`
flm_llx
  • 浏览: 62514 次
  • 性别: Icon_minigender_1
  • 来自: 应县
社区版块
存档分类
最新评论

数据挖掘技术的基本概念(转)

阅读更多

1.1 数据挖掘技术的基本概念
随着计算机技术的发展,各行各业都开始采用计算机及相应的信息技术进行管理和运营,这使得企业生成、收集、存贮和处理数据的能力大大提高,数据量与日俱增。企业数据实际上是企业的经验积累,当其积累到一定程度时,必然会反映出规律性的东西;对企业来,堆积如山的数据无异于一个巨大的宝库。在这样的背景下,人们迫切需要新一代的计算技术和工具来开采数据库中蕴藏的宝藏,使其成为有用的知识,指导企业的技术决策和经营决策,使企业在竞争中立于不败之地。另一方面,近十余年来,计算机和信息技术也有了长足的进展,产生了许多新概念和新技术,如更高性能的计算机和操作系统、因特网(intemet)、数据仓库(datawarehouse)、神经网络等等。在市场需求和技术基础这两个因素都具备的环境下,数据挖掘技术或称KDD(KnowledgeDiscovery in Databases;数据库知识发现)的概念和技术就应运而生了。
    数据挖掘(Data Mining)旨在从大量的、不完全的、有噪声的、模糊的、随机的数据中, 提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识。还有很多和这一术语相近似的术语,如从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持等。

1.2 数据挖掘的基本任务
    数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
    
1. 关联分析(association analysis)
    关联规则挖掘由Rakesh Apwal等人首先提出。两个或两个以上变量的取值之间存在的规律性称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。

2. 聚类分析(clustering)
聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚   类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。

3. 分类(classification)
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这   种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。

4. 预测(predication)
    预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。    预测关心的是精度和不确定性,通常用预测方差来度量。

5. 时序模式(time-series pattern)
    时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。
  
6. 偏差分析(deviation)
    在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。

1.3 数据挖掘常的基本技术
1. 统计学
    统计学虽然是一门“古老的”学科,但它依然是最基本的数据挖掘技术,特别是多元统计分析,如判别分析、主成分分析、因子分析、相关分析、多元回归分析等。


2. 聚类分析和模式识别
    聚类分析主要是根据事物的特征对其进行聚类或分类,即所谓物以类聚,以期从中发现规律和典型模式。这类技术是数据挖掘的最重要的技术之一。除传统的基于多元统计分析的聚类方法外,近些年来模糊聚类和神经网络聚类方法也有了长足的发展。


3. 决策树分类技术
决策树分类是根据不同的重要特征,以树型结构表示分类或决策集合,从而产生规则和发现规律。

4. 人工神经网络和遗传基因算法
    人工神经网络是一个迅速发展的前沿研究领域,对计算机科学 人工智能、认知科学以及信息技术等产生了重要而深远的影响,而它在数据挖掘中也扮演着非常重要的角色。人工神经网络可通过示例学习,形成描述复杂非线性系统的非线性函数,这实际上是得到了客观规律的定量描述,有了这个基础,预测的难题就会迎刃而解。目前在数据挖掘中,最常使用的两种神经网络是BP网络和RBF网络 不过,由于人工神经网络还是一个新兴学科,一些重要的理论问题尚未解决。

5. 规则归纳
    规则归纳相对来讲是数据挖掘特有的技术。它指的是在大型数据库或数据仓库中搜索和挖掘以往不知道的规则和规律,这大致包括以下几种形式:IF … THEN …

6. 可视化技术
    可视化技术是数据挖掘不可忽视的辅助技术。数据挖掘通常会涉及较复杂的数学方法和信息技术,为了方便用户理解和使用这类技术,必须借助图形、图象、动画等手段形象地指导操作、引导挖掘和表达结果等,否则很难推广普及数据挖掘技术。

1.4 数据挖掘技术实施的步骤
数据挖掘的过程可以分为6个步骤:
1)      理解业务:从商业的角度理解项目目标和需求,将其转换成一种数据挖掘的问题定义,设计出达到目标的一个初步计划。
2)      理解数据:收集初步的数据,进行各种熟悉数据的活动。包括数据描述,数据探索和数据质量验证等。
3)      准备数据:将最初的原始数据构造成最终适合建模工具处理的数据集。包括表、记录和属性的选择,数据转换和数据清理等。
4)      建模:选择和应用各种建模技术,并对其参数进行优化。
5)      模型评估:对模型进行较为彻底的评价,并检查构建模型的每个步骤,确认其是否真正实现了预定的商业目的。
6)      模型部署:创建完模型并不意味着项目的结束,即使模型的目的是为了增进对数据的了解,所获得的知识也要用一种用户可以使用的方式来组织和表示。通常要将活动模型应用到决策制订的过程中去。该阶段可以简单到只生成一份报告,也可以复杂到在企业内实施一个可重复的数据挖掘过程。控制得到普遍承认。

