1. 简介
红黑树是一种自平衡二叉查找树。它的统计性能要好于平衡二叉树(AVL树),因此,红黑树在很多地方都有应用。在C++ STL中,很多部分(目前包括set, multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持)。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除等操作。
本文介绍了红黑树的基本性质和基本操作。
2. 红黑树的性质
红黑树,顾名思义,通过红黑两种颜色域保证树的高度近似平衡。它的每个节点是一个五元组:color(颜色),key(数据),left(左孩子),right(右孩子)和p(父节点)。
红黑树的定义也是它的性质,有以下五条:
性质1. 节点是红色或黑色
性质2. 根是黑色
性质3. 所有叶子都是黑色(叶子是NIL节点)
性质4. 如果一个节点是红的,则它的两个儿子都是黑的
性质5. 从任一节点到其叶子的所有简单路径都包含相同数目的黑色节点。
这五个性质强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。为什么呢?性质4暗示着任何一个简单路径上不能有两个毗连的红色节点,这样,最短的可能路径全是黑色节点,最长的可能路径有交替的红色和黑色节点。同时根据性质5知道:所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。
3. 红黑树的基本操作
因为红黑树也是二叉查找树,因此红黑树上的查找操作与普通二叉查找树上的查找操作相同。然而,红黑树上的插入操作和删除操作会导致不再符合红黑树的性质。恢复红黑树的性质需要少量(O(log n))的颜色变更(实际是非常快速的)和不超过三次树旋转(对于插入操作是两次)。虽然插入和删除很复杂,但操作时间仍可以保持为 O(log n) 次。
3.1 插入操作
插入操作可以概括为以下几个步骤:
(1) 查找要插入的位置,时间复杂度为:O(N)
(2) 将新节点的color赋为红色
(3) 自下而上重新调整该树为红黑树
其中,第(1)步的查找方法跟普通二叉查找树一样,第(2)步之所以将新插入的节点的颜色赋为红色,是因为:如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑节点,这个是很难调整的。但是设为红色节点后,可能会导致出现两个连续红色节点的冲突,那么可以通过颜色调换(color flips)和树旋转来调整,这样简单多了。下面讨论步骤(3)的一些细节:
设要插入的节点为N,其父节点为P,其父亲G的兄弟节点为U(即P和U是同一个节点的两个子节点)。
[1] 如果P是黑色的,则整棵树不必调整便是红黑树。
[2] 如果P是红色的(可知,其父节点G一定是黑色的),则插入z后,违背了性质4,需要进行调整。调整时分以下3种情况:
(a)N的叔叔U是红色的
如上图所示,我们将P和U重绘为黑色并重绘节点G为红色(用来保持性质5)。现在新节点N有了一个黑色的父节点P,因为通过父节点P或叔父节点U的任何路径都必定通过祖父节点G,在这些路径上的黑节点数目没有改变。但是,红色的祖父节点G的父节点也有可能是红色的,这就违反了性质4。为了解决这个问题,我们在祖父节点G上递归调整颜色。
(b)N的叔叔U是黑色的,且N是右孩子
如上图所示,我们对P进行一次左旋转调换新节点和其父节点的角色; 接着,按情形(c)处理以前的父节点P以解决仍然失效的性质4。
(c)N的叔叔U是黑色的,且N是左孩子
如上图所示,对祖父节点G 的一次右旋转; 在旋转产生的树中,以前的父节点P现在是新节点N和以前的祖父节点G 的父节点, 然后交换以前的父节点P和祖父节点G的颜色,结果的树满足性质4,同时性质5[4]也仍然保持满足。
3.2 删除操作
删除操作可以概括为以下几个步骤:
(1) 查找要删除位置,时间复杂度为:O(N)
(2) 用删除节点后继或者节点替换该节点(只进行数据替换即可,不必调整指针,后继节点是中序遍历中紧挨着该节点的节点,即:右孩子的最左孩子节点)
