`
czhsuccess
  • 浏览: 41753 次
社区版块
存档分类
最新评论

java实现GMM算法

阅读更多

GMM算发步骤:

1. 初始化参数,包括Gauss分布个数、均值、协方差;

2. 计算每个节点属于每个分布的概率;

3. 计算每个分布产生每个节点的概率;

4. 更新每个分布的权值,均值和它们的协方差。

基本参数类:

public class Parameter {
	private ArrayList<ArrayList<Double>> pMiu; // 均值参数k个分布的中心点,每个中心点d维
	private ArrayList<Double> pPi; // k个GMM的权值
	private ArrayList<ArrayList<ArrayList<Double>>> pSigma; // k类GMM的协方差矩阵,d*d*k
	
	public ArrayList<ArrayList<Double>> getpMiu() {
		return pMiu;
	}
	public void setpMiu(ArrayList<ArrayList<Double>> pMiu) {
		this.pMiu = pMiu;
	}
	public ArrayList<Double> getpPi() {
		return pPi;
	}
	public void setpPi(ArrayList<Double> pPi) {
		this.pPi = pPi;
	}
	public ArrayList<ArrayList<ArrayList<Double>>> getpSigma() {
		return pSigma;
	}
	public void setpSigma(ArrayList<ArrayList<ArrayList<Double>>> pSigma) {
		this.pSigma = pSigma;
	}
}

 

核心代码如下:

public class GMMAlgorithm {
	
	/**
	 * 
	* @Title: GMMCluster 
	* @Description: GMM聚类算法的实现类,返回每条数据的类别(0~k-1)
	* @return int[]
	* @throws
	 */
	public int[] GMMCluster(ArrayList<ArrayList<Double>>dataSet, ArrayList<ArrayList<Double>> pMiu, int dataNum, int k, int dataDimen) {
		Parameter parameter = iniParameters(dataSet, dataNum, k, dataDimen);
		double Lpre = -1000000; // 上一次聚类的误差
		double threshold = 0.0001;
		while(true) {
			ArrayList<ArrayList<Double>> px = computeProbablity(dataSet, pMiu, dataNum, k, dataDimen);
			double[][] pGama = new double[dataNum][k];
			for(int i = 0; i < dataNum; i++) {
				for(int j = 0; j < k; j++) {
					pGama[i][j] = px.get(i).get(j) * parameter.getpPi().get(j);
				}
			}
			
			double[] sumPGama = GMMUtil.matrixSum(pGama, 2);
			for(int i = 0; i < dataNum; i++) {
				for(int j = 0; j < k; j++) {
					pGama[i][j] = pGama[i][j] / sumPGama[i];
				}
			}
			
			double[] NK = GMMUtil.matrixSum(pGama, 1); // 第k个高斯生成每个样本的概率的和,所有Nk的总和为N
			
			// 更新pMiu
			double[] NKReciprocal = new double[NK.length];
			for(int i = 0; i < NK.length; i++) {
				NKReciprocal[i] = 1 / NK[i];
			}
			double[][] pMiuTmp = GMMUtil.matrixMultiply(GMMUtil.matrixMultiply(GMMUtil.diag(NKReciprocal), GMMUtil.matrixReverse(pGama)), GMMUtil.toArray(dataSet));
			
			// 更新pPie
			double[][] pPie = new double[k][1];
			for(int i = 0; i < NK.length; i++) {
				pPie[i][1] = NK[i] / dataNum;
			}
			
			// 更新k个pSigma
			double[][][] pSigmaTmp = new double[dataDimen][dataDimen][k];
			for(int i = 0; i < k; i++) {
				double[][] xShift = new double[dataNum][dataDimen];
				for(int j = 0; j < dataNum; j++) {
					for(int l = 0; l < dataDimen; l++) {
						xShift[j][l] = pMiuTmp[i][l];
					}
				}
				
				double[] pGamaK = new double[dataNum]; // 第k条pGama值
				for(int j = 0; j < dataNum; j++) {
					pGamaK[j] = pGama[j][i];
				}
				double[][] diagPGamaK = GMMUtil.diag(pGamaK);
				
				double[][] pSigmaK = GMMUtil.matrixMultiply(GMMUtil.matrixReverse(xShift), (GMMUtil.matrixMultiply(diagPGamaK, xShift)));
				for(int j = 0; j < dataDimen; j++) {
					for(int l = 0; l < dataDimen; l++) {
						pSigmaTmp[j][l][k] = pSigmaK[j][l] / NK[i];
					}
				}
			}
			
