`
flm_llx
  • 浏览: 62516 次
  • 性别: Icon_minigender_1
  • 来自: 应县
社区版块
存档分类
最新评论

什么是ETL? (转)

阅读更多

ETL即数据抽取(Extract)、转换(Transform)、装载(Load)的过程。它是构建数据仓库的重要环节。数据仓库是面向主题的、集成的、稳定的且随时间不断变化的数据集合,用以支持经营管理中的决策制定过程。数据仓库系统中有可能存在着大量的噪声数据,引起的主要原因有:滥用缩写词、惯用语、数据输入错误、重复记录、丢失值、拼写变化等。即便是一个设计和规划良好的数据库系统,如果其中存在着大量的噪声数据,那么这个系统也是没有任何意义的,因为“垃圾进,垃圾出”(garbage in, garbage out),系统根本就不可能为决策分析系统提供任何支持。为了清除噪声数据,必须在数据库系统中进行数据清洗。目前有不少数据清洗研究和ETL研究,但是如何在ETL过程中进行有效的数据清洗并使这个过程可视化,此方面研究不多。本文主要从两个方面阐述ETL和数据清洗的实现过程:ETL的处理方式[19]和数据清洗的实现方法。

(1)ETL的处理方式

本文所采用的ETL方法是数据库段区域中的ETL处理方式,它不使用外部引擎而是使用数据库作为唯一的控制点。由于源系统SQLserver2000是关系数据库,它的段表也是典型的关系型表。成功地将外部未修改数据载入数据库后,再在数据库内部进行转换。数据库段区域中的ETL处理方式执行的步骤是提取、装载、转换,即通常所说的ELT。[21]这种方式的优点是为抽取出的数据首先提供一个缓冲以便于进行复杂的转换,减轻了ETL进程的复杂度。

(2)ETL过程中实现数据清洗的实现方法

首先,在理解源数据的基础上实现数据表属性一致化。为解决源数据的同义异名和同名异义的问题,可通过元数据管理子系统,在理解源数据的同时,对不同表的属性名根据其含义重新定义其在数据挖掘库中的名字,并以转换规则的形式存放在元数据库中,在数据集成的时候,系统自动根据这些转换规则将源数据中的字段名转换成新定义的字段名,从而实现数据挖掘库中的同名同义。
其次,通过数据缩减,大幅度缩小数据量。由于源数据量很大,处理起来非常耗时,所以可以优先进行数据缩减,以提高后续数据处理分析效率。
最后,通过预先设定数据处理的可视化功能节点,达到可视化的进行数据清洗和数据转换的目的。针对缩减并集成后的数据,通过组合预处理子系统提供各种数据处理功能节点,能够以可视化的方式快速有效完成数据清洗和数据转换过程。
ETL即数据抽取(Extract)、转换(Transform)、装载(Load)的过程。它是构建数据仓库的重要环节。数据仓库是面向主题的、集成的、稳定的且随时间不断变化的数据集合,用以支持经营管理中的决策制定过程。数据仓库系统中有可能存在着大量的噪声数据,引起的主要原因有:滥用缩写词、惯用语、数据输入错误、重复记录、丢失值、拼写变化等。即便是一个设计和规划良好的数据库系统,如果其中存在着大量的噪声数据,那么这个系统也是没有任何意义的,因为“垃圾进,垃圾出”(garbage in, garbage out),系统根本就不可能为决策分析系统提供任何支持。为了清除噪声数据,必须在数据库系统中进行数据清洗。

目前有不少数据清洗研究和ETL研究,但是如何在ETL过程中进行有效的数据清洗并使这个过程可视化,此方面研究不多。本文主要从两个方面阐述ETL和数据清洗的实现过程:ETL的处理方式[19]和数据清洗的实现方法。

(1)ETL的处理方式

本文所采用的ETL方法是数据库段区域中的ETL处理方式,它不使用外部引擎而是使用数据库作为唯一的控制点。由于源系统SQLserver2000是关系数据库,它的段表也是典型的关系型表。成功地将外部未修改数据载入数据库后,再在数据库内部进行转换。数据库段区域中的ETL处理方式执行的步骤是提取、装载、转换,即通常所说的ELT。[21]这种方式的优点是为抽取出的数据首先提供一个缓冲以便于进行复杂的转换,减轻了ETL进程的复杂度。

(2)ETL过程中实现数据清洗的实现方法

首先,在理解源数据的基础上实现数据表属性一致化。为解决源数据的同义异名和同名异义的问题,可通过元数据管理子系统,在理解源数据的同时,对不同表的属性名根据其含义重新定义其在数据挖掘库中的名字,并以转换规则的形式存放在元数据库中,在数据集成的时候,系统自动根据这些转换规则将源数据中的字段名转换成新定义的字段名,从而实现数据挖掘库中的同名同义。
其次,通过数据缩减,大幅度缩小数据量。由于源数据量很大,处理起来非常耗时,所以可以优先进行数据缩减,以提高后续数据处理分析效率。
最后,通过预先设定数据处理的可视化功能节点,达到可视化的进行数据清洗和数据转换的目的。针对缩减并集成后的数据,通过组合预处理子系统提供各种数据处理功能节点,能够以可视化的方式快速有效完成数据清洗和数据转换过程。

<!-- 日志内容 结束 --><!-- 日志来源 开始 --><!-- 日志来源 结束 --><!-- 日志信息 开始 -->
分享到:
评论

相关推荐

    ETL清洗转换方式和过程

    ### ETL清洗转换方式和过程 #### ETL在BI项目中的重要性 在商业智能(BI)项目中,ETL(Extract, Transform, Load)占据了举足轻重的地位。据估计,ETL流程通常占据整个BI项目三分之一的时间投入。ETL的成功与否...

