)->color=RED;
217         info=1;
218     }
219     else if(e>((*T)->e))
220     {
221         info=_InsertRBT(&(*T)->child[1],e);
222         if(info<1)    return info;
223         else if(info==1)            /*****②父节点为黑******/
224         {
225             if(BACK==((*T)->color))    info--;
226             else    info++;
227         }
228         else
229         {
230             info=keep_balance_for_insert(T,1,e);
231         }
232         
233     }
234     else if(e<((*T)->e))
235     {
236         info=_InsertRBT(&((*T)->child[0]),e);
237         if(info<1)    return info;
238         else if(info==1)    
239         {
240             if(BACK==((*T)->color))    info--;
241             else    info++;
242         }
243         else
244         {
245             info=keep_balance_for_insert(T,0,e);
246         }
247         
248     }
249     else    return info=-1;
250     
251     return info;
252 }
253 
254 int InsertRBT(RBT *T,Elemtype e)    //插入节点函数返回值: -1->改点已存在  0->成功插入
255 {
256     int info=0;        //    info:  -1->已存在 0->结束 1->回溯到父节点 2->回溯到祖节点
257     
258 //2011年11月30日9:13:47 昨天晚上最后又想来这里这个if可以不要即可,也就是把它也放到_InsertRBT
259 //内处理,在InsertRBT中有个判断即可!即改成下边的写法!
260 //    if(NULL==(*T))                    /*****①插入到根节点*****/
261 //    {
262 //        *T=create_one_node(e);
263 //        (*T)->color=BACK;
264 //    }
265 //    else            
266 //    {
267 //        info=_InsertRBT(T,e);    //    经过再三思考,这里info的返回值只可能为:-1  0  1
268 //        if(info>0)    (*T)->color=BACK,info=0;    //    查看根节点是否为红
269 //    }
270 
271     info=_InsertRBT(T,e);
272     if(info==1)    (*T)->color=BACK,info=0;    
273     //    为了防止根结点变为红,它其实是处理了两种情况的后遗症
274 //    分别是:③情况回溯上来,根节点变红  ①情况插入点即为根节点,为红
275 //    这里没有直接把根结点变黑,主要是为了与_InsertRBT保持一致的写法,其实都行!
276     return info;
277 }
278 //★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
279 
280 
281 //******************JUST FOR TEST********************//
282 RBT queue[1000];
283 void print(RBT cur)
284 {
285     int front=0,rear=0;
286     int count=1,temp=0;
287 
288     if(NULL==cur)    
289     {
290         printf("NULL\n");
291         return ;
292     }
293 
294     queue[rear]=cur;
295     while(front<=rear)
296     {
297         cur=queue[front++];    count--;
298         if(NULL!=cur->child[0])    queue[++rear]=cur->child[0],temp++;
299         if(NULL!=cur->child[1])    queue[++rear]=cur->child[1],temp++;
300 
301         printf("%d color->",cur->e);
302         if(BACK==cur->color)    printf("BACK |");
303         else    printf("RED  |");
304         
305         if(0==count)
306         {
307             count=temp;
308             temp=0;
309             printf("\n");
310         }
311     }
312 }
313 //*****************************************************//
314 
315 //*****************DEAR MAIN***************************//
316 int main()
317 {
318     RBT T=NULL;
319     int i,nodenum=100;
320     
321     print(T);
322     printf("\n");
323 
324     printf("\n插入操作\n");
325     for(i=0;i<nodenum;i++)
326     {
327         InsertRBT(&T,i);
328         printf("插入%d\n",i);
329         print(T);
330         printf("\n");
331     }
332 
333 //    print(T);
334     printf("\n删除操作:\n");
335 
336     for(i=0;i<nodenum;i++)
337     {
338         DeleteRBT(&T,i);
339         printf("删除%d\n",i);
340         print(T);
341         printf("\n");
342     }
343 
344     return 0;
345 }

 

分享到:
评论

相关推荐

    红黑树学习文档

    在学习红黑树的过程中,理解其性质、插入和删除操作的流程,以及如何通过旋转和重新着色来恢复平衡是非常关键的。同时,掌握Java中红黑树的具体应用,比如`TreeMap`的内部实现,有助于提升对数据结构和算法的理解和...

    红黑树学习参考资料集合

    红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出,它的设计目标是在保持查询效率的同时,通过特定的规则自动调整树结构...对于想要掌握高级数据结构和算法的IT专业人士来说,深入学习红黑树是非常有价值的。

    红黑树 学习总结

    红黑树是一种近AVL树。具有以下性质: 1)结点非红即黑; 2)根节点必须为黑色; 3)任意从根到叶子的路径不包含连续的红色节点; 4)从任意结点到其所有叶子结点的路径中,包含相同的黑色结点个数。

    红黑树-动态演示生成红黑树

    通过这样的动态演示,学习者可以更深入地理解红黑树的工作原理,以及为何它在实际应用中被广泛用于数据结构如映射、集合和优先队列等。在编程语言如C++、Java和Python中,红黑树常被用作标准库的一部分,提供高效的...