			// 判断是否迭代结束
			double[][] a = GMMUtil.matrixMultiply(GMMUtil.toArray(px), pPie);
			for(int i = 0; i < dataNum; i++) {
				a[i][0] = Math.log(a[i][0]);
			}
			double L = GMMUtil.matrixSum(a, 1)[0];
			
			if(L - Lpre < threshold) {
				break;
			}
			Lpre = L;
		}
		return null;
	}
	
	/**
	 * 
	* @Title: computeProbablity 
	* @Description: 计算每个节点(共n个)属于每个分布(k个)的概率
	* @return ArrayList<ArrayList<Double>>
	* @throws
	 */
	public ArrayList<ArrayList<Double>> computeProbablity(ArrayList<ArrayList<Double>>dataSet, ArrayList<ArrayList<Double>> pMiu, int dataNum, int k, int dataDimen) {
		double[][] px = new double[dataNum][k]; // 每条数据属于每个分布的概率 
		int[] type = getTypes(dataSet, pMiu, k, dataNum);
		
		// 计算k个分布的协方差矩阵
		ArrayList<ArrayList<ArrayList<Double>>> covList = new ArrayList<ArrayList<ArrayList<Double>>>();
		for(int i = 0; i < k; i++) {
			ArrayList<ArrayList<Double>> dataSetK = new ArrayList<ArrayList<Double>>();
			for(int j = 0; j < dataNum; j++) {
				if(type[k] == i) {
					dataSetK.add(dataSet.get(i));
				}
			}
			covList.set(i, GMMUtil.computeCov(dataSetK, dataDimen, dataSetK.size()));
		}
		
		// 计算每条数据属于每个分布的概率 
		for(int i = 0; i < dataNum; i++) {
			for(int j = 0; j < k; j++) {
				ArrayList<Double> offset = GMMUtil.matrixMinus(dataSet.get(i), pMiu.get(j));
				ArrayList<ArrayList<Double>> invSigma = covList.get(k);
				double[] tmp = GMMUtil.matrixSum(GMMUtil.matrixMultiply(GMMUtil.toArray1(offset), GMMUtil.toArray(invSigma)), 2);
				double coef = Math.pow((2 * Math.PI), -(double)dataDimen / 2d) * Math.sqrt(GMMUtil.computeDet(invSigma, invSigma.size()));
				px[i][j] = coef * Math.pow(Math.E, -0.5 * tmp[0]);
			}
		}
		
		return GMMUtil.toList(px);
	}
	
	/**
	 * 
	* @Title: iniParameters 
	* @Description: 初始化参数Parameter
	* @return Parameter
	* @throws
	 */
	public Parameter iniParameters(ArrayList<ArrayList<Double>> dataSet, int dataNum, int k, int dataDimen) {
		Parameter res = new Parameter();
		
		ArrayList<ArrayList<Double>> pMiu = generateCentroids(dataSet, dataNum, k);
		res.setpMiu(pMiu);
		
		// 计算每个样本节点与每个中心节点的距离,以此为据对样本节点进行分类计数,进而初始化k个分布的权值
		ArrayList<Double> pPi = new ArrayList<Double>();
		int[] type = getTypes(dataSet, pMiu, k, dataNum);
		int[] typeNum = new int[k];
		for(int i = 0; i < dataNum; i++) {
			typeNum[type[i]]++;
		}
		for(int i = 0; i < k; i++) {
			pPi.add((double)(typeNum[i]) / (double)(dataNum));
		}
		res.setpPi(pPi);
		
		// 计算k个分布的k个协方差
		ArrayList<ArrayList<ArrayList<Double>>> pSigma = new ArrayList<ArrayList<ArrayList<Double>>>();
		for(int i = 0; i < k; i++) {
			ArrayList<ArrayList<Double>> tmp = new ArrayList<ArrayList<Double>>();
			for(int j = 0; j < dataNum; j++) {
				if(type[j] == i) {
					tmp.add(dataSet.get(i));
				}
			}
			pSigma.add(GMMUtil.computeCov(tmp, dataDimen, dataNum));
		}
		res.setpSigma(pSigma);
		
		return res;
	}
	
	/**
	 * 
	* @Title: generateCentroids 
	* @Description: 获取随机的k个中心点
	* @return ArrayList<ArrayList<Double>>
	* @throws
	 */
	public ArrayList<ArrayList<Double>> generateCentroids(ArrayList<ArrayList<Double>> data, int dataNum, int k) {
		ArrayList<ArrayList<Double>> res = null;
		if(dataNum < k) {
			return res;
		} else {
			res =  new ArrayList<ArrayList<Double>>();
			