    ETL Automation使用手册

    ETL Automation 使用手册 ETL Automation 是一个自动化的数据集成工具,旨在帮助用户快速高效地完成数据提取、转换和加载(ETL)过程。本手册将详细介绍 ETL Automation 的安装、配置、使用和管理。 ETL ...

    ETL工具 ,基于Kettle实现的Web版ETL工具

    ETL(Extract, Transform, Load)是数据仓库和大数据处理中的关键步骤,它涉及从不同来源提取数据,对其进行转换以适应特定需求,然后加载到目标系统。Kettle是一款开源的ETL工具,由Pentaho公司开发,因其强大的...

    ETL规范.doc

    ETL 规范设计指南 ETL(Extract、Transform、Load)是数据集成的重要步骤,涉及到数据的抽取、转换和加载。为了确保 ETL 过程的高效性和可靠性,需要制定相应的规范和标准。本文档旨在提供一份完整的 ETL 规范设计...

    ETL系列专题2 ETL数据结构

    在ETL(抽取、转换、加载)过程中,数据结构的设计尤为重要,因为它直接影响ETL的性能、效率和可靠性。本章节将详细介绍数据结构的概念和在ETL中的应用,尤其是ETL架构设计中Staging Area(暂存区)的原则和常用数据...

    遇见Kettle ETL工具课程入门-进阶-实战 遇见kettle etl工具.zip

    Kettle是一款非常著名的ETL工具,何谓ETL?ETL就是Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程。对于企业级的开发或应用,会遇到种种的数据转换,迁移等工作,所以作为开发者掌握ETL工具是必须的,...

    ETL流程、数据流图及ETL过程解决方案

    ETL(Extract, Transform, Load)是大数据领域中至关重要的一个环节,用于将源系统中的数据抽取出来,经过清洗和转换,然后加载到目标系统中,以支持数据分析和业务决策。这个过程通常涉及多个步骤,每个步骤都有其...

    ETL Automation 使用手册 Version 2.6.0 中文

    ETL Automation 使用手册 Version 2.6.0 中文 ETL Automation 是一个数据集成平台,旨在提供一个自动化的数据集成解决方案。下面是对 ETL Automation 使用手册 Version 2.6.0 中文的详细知识点解释。 ETL ...

    Java分布式ETL框架

    Java分布式ETL(Extract, Transform, Load)框架是用于大数据处理的一种关键技术,它涉及从各种数据源抽取数据,经过转换处理后,加载到目标存储系统的过程。在Java中,实现分布式ETL可以利用多线程、分布式计算以及...

    ETL设计详解(数据抽取、清洗与转换).docx

    2. 各个业务系统的数据库服务器运行什么 DBMS? 3. 是否存在手工数据,手工数据量有多大? 4. 是否存在非结构化的数据? 根据数据源的不同,可以采用不同的抽取方法: 1. 与存放 DW 的数据库系统相同的数据源处理...

    etl-kettle讲稿

    一、什么是ETL ETL是数据抽取、转换和加载的英文缩写,中文名称为数据抽取、转换和加载。这个过程是构建数据仓库的关键环节,它负责从各种分布式、异构数据源,如关系数据库、平面文件等,抽取数据并进行清洗、转换...

    很全的ETL学习资料

    什么是ETL.docx 商业智能 通过SSIS设计ETL来将Oracle,DB2,Sybase等数据源的数据定期导入到数据仓库.docx 商务智能(BI)的四大关键技术-ETL(抽取(Extract)、转换(Transform)和加载(Load)).docx 选择合适的ETL工具满足...

    ETL数据仓库技术面试题.doc

    ETL 是什么?ETL 是 Extract、Transform、Load 的缩写,分别表示数据的提取、转换和加载三个阶段。ETL 过程通常用于数据仓库和商业智能系统中,将数据从源系统中提取、转换、加载到目标系统中,以满足业务报表和分析...

    达梦ETL批量流程向导

    ### 达梦ETL批量流程向导:详细解析与应用指南 #### 一、引言 随着企业数据规模的不断增长以及对数据处理效率要求的提高,ETL(Extract, Transform, Load)技术成为了现代数据仓库建设中的核心环节之一。其中,...

    传统数据仓库ETL设计报告

    ETL平台分为三个主要模块:ETL元数据驱动模块负责根据配置信息生成ETL作业,ETL调度模块配置调度并结合数据质量校验控制执行,而ETL元数据管理模块则用于管理和检索ETL配置信息。 2.1.2.2 ETL平台技术架构 技术...

    ETL

    ETL,全称为Extract, Transform, Load,是数据仓库领域中的关键过程,用于从不同的数据源提取数据(Extract),经过清洗、转换(Transform)后,加载(Load)到目标系统,如数据仓库或大数据平台。这个过程对于数据...

    ETL学习资料

    1.什么是ETL 2.BI项目中ETL设计与思考 3.DataStage(ETL)技术总结 4.ETL常见性能瓶颈 5.ETL高级教程 6.ETL工具点评 7.ETL构建企业级数据仓库五步法 8.ETL增量抽取 9.ETL增量抽取方式 10.三大主流ETL工具选型 11.商务...

    ETL详解.docx

    ETL 与大数据的关系紧密,因为大数据的处理往往涉及大量、多样化的数据整合,而这正是 ETL 技术的核心应用。随着大数据技术的发展,传统的 ETL 过程已经不能满足实时或近实时的数据处理需求。大数据环境下的 ETL ...

    ODS ETL体系建设

    ### ODS ETL体系建设 #### 数据整合技术架构与ETL流程设计 在现代银行的数据仓库建设和业务智能(Business Intelligence, BI)项目中,ETL(Extract-Transform-Load,提取-转换-加载)是一个至关重要的组成部分。...

Global site tag (gtag.js) - Google Analytics