1.5 数据挖掘的应用现状
数据挖掘是一个新兴的边缘学科,它汇集了来自机器学习、模式识别、数据库、统计学、人工智能以及管理信息系统等各学科的成果。多学科的相互交融和相互促进,使得这一新学科得以蓬勃发展,而且已初具规模。在美国国家科学基金会(NSF)的数据库研究项目中,KDD被列为90年代最有价值的研究项目。人工智能研究领域的科学家也普遍认为,下一个人工智能应用的重要课题之一,将是以机器学习算法为主要工具的大规模的数据库知识发现。尽管数据挖掘还是一个很新的研究课题,但它所固有的为企业创造巨大经济效益的潜力,已使其很快有了许多成功的应用,具有代表性的应用领域有市场预测、投资、制造业、银行、通讯等。
美国钢铁公司和神户钢铁公司利用基于数据挖掘技术的ISPA系统,研究分析产品性能规律和进行质量控制,取得了显著效果。通用电器公司(GE)与法国飞机发动机制造公司(sNEcMA),利用数据挖掘技术研制了CASSIOP.EE质量控制系统,被三家欧洲航空公司用于诊断和预测渡音737的故障,带来了可观的经济效益。该系统于1996年获欧洲一等创造性应用奖。
享有盛誉的市场研究公司,如美国的A.C.一Nielson和Information Resources,欧洲的GFK和ln.fratest Burk等纷纷开始使用数据挖掘工具来应付迅速增长的销售和市场信息数据。商家的激烈竞争导致了市场快速饱和,产品的迅速更新,使得经营者对市场信息的需求格外强烈利用数据挖掘技术所形成的市场预测能力和服务,使这些市场研究公司取得了巨大收益。
英国广播公司(BBC)也应用数据挖掘技术来预测电视收视率,以便合理安排电视节目时刻表。信用卡公司Alllelicall KxT,ress自采用数据挖掘技术后,信用卡使用率增加了10% 一15%。AT&T公司赁借数据挖掘技术技术侦探国际电话欺诈行为,可以尽快发现国际电话使用中的不正常现象。
中国的公安部门也在研究利用KDD技术总结各类案件的共性和发生规律,从而在宏观上制定最有效的社会治安综合治理的方案和措施;在微观上指出犯罪人的特点,划定罪犯的范围,为侦破工作提供方向。

分享到:
评论

相关推荐

    数据挖掘:概念与技术 第二版 PDF

    3. **挖掘技术**:书中详细阐述了各种数据挖掘技术,如决策树、贝叶斯网络、神经网络、支持向量机和模糊系统等。这些技术各有优缺点,适用于不同的数据类型和挖掘任务。 4. **模式评估**:讨论如何评估挖掘出的模式...

    数据挖掘基本概念

    掌握数据挖掘的基本概念和技术,可以帮助我们更好地理解和利用这些信息,为各个领域的决策提供有力支持。通过阅读“数据挖掘概念与技术.pdf”这样的资料,初学者可以系统地学习这一领域的知识,逐步成为一名数据挖掘...

    数据挖掘概念与技术第三版 范明译 中文ppt

    本中文版PPT可能涵盖了上述所有或部分知识点,适合大学生期末复习和学术交流,能帮助学生深入理解数据挖掘的基本概念和技术,提高分析和解决问题的能力。通过学习这些内容,可以为将来在数据分析、机器学习、人工...

    数据挖掘概念与技术————PPT学习教案.pptx

    数据挖掘技术是指用于数据挖掘过程中的各种方法和算法,如决策树、神经网络、关联规则、聚类分析等。 数据预处理是数据挖掘过程中的一个重要步骤,旨在将原始数据转换为适合数据挖掘的形式。数据预处理包括数据清理...

    数据挖掘:概念与技术 原书第03版

    在书中,作者首先介绍了数据挖掘的基本概念,包括数据预处理、数据仓库、 OLAP(在线分析处理)以及数据挖掘的目标和分类。这些基础知识为后续深入学习奠定了坚实的基础。预处理是数据挖掘的重要步骤,涉及数据清洗...

