`

memcache一致性 hash 算法(consistent hashing)

 
阅读更多

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛;

1 基本场景

比如你有 N  cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N  cache 上呢,你很可能会采用类似下面的通用方法计算 object  hash 值,然后均匀的映射到到 N  cache 

hash(object)%N

一切都运行正常,再考虑如下的两种情况;

一个 cache 服务器 m down 掉了(在实际应用中必须要考虑这种情况),这样所有映射到 cache m 的对象都会失效,怎么办,需要把 cache m  cache 中移除,这时候 cache  N-1 台,映射公式变成了 hash(object)%(N-1) 

由于访问加重,需要添加 cache ,这时候 cache  N+1 台,映射公式变成了 hash(object)%(N+1) 

1  2 意味着什么?这意味着突然之间几乎所有的 cache 都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;

再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的 hash 算法也做不到。

  有什么方法可以改变这个状况呢,这就是 consistent hashing...

2 hash 算法和单调性

   Hash 算法的一个衡量指标是单调性( Monotonicity ),定义如下:

  单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。

容易看到,上面的简单 hash 算法 hash(object)%N 难以满足单调性要求。

3 consistent hashing 算法的原理

consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在 key 映射关系,尽可能的满足单调性的要求。

下面就来按照 5 个步骤简单讲讲 consistent hashing 算法的基本原理。

3.1 环形hash 空间

考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环,如下面图 1 所示的那样。

circle space

 1 环形 hash 空间

3.2 把对象映射到hash 空间

接下来考虑 4 个对象 object1~object4 ,通过 hash 函数计算出的 hash  key 在环上的分布如图 2 所示。

hash(object1) = key1;

… …

hash(object4) = key4;

object

 2 4 个对象的 key 值分布

3.3 cache 映射到hash 空间

Consistent hashing 的基本思想就是将对象和 cache 都映射到同一个 hash 数值空间中,并且使用相同的 hash 算法。

假设当前有 A,B  C  3  cache ,那么其映射结果将如图 3 所示,他们在 hash 空间中,以对应的 hash 值排列。

hash(cache A) = key A;

… …

hash(cache C) = key C;

cache

 3 cache 和对象的 key 值分布

 

说到这里,顺便提一下 cache  hash 计算,一般的方法可以使用 cache 机器的 IP 地址或者机器名作为 hash 输入。

3.4 把对象映射到cache

现在 cache 和对象都已经通过同一个 hash 算法映射到 hash 数值空间中了,接下来要考虑的就是如何将对象映射到 cache 上面了。

在这个环形空间中,如果沿着顺时针方向从对象的 key 值出发,直到遇见一个 cache ,那么就将该对象存储在这个 cache 上,因为对象和 cache  hash 值是固定的,因此这个 cache 必然是唯一和确定的。这样不就找到了对象和 cache 的映射方法了吗?!

依然继续上面的例子(参见图 3 ),那么根据上面的方法,对象 object1 将被存储到 cache A 上; object2  object3 对应到 cache C  object4 对应到 cache B 

3.5 考察cache 的变动

前面讲过,通过 hash 然后求余的方法带来的最大问题就在于不能满足单调性,当 cache 有所变动时, cache 会失效,进而对后台服务器造成巨大的冲击,现在就来分析分析 consistent hashing 算法。

3.5.1 移除 cache

考虑假设 cache B 挂掉了,根据上面讲到的映射方法,这时受影响的将仅是那些沿 cache B 逆时针遍历直到下一个 cache  cache C )之间的对象,也即是本来映射到 cache B 上的那些对象。

因此这里仅需要变动对象 object4 ,将其重新映射到 cache C 上即可;参见图 4 

remove

 4 Cache B 被移除后的 cache 映射

3.5.2 添加 cache

再考虑添加一台新的 cache D 的情况,假设在这个环形 hash 空间中, cache D 被映射在对象 object2  object3 之间。这时受影响的将仅是那些沿 cache D 逆时针遍历直到下一个 cache  cache B )之间的对象(它们是也本来映射到 cache C 上对象的一部分),将这些对象重新映射到 cache D 上即可。

 