    红黑树的源码与测试函数

    学习红黑树,你需要理解以下关键概念: - **红黑树的性质**:包括每个节点要么是红色要么是黑色,根节点是黑色,所有叶子节点(NIL节点)是黑色,红色节点不能相邻(即不能有两个连续的红色节点),从任意节点到其每...

    红黑树完整实现文件

    红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持二叉查找树基本属性的同时,通过引入颜色(红色或黑色...理解和掌握红黑树的实现对于学习数据结构和算法、提升编程技能具有重要意义。

    红黑树、区间树

    红黑树和区间树是两种在计算机科学中广泛使用的数据结构,主要应用于高效的数据存储和检索。它们在算法和数据结构领域具有重要地位,尤其在处理动态集合或需要快速查找和更新操作的问题时。 首先,我们来详细了解...

    红黑树java操作代码 红黑树是java里面遍历性能最好数据结构

    通过这两个文件,我们可以学习如何在实际编程环境中应用红黑树。 总之,红黑树因其良好的平衡性和高效的查询性能,在很多实际应用中都有广泛使用。理解和掌握红黑树的原理和实现,对于提升Java开发人员的数据结构和...

    红黑树的C实现,算法导论的红黑树C实现

    红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972...《算法导论》这本书提供了详细的红黑树理论和实现指导,是学习红黑树的重要资源。通过阅读书中的代码和实践,可以深入理解红黑树的工作原理及其C语言实现细节。

    红黑树-数据结构

    红黑树是一种自平衡二叉查找树(self-balancing binary search tree),由计算机科学家Rudolf Bayer在1972年提出。...通过深入学习,我们可以更好地理解如何在实际项目中应用红黑树,从而提高程序的性能和稳定性。

    delphi红黑树源码

    学习和理解红黑树源码可以帮助我们深入理解数据结构的底层工作原理,提高编程技能,并在实际项目中有效利用这种高效的数据结构。同时,对Delphi语言的掌握也能使开发者更熟练地运用其丰富的库和工具,从而编写出性能...

    用c实现的红黑树,经典的红黑树,

    红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持查询效率高的同时,尽...理解红黑树的原理和操作对于深入学习数据结构和算法,尤其是与性能敏感的系统设计相关的领域,是非常重要的。

    大数据学习之旅-02-红黑树源码

    在大数据学习之旅中,我们经常会接触到各种数据结构和算法,其中红黑树作为一种自平衡二叉查找树,因其高效的数据操作性能,在很多大型系统中扮演着重要的角色。本主题将聚焦于红黑树的源码解析,以Zookeeper 3.4.7...

    从2-3树理解红黑树

    《从2-3树理解红黑树》 2-3树和红黑树是两种重要的自平衡二叉查找树(AVL树)类型,它们在数据结构和算法领域扮演着重要角色,...对于学习和掌握高级数据结构与算法的开发者来说,深入理解2-3树和红黑树是至关重要的。

    红黑树的插入详细图解,直接拿下红黑树

    红黑树是一种自平衡二叉查找树,它的主要特点是在保持二叉查找树特性的同时,通过特定的颜色规则来确保树的平衡,以达到...理解和掌握红黑树的插入、删除和查找算法对于计算机科学特别是算法和数据结构的学习至关重要。

    红黑树简单实现

    红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持搜索效率的同时,通过特定的颜色规则来维护...通过本项目,我们可以学习到如何在代码中实现这些理论,并通过实践加深对红黑树的理解。

    java实现的红黑树

    红黑树(Red-Black Tree)是一种自平衡的二叉查找树,由计算机科学家Rudolf Bayer在1972年...通过学习和理解红黑树,开发者可以更好地掌握高级数据结构,从而在实际编程中选择合适的数据结构,优化算法,提升程序性能。

    红黑树与区间树算法实现

    总的来说,这个实验旨在让学习者深入理解红黑树和区间树的原理,以及如何在实际编程中应用它们。通过C++实现和graphviz的可视化,学生能够直观地看到数据结构的操作过程,这对于理解和掌握这些高级数据结构的概念至...

    红黑树C++实现

    红黑树(Red-Black Tree)是一种自平衡二叉查找树,由计算机科学家Rudolf Bayer在1972年提出。...通过学习和实践,我们可以熟练地运用红黑树解决各种复杂的问题,例如在数据库索引、编译器符号表管理等方面。

    轻松搞定面试中的红黑树问题

    ### 轻松搞定面试中的红黑树问题 在IT面试中,红黑树是一个常见的考点,特别是对于那些期望进入高水平技术岗位的求职者来说。本文将深入探讨红黑树的相关概念及其应用场景,帮助读者更好地理解和掌握这一重要的数据...

Global site tag (gtag.js) - Google Analytics