			List<Integer> random = new ArrayList<Integer>();
			// 随机产生不重复的k个数
			while(k > 0) {
				int index = (int)(Math.random() * dataNum);
			    if(!random.contains(index)) {
			    	random.add(index);
			    	k--;
			    	res.add(data.get(index));
			    }
			}
		}
		return res;
	}
	
	/**
	 * 
	* @Title: getTypes 
	* @Description: 返回每条数据的类别
	* @return int[]
	* @throws
	 */
	public int[] getTypes(ArrayList<ArrayList<Double>> dataSet, ArrayList<ArrayList<Double>> pMiu, int k, int dataNum) {
		int[] type = new int[dataNum];
		for(int j = 0; j < dataNum; j++) {
			double minDistance = GMMUtil.computeDistance(dataSet.get(j), pMiu.get(0));
			type[j] = 0; // 0作为该条数据的类别
			for(int i = 1; i < k; i++) {
				if(GMMUtil.computeDistance(dataSet.get(j), pMiu.get(0)) < minDistance) {
					minDistance = GMMUtil.computeDistance(dataSet.get(j), pMiu.get(0));
					type[j] = k;
				}
			}
		}
		return type;
	}
	
	public static void main(String[] args) {
		ArrayList<Double> pPi = new ArrayList<Double>();
		System.out.println(pPi.get(0));
	}
}

 一些工具类:

public class GMMUtil {
	/**
	 * 
	* @Title: computeDistance 
	* @Description: 计算任意两个节点间的距离
	* @return double
	* @throws
	 */
	public static double computeDistance(ArrayList<Double> d1, ArrayList<Double> d2) {
		double squareSum = 0;
		for(int i = 0; i < d1.size() - 1; i++) {
			squareSum += (d1.get(i) - d2.get(i)) * (d1.get(i) - d2.get(i));
		}
		return Math.sqrt(squareSum);
	}
	
	/**
	 * 
	* @Title: computeCov 
	* @Description: 计算协方差矩阵
	* @return ArrayList<ArrayList<Double>>
	* @throws
	 */
	public static ArrayList<ArrayList<Double>> computeCov(ArrayList<ArrayList<Double>> dataSet, int dataDimen, int dataNum) {
		ArrayList<ArrayList<Double>> res = new ArrayList<ArrayList<Double>>();
		
		// 计算每一维数据的均值
		double[] sum = new double[dataDimen];
		for(ArrayList<Double> data : dataSet) {
			for(int i = 0; i < dataDimen; i++) {
				sum[i] += data.get(i);
			}
		}
		for(int i = 0; i < dataDimen; i++) {
			sum[i] = sum[i] / dataNum;
		}
		
		// 计算任意两组数据的协方差
		for(int i = 0; i < dataDimen; i++) {
			ArrayList<Double> tmp = new ArrayList<Double>();
			for(int j = 0; j < dataDimen; j++) {
				double cov = 0;
				for(ArrayList<Double> data : dataSet) {
					cov += (data.get(i) - sum[i]) * (data.get(j) - sum[j]);
				}
				tmp.add(cov);
			}
			res.add(tmp);
		}
		return res;
	}
	
	/**
	 * 
	* @Title: computeInv 
	* @Description: 计算矩阵的逆矩阵
	* @return ArrayList<ArrayList<Double>>
	* @throws
	 */
	public static double[][] computeInv(ArrayList<ArrayList<Double>> dataSet) {
		int dataDimen = dataSet.size();
		double[][] res = new double[dataDimen][dataDimen];
		
		// 将list转化为array
		double[][] a = toArray(dataSet);
		
		// 计算伴随矩阵
		double detA = computeDet(dataSet, dataDimen); // 整个矩阵的行列式
		 for (int i = 0; i < dataDimen; i++) {  
	            for (int j = 0; j < dataDimen; j++) {  
	                double num;  
	                if ((i + j) % 2 == 0) {  
	                    num = computeDet(toList(computeAC(a, i + 1, j + 1)), dataDimen - 1);  
	                } else {  
	                    num = -computeDet(toList(computeAC(a, i + 1, j + 1)), dataDimen - 1);  
	                }  
	                res[j][i] = num / detA;  
	            }  
	        }  
		return res;
	}
	