因此这里仅需要变动对象 object2 ,将其重新映射到 cache D 上;参见图 5 

add

 添加 cache D 后的映射关系

虚拟节点

考量 Hash 算法的另一个指标是平衡性 (Balance) ,定义如下:

平衡性

  平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。

hash 算法并不是保证绝对的平衡,如果 cache 较少的话,对象并不能被均匀的映射到 cache 上,比如在上面的例子中,仅部署 cache A  cache C 的情况下,在 4 个对象中, cache A 仅存储了 object1 ,而 cache C 则存储了 object2  object3  object4 ;分布是很不均衡的。

为了解决这种情况, consistent hashing 引入了“虚拟节点”的概念,它可以如下定义:

“虚拟节点”( virtual node )是实际节点在 hash 空间的复制品( replica ),一实际个节点对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以 hash 值排列。

仍以仅部署 cache A  cache C 的情况为例,在图 4 中我们已经看到, cache 分布并不均匀。现在我们引入虚拟节点,并设置“复制个数”为 2 ,这就意味着一共会存在 4 个“虚拟节点”, cache A1, cache A2 代表了 cache A  cache C1, cache C2 代表了 cache C ;假设一种比较理想的情况,参见图 6 

virtual nodes

 引入“虚拟节点”后的映射关系

 

此时,对象到“虚拟节点”的映射关系为:

objec1->cache A2  objec2->cache A1  objec3->cache C1  objec4->cache C2 

因此对象 object1  object2 都被映射到了 cache A 上,而 object3  object4 映射到了 cache C 上;平衡性有了很大提高。

引入“虚拟节点”后,映射关系就从 { 对象 -> 节点 } 转换到了 { 对象 -> 虚拟节点 } 。查询物体所在 cache 时的映射关系如图 7 所示。

map

 查询对象所在 cache

 

“虚拟节点”的 hash 计算可以采用对应节点的 IP 地址加数字后缀的方式。例如假设 cache A  IP 地址为 202.168.14.241 

引入“虚拟节点”前,计算 cache A  hash 值:

Hash(“202.168.14.241”);

引入“虚拟节点”后,计算“虚拟节”点 cache A1  cache A2  hash 值:

Hash(“202.168.14.241#1”);  // cache A1

Hash(“202.168.14.241#2”);  // cache A2

小结

Consistent hashing 的基本原理就是这些,具体的分布性等理论分析应该是很复杂的,不过一般也用不到。

http://weblogs.java.net/blog/2007/11/27/consistent-hashing 上面有一个 java 版本的例子,可以参考。

http://blog.csdn.net/mayongzhan/archive/2009/06/25/4298834.aspx 转载了一个 PHP 版的实现代码。

http://www.codeproject.com/KB/recipes/lib-conhash.aspx C语言版本


 

一些参考资料地址:

http://portal.acm.org/citation.cfm?id=258660

http://en.wikipedia.org/wiki/Consistent_hashing

http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/

 http://weblogs.java.net/blog/2007/11/27/consistent-hashing

http://tech.idv2.com/2008/07/24/memcached-004/

http://blog.csdn.net/mayongzhan/archive/2009/06/25/4298834.aspx

 

分享到:
评论

相关推荐

    memcache分布式一致性hash

    分布式一致性哈希是一种解决在分布式缓存系统中如何高效、稳定地分配数据的算法,尤其在Memcache等缓存服务中广泛应用。它旨在确保当缓存集群中的节点增减时,对现有数据的映射影响最小,从而降低数据迁移和系统压力...

    基于MemCache的分布式扩展算法.pdf

    其中,哈希一致性算法能较好地平衡数据分布,减少因服务器增减导致的数据迁移。 在实际应用中,MemCache通过以下步骤工作: 1. 客户端向MemCache集群发送数据请求。 2. 使用分布式算法确定数据存储的服务器节点。 3...

    memcache一致性hash的php实现方法

    一致性哈希(Consistent Hashing)是一种分布式存储系统中用于负载均衡和缓存分配的算法。它的主要目标是在节点加入或离开系统时,尽可能减少数据重新分布的影响。在传统的哈希算法中,当新增或移除一个服务器时,...