(3) 如果删除节点的替换节点为黑色,则需重新调整该树为红黑树
其中,第(1)步的查找方法跟普通二叉查找树一样,第(2)步之所以用后继节点替换删除节点,是因为这样可以保证该后继节点之上仍是一个红黑树,而后继节点可能是一个叶节点或者只有右子树的节点,这样只需用有节点替换后继节点即可达到删除的目的。如果需要删除的节点有两个儿子,那么问题可以被转化成删除另一个只有一个儿子的节点的问题。(没看懂???可参考:http://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91 )在第(3)步中,如果,如果删除节点为红色节点,则他的父亲和孩子全为黑节点,这样直接删除该节点即可,不必进行任何调整。如果删除节点是黑节点,分四种情况:
设要删除的节点为N,其父节点为P,其兄弟节点为S。
由于N是黑色的,则P可能是黑色的,也可能是红色的,S也可能是黑色的或者红色的
(1)S是红色的
此时P肯定是红色的。我们对N的父节点进行左旋转,然后把红色兄弟转换成N的祖父。我们接着对调 N 的父亲和祖父的颜色。尽管所有的路径仍然有相同数目的黑色节点,现在 N 有了一个黑色的兄弟和一个红色的父亲,所以我们可以接下去按 (2)、(3)或(4)情况来处理。
(2)S和S的孩子全是黑色的
在这种情况下,P可能是黑色的或者红色的,我们简单的重绘S 为红色。结果是通过S的所有路径,它们就是以前不通过 N 的那些路径,都少了一个黑色节点。因为删除 N 的初始的父亲使通过 N 的所有路径少了一个黑色节点,这使事情都平衡了起来。但是,通过 P 的所有路径现在比不通过 P 的路径少了一个黑色节点。接下来,要调整以P作为N递归调整树。
(3)S是黑色的,S的左孩子是红色,右孩子是黑色
这种情况下我们在 S 上做右旋转,这样 S 的左儿子成为 S 的父亲和 N 的新兄弟。我们接着交换 S 和它的新父亲的颜色。所有路径仍有同样数目的黑色节点,但是现在 N 有了一个右儿子是红色的黑色兄弟,所以我们进入了情况(4)。N 和它的父亲都不受这个变换的影响。
(4)S是黑色的,S的右孩子是红色
在这种情况下我们在 N 的父亲上做左旋转,这样 S 成为 N 的父亲和 S 的右儿子的父亲。我们接着交换 N 的父亲和 S 的颜色,并使 S 的右儿子为黑色。子树在它的根上的仍是同样的颜色,所以属性 3 没有被违反。但是,N 现在增加了一个黑色祖先: 要么 N 的父亲变成黑色,要么它是黑色而 S 被增加为一个黑色祖父。所以,通过 N 的路径都增加了一个黑色节点。
4. 参考资料
(1) 《算法导论》,第二版
(2) http://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91
———————————————————————————————-
更多关于数据结构和算法的介绍,请查看:数据结构与算法汇总
———————————————————————————————-
原创文章,转载请注明: 转载自董的博客
相关推荐
红黑树(Red-Black Tree)是一种自平衡二叉查找树,由计算机科学家鲁道夫·贝尔在1978年提出。它在保持二叉查找树特性的同时,通过引入颜色属性来确保树的平衡,从而提高了数据操作的效率。红黑树的主要目标是保证在...
红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树...
在计算机科学领域,各种数据结构在实际应用中...尽管实现红黑树的插入和删除操作相对复杂,但其背后的原理和操作策略仍然清晰且系统化,从而确保了在维护树平衡方面,红黑树总是能够快速适应变化,实现最优的运行效率。
红黑树(Red-Black Tree)是一种自平衡二叉查找树,它的每个节点都带有颜色属性,可以是红色或黑色。这种数据结构被广泛应用于计算机科学的许多领域,特别是操作系统、数据库系统以及编译器中,用于高效地执行插入、...