    数据挖掘概念与技术下载

    随着大数据时代的到来,数据挖掘技术的重要性日益凸显,掌握这一技能对于个人和组织的发展都具有重大意义。因此,深入理解和应用数据挖掘概念与技术,对于提升数据分析能力,解决实际问题具有极大的帮助。

    《数据挖掘:概念与技术》PPT

    通过这些PPT,学习者可以系统地了解数据挖掘的全貌,从基本概念到高级应用,为实际项目中的数据探索和知识发现打下坚实基础。同时,结合实际案例和编程练习,将有助于将理论知识转化为实战技能。

    数据挖掘\数据挖掘技术与概念

    数据挖掘技术与概念是当前IT领域中极为关键的一部分,它涉及了从大量数据中提取有用信息和知识的过程。根据给定文件的标题“数据挖掘\数据挖掘技术与概念”及描述,我们可以深入探讨数据挖掘的核心知识点,包括其...

    (刘同明)数据挖掘技术及其应用

    《数据挖掘技术及其应用》是刘同明撰写的一本深入探讨数据挖掘理论与实践的书籍。数据挖掘,作为信息技术领域的重要分支,旨在从海量数据中发现有价值的信息和知识,为决策提供支持。这本书全面介绍了这一领域的核心...

    数据挖掘建模基本概念

    数据挖掘建模是数据分析领域的重要组成部分,其主要目标是通过从海量数据中发现有价值的信息和模式,以便于理解和预测未来的趋势。数据挖掘的任务通常分为描述性和...掌握这些基本概念对于理解和实践数据挖掘至关重要。

    数据挖掘-概念与技术 第三版 Jiawei Han 著(中、英)

    对于英文版,通常会更加完整,包含了中文版缺失的部分,可能涵盖了更先进的数据挖掘技术,如深度学习、流数据挖掘、半监督学习和多视图学习等。这些进阶主题进一步拓宽了数据挖掘的应用范围,使其能够应对大数据时代...

    《数据挖掘概念与技术》-思维导图学习笔记,第一章。

    5. 数据挖掘技术:常见的数据挖掘技术包括决策树、贝叶斯网络、支持向量机、聚类算法如K-means和DBSCAN,以及关联规则算法如Apriori。这些技术各有优缺点,适用于不同的数据特性和问题场景。 6. 数据挖掘的应用领域...

    数据挖掘概念与技术 课件

    "数据挖掘概念与技术"这门课程的核心目标是帮助学习者理解数据挖掘的基本原理、方法和技术,并将其应用于实际问题解决。 1. 数据挖掘定义:数据挖掘是一种信息提取过程,通过应用复杂算法对大数据集进行分析,以找...

    数据挖掘概念与技术(英文版)

    - 第1章至第10章每章都包含丰富的实例和实际案例,有助于读者理解和掌握数据挖掘技术。 六、数据库在数据挖掘中的角色 数据库是存储和管理数据的核心工具,为数据挖掘提供数据来源。关系数据库管理系统(RDBMS)、...

    数据挖掘:概念与技术(原书第3版)

    接着,书中详细阐述了各种数据挖掘技术。分类算法如决策树、贝叶斯网络和神经网络,通过学习数据集中的规律来预测未知数据的类别。聚类算法则将数据分为相似的组,如K-means、层次聚类和DBSCAN。关联规则学习用于...

    数据挖掘基础概念与基本方法

    在"数据挖掘基础概念与基本方法"的主题中,我们可以深入探讨以下几个重要的知识点: 1. **数据仓库与数据挖掘**:数据仓库是用于存储和管理大量历史数据的系统,为数据挖掘提供了一个稳定的、面向主题的数据环境。...

    数据挖掘概念与技术pdf.rar

    综上所述,"数据挖掘概念与技术pdf"这个压缩文件很可能是对数据挖掘这一主题的深入探讨,涵盖了从基本概念到实际应用的多个层面。对于想要了解或深入学习数据挖掘的人来说,这是一份非常有价值的资源。

    数据挖掘:概念与技术(韩家炜等)中文版

    《数据挖掘:概念与技术》一书由韩家炜等人编写,是数据挖掘领域的一部经典著作,深入探讨了数据挖掘的基本概念、理论框架...随着大数据时代的到来,数据挖掘技术的应用范围将更加广泛,对社会经济的影响也将日益深远。

    数据挖掘概念与技术第三版部分习题答案.doc

    本资源摘要信息涵盖了数据挖掘概念与技术第三版部分习题答案,涵盖了数据挖掘的基本概念、技术和应用。通过对数据挖掘概念与技术第三版部分习题答案的分析,我们可以了解到数据挖掘的重要性和应用场景。 1. 数据...

Global site tag (gtag.js) - Google Analytics