	/**
	 * 
	* @Title: computeAC 
	* @Description: 求指定行、列的代数余子式(algebraic complement)
	* @return double[][]
	* @throws
	 */
	public static double[][] computeAC(double[][] dataSet, int r, int c) {
		int H = dataSet.length;  
        int V = dataSet[0].length;  
        double[][] newData = new double[H - 1][V - 1];  
  
        for (int i = 0; i < newData.length; i++) {  
            if (i < r - 1) {  
                for (int j = 0; j < newData[i].length; j++) {  
                    if (j < c - 1) {  
                        newData[i][j] = dataSet[i][j];  
                    } else {  
                        newData[i][j] = dataSet[i][j + 1];  
                    }  
                }  
            } else {  
                for (int j = 0; j < newData[i].length; j++) {  
                    if (j < c - 1) {  
                        newData[i][j] = dataSet[i + 1][j];  
                    } else {  
                        newData[i][j] = dataSet[i + 1][j + 1];  
                    }  
                }  
  
            }  
        } 
		return newData;
	}
	
	/**
	 * 
	* @Title: computeDet 
	* @Description: 计算行列式
	* @return double
	* @throws
	 */
	public static double computeDet(ArrayList<ArrayList<Double>> dataSet, int dataDimen) {
		// 将list转化为array
		double[][] a = toArray(dataSet);
		
		if(dataDimen == 2) {
			return a[0][0] * a[1][1] - a[0][1] * a[1][0];
		}
		double res = 0;
		for(int i = 0; i < dataDimen; i++) {
			if(i % 2 == 0) {
				res += a[0][i] * computeDet(toList(computeAC(toArray(dataSet), 1, i + 1)), dataDimen - 1);
			} else {
				res += -a[0][i] * computeDet(toList(computeAC(toArray(dataSet), 1, i + 1)), dataDimen - 1);
			}
		}
		
		return res;
	}
	
	/**
	 * 
	* @Title: toList 
	* @Description: 将array转化成list
	* @return ArrayList<ArrayList<Double>>
	* @throws
	 */
	public static ArrayList<ArrayList<Double>> toList(double[][] a) {
		ArrayList<ArrayList<Double>> res = new ArrayList<ArrayList<Double>>();
		for(int i = 0; i < a.length; i++) {
			ArrayList<Double> tmp = new ArrayList<Double>();
			for(int j = 0; j < a[i].length; j++) {
				tmp.add(a[i][j]);
			}
			res.add(tmp);
		}
		return res;
	}
	
	public static double[][] matrixMultiply(double[][] a, double[][] b) {
		double[][] res = new double[a.length][b[0].length];
		for(int i = 0; i < a.length; i++) {
			for(int j = 0; j < b[0].length; j++) {
				for(int k = 0; k < a[0].length; k++) {
					res[i][j] += a[i][k] * b[k][j];
				}
			}
		}
		return res;
	}
	
	/**
	 * 
	* @Title: dotMatrixMultiply 
	* @Description: 矩阵的点乘,即对应元素相乘
	* @return double[][]
	* @throws
	 */
	public static double[][] dotMatrixMultiply (double[][] a, double[][] b) {
		double[][] res = new double[a.length][a[0].length];
		for(int i = 0; i < a.length; i++) {
			for(int j = 0; j < a[0].length; j++) {
				res[i][j] = a[i][j] * b[i][j];
			}
		}
		return res;
	}
	
	/**
	 * 
	* @Title: dotMatrixMultiply 
	* @Description: 矩阵的点除,即对应元素相除
	* @return double[][]
	* @throws
	 */
	public static double[][] dotMatrixDivide(double[][] a, double[][] b) {
		double[][] res = new double[a.length][a[0].length];
		for(int i = 0; i < a.length; i++) {
			for(int j = 0; j < a[0].length; j++) {
				res[i][j] = a[i][j] / b[i][j];
			}
		}
		return res;
	}
	
	/**
	 * 
	* @Title: repmat 
	* @Description: 对应matlab的repmat的函数,对矩阵进行横向或纵向的平铺
	* @return double[][]
	* @throws
	 */
	public static double[][] repmat(double[][] a, int row, int clo) {
		double[][] res = new double[a.length * row][a[0].length * clo];
		
		return null;
	}
	
	/**
	 * 
	* @Title: matrixMinux 
	* @Description: 计算集合只差
	* @return ArrayList<ArrayList<Double>>
	* @throws
	 */
	public static ArrayList<