红黑树是一种自平衡二叉查找树,由Rudolf Bayer于1972年提出。它的设计目标是在保持二叉查找树基本属性的同时,通过引入颜色(红色或黑色)来保证树的平衡,从而在插入和删除操作后能够快速恢复平衡状态,减少查找、...
### 红黑树的插入与删除:详细解析 红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年发明,最初被称为“对称二叉B树”。它在1978年Leo J. Guibas和Robert Sedgewick的论文中获得了现代名称“红黑树”。红黑树...
红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持二叉查找树基本属性的同时,通过引入颜色(红色或黑色)来保证树的平衡,从而提高查找、插入和删除操作的效率。在红黑树中,每个...
红黑树是一种自平衡二叉查找树,它的设计目的是为了在保持查找效率的同时,尽可能地减少插入和删除操作带来的性能损失。在计算机科学中,它是一种广泛应用的数据结构,特别是在动态排序和高效查找方面。 二叉搜索树...
红黑树和AVL树是两种自平衡二叉查找树,它们在计算机科学中的数据结构领域扮演着重要的角色,主要用于高效地存储和检索数据。这两种数据结构的主要目标是在插入和删除操作后保持树的平衡,从而确保搜索、插入和删除...
红黑树(Red-Black Tree)是一种自平衡二叉查找树,它在计算机科学中扮演着重要的角色,尤其是在实现高效的数据结构和算法时。在Java中,虽然标准库并未直接提供红黑树的类,但我们可以自定义实现,如提供的`Red...
通用红黑树 说明: 用Linux内核红黑树封装的一个通用型的红黑树 如何使用该红黑树: 见rbtest1.c和rbtest2.c 直接make生成rbtest1和rbtest2 作者:rcyh 日期:2011年7月21日 ---------------------------------...
红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树红黑树
红黑树和区间树是两种在计算机科学中广泛使用的数据结构,主要应用于高效的数据存储和检索。它们在算法和数据结构领域具有重要地位,尤其在处理动态集合或需要快速查找和更新操作的问题时。 首先,我们来详细了解...
### 红黑树知识点详解 #### 一、红黑树定义与性质 红黑树是一种自平衡二叉查找树,其每个节点除了保存键值、左子节点、右子节点和父节点的信息外,还额外保存了一个表示颜色的属性(红色或黑色)。红黑树在进行...
红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持二叉查找树基本性质的同时,通过引入颜色属性来保证树的平衡,从而达到高效的插入、删除和查找操作。红黑树的关键特性是: 1. 每...
红黑树是一种自平衡二叉查找树(self-balancing binary search tree),由计算机科学家Rudolf Bayer在1972年提出。它在保持二叉查找树特性的同时,通过引入颜色属性来确保树的平衡,从而提高数据操作的效率。在红黑...
红黑树(Red-Black Tree)是一种自平衡二叉查找树,它在计算机科学中扮演着重要的角色,尤其是在数据结构和算法领域。红黑树的名字来源于它的节点颜色属性:红色或黑色。这种颜色属性被用来确保树的某些关键性质,...
红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持查询效率高的同时,尽可能地减少由于插入和删除操作引起的树的不平衡。红黑树的主要特点包括: 1. **颜色属性**:每个节点都有...
红黑树(Red-Black Tree)是一种自平衡二叉查找树,它在计算机科学中扮演着重要的角色,尤其是在数据结构和算法领域。红黑树的名字来源于它的节点颜色属性:红色或黑色。这种颜色属性用于确保树的平衡,使得在树中的...
红黑树(Red-Black Tree)是一种自平衡二叉查找树,由计算机科学家Rudolf Bayer在1972年提出。它在数据结构和算法领域具有重要地位,被广泛应用于各种系统和软件中,包括数据库索引、编译器、虚拟机等。在Delphi编程...