    Memcache Hash算法值得探索的内容.txt

    Memcache Hash算法值得探索的内容.txt

    memcache集群代理软件 magent-0.5.tar.gz

    开发者可能在这里定义了路由策略,如一致性哈希(Consistent Hashing),以确保数据分布的均匀性和在节点添加或删除时最小化数据迁移。 2. **ketama.c**:这是一个实现了Ketama一致性哈希算法的源文件。Ketama是一...

    MemCache详细解读1

    然而,为了构建一个高效且可扩展的分布式缓存系统,需要考虑如何妥善处理服务器的增减,以及选择合适的路由算法,如一致性Hash,以最小化数据迁移带来的影响。对于大型网站来说,优化缓存策略和管理分布式缓存系统是...

    Memcache缓存

    一致性哈希算法是Memcache中一种重要的路由算法,用于解决服务器集群扩展带来的问题。与简单的余数哈希算法相比,一致性哈希算法能够更好地处理服务器添加或删除的情况,保持缓存的一致性和可用性。 **余数哈希算法...

    memcache缓存分布式集群

    2. **Memcache的数据一致性**:在分布式环境中,数据的一致性是个挑战。Memcache通常采用“主键-值”的方式存储数据,集群中每个节点独立处理请求,不保证强一致性,但提供了最终一致性。 3. **Magent代理**:...

    Memcache完全剖析 最实用的Memcache文档

    Memcached的分布式算法是其核心特性之一,主要通过一种称为Consistent Hashing的算法来实现。这种算法可以有效地解决分布式环境中缓存数据位置更新的问题,确保当某一个节点增加或删除时,只有少数数据需要迁移。 ...

    memcache_php使用测试

    - **memcache.hash_strategy** 和 **memcache.hash_function**: 控制key到服务器的映射策略及哈希函数,通过设置不同的策略和函数,可以优化数据分布和负载均衡,比如标准哈希策略和CRC32算法通常用于提高一致性。...

    【汇总】Memcache

    3. **分布式架构**:多个Memcache服务器可以组成集群,通过一致性哈希算法分散数据存储,实现负载均衡。 ### 三、主要特性 1. **高性能**:基于非阻塞I/O模型,采用多线程处理,可以高效地处理大量并发请求。 2. ...

    memcache1.2.1 for windows

    4. **负载均衡**:在分布式环境中,多个应用服务器共享同一Memcache集群,确保数据一致性。 **注意事项** 1. **数据持久性**:Memcache不支持数据持久化,断电或重启后数据丢失,适用于临时存储。 2. **内存管理**...

    memcache集群安装

    常见的有哈希一致性(Consistent Hashing)算法,通过计算键的哈希值来决定其所在的节点,保证在添加或删除节点时,只有少量键受到影响。 ### 6. 客户端配置 在应用程序中,你需要配置memcache客户端库以使用集群...

    PHP中使用memcache存储session的三种配置方法

    1、直接修改php.ini配置文件 复制代码 代码如下: session.save_handler = memcache //设置session的储存方式为memcache memcache.hash_strategy = “consistent”//设置memcache的hash算法 session.save_path = ...

    memcache 5.3.3

    Memcache 支持多服务器集群,通过一致性哈希算法将数据分布到不同的服务器上,实现负载均衡和高可用性。即使单个 Memcache 服务器宕机,其他服务器仍能继续提供服务。 6. **内存管理** 由于 Memcache 数据完全...

    asp memcache 解决缓存问题

    6. **优化性能**:为了最大化性能,可以考虑分布式部署 Memcached,即将多个 Memcached 实例分布在多台服务器上,通过一致性哈希算法分发数据,提高并发处理能力。 7. **监控与维护**:定期检查 Memcache 的性能和...

    Memcache需要的依赖包

    2. **分布式存储**:Memcache支持多服务器集群,可以通过一致性哈希算法将数据分散到不同的服务器上,实现负载均衡和故障转移。 3. **键值对存储**:数据以键值对的形式存储,键是唯一的,值可以是任何类型的数据,...

Global site tag (gtag.js) - Google Analytics