public class TermVectorTest {
Analyzer analyzer = new SimpleAnalyzer();
Directory ramDir = new RAMDirectory();
public void createRamIndex() throws CorruptIndexException, LockObtainFailedException, IOException{
IndexWriter writer = new IndexWriter(ramDir,analyzer,IndexWriter.MaxFieldLength.LIMITED);
Document doc1 = new Document();
doc1.add(new Field("title","java",Store.YES,Index.ANALYZED));
doc1.add(new Field("author","callan",Store.YES,Index.ANALYZED));
doc1.add(new Field("subject","java一门编程语言,用java的人很多,编程语言也不少,但是java最流行",Store.YES,Index.ANALYZED,TermVector.WITH_POSITIONS_OFFSETS));
Document doc2 = new Document();
doc2.add(new Field("title","english",Store.YES,Index.ANALYZED));
doc2.add(new Field("author","wcq",Store.YES,Index.ANALYZED));
doc2.add(new Field("subject","英语用的人很多",Store.YES,Index.ANALYZED,TermVector.WITH_POSITIONS_OFFSETS));
Document doc3 = new Document();
doc3.add(new Field("title","asp",Store.YES,Index.ANALYZED));
doc3.add(new Field("author","ca",Store.YES,Index.ANALYZED));
doc3.add(new Field("subject","英语用的人很多",Store.YES,Index.ANALYZED,TermVector.WITH_POSITIONS_OFFSETS));
writer.addDocument(doc1);
writer.addDocument(doc2);
writer.addDocument(doc3);
writer.optimize();
writer.close();
}
public void search() throws CorruptIndexException, IOException{
IndexReader reader = IndexReader.open(ramDir);
IndexSearcher searcher = new IndexSearcher(reader);
Term term = new Term("title","java"); //在title里查询java词条
TermQuery query = new TermQuery(term);
Hits hits = searcher.search(query);
for (int i = 0; i < hits.length(); i++)
{
Document doc = hits.doc(i);
System.out.println(doc.get("title"));
System.out.println(doc.get("subject"));
System.out.println("moreLike search: ");
morelikeSearch(reader,hits.id(i));
}
}
private void morelikeSearch(IndexReader reader,int id) throws IOException
{
//根据这个document的id获取这个field的Term Vector 信息,就是这个field分词之后在这个field里的频率、位置、等信息
TermFreqVector vector = reader.getTermFreqVector(id, "subject");
BooleanQuery query = new BooleanQuery();
for (int i = 0; i < vector.size(); i++)
{
TermQuery tq = new TermQuery(new Term("subject",
vector.getTerms()[i])); //获取每个term保存的Token
query.add(tq, BooleanClause.Occur.SHOULD);
}
IndexSearcher searcher = new IndexSearcher(ramDir);
Hits hits = searcher.search(query);
//显示代码,略
}
//Lucene使用TermVector提高高亮显示性能
public void highterLightSearch() throws CorruptIndexException, IOException{
IndexReader reader = IndexReader.open(ramDir);
IndexSearcher searcher = new IndexSearcher(reader);
TermQuery query = new TermQuery(new Term("subject","java"));
Hits hits = searcher.search(query);
//高亮显示设置
SimpleHTMLFormatter simpleHTMLFormatter = new SimpleHTMLFormatter("<font color='red'>","</font>");
Highlighter highlighter =new Highlighter(simpleHTMLFormatter,new QueryScorer(query));
// 这个100是指定关键字字符串的context的长度,你可以自己设定,因为不可能返回整篇正文内容
highlighter.setTextFragmenter(new SimpleFragmenter(100));
for(int i = 0; i < hits.length(); i++){
Document doc = hits.doc(i);
TermPositionVector termFreqVector = (TermPositionVector)reader.getTermFreqVector(hits.id(i), "subject");
TermFreqVector vector = reader.getTermFreqVector(hits.id(i), "subject");
TokenStream tokenStream = TokenSources.getTokenStream(termFreqVector);
String result = highlighter.getBestFragment(tokenStream, doc.get("subject"));
System.out.println(doc.get("title"));
System.out.println(result);
}
}
public static void main(String[] args) throws CorruptIndexException, IOException
{
TermVectorTest t = new TermVectorTest();
t.createRamIndex();
t.search();
}
}
分享到:
相关推荐
对于深入理解和掌握Lucene的高亮显示功能及中文分词性能优化,建议参考官方文档和相关技术博客,同时进行实际的编码实践,以便更好地理解和运用这一知识点。此外,关注Lucene社区的最新动态,可以获取更多关于性能...
- **缓存策略**:合理使用Lucene.NET的缓存机制,如TermVector缓存,可以提升查询性能。 总的来说,Lucene.NET在中文分词和高亮显示方面的应用需要结合合适的分词器,并进行适当的配置和优化。开发者可以根据实际...
Apache Lucene是一个强大的全文搜索引擎库,它提供了多种功能,包括高亮显示搜索结果。高亮显示有助于提高用户体验,使用户能够一目了然地看到哪些词在文档中匹配了查询。 **1. Lucene高亮器概述** Lucene提供了一...
- **优化索引**:索引优化(merge索引)能合并多个段,减少段的数量,提高搜索性能。 3. **查询过程** - **解析查询**:使用QueryParser将用户的查询字符串转化为Query对象,可以指定查询语法和默认字段。 - **...
最后,“The Terms Component”、“The TermVector Component”、“The Stats Component”、“The Query Elevation Component”等章节,介绍了Solr的高级搜索组件,这些组件增强了Solr的搜索能力,能够处理更复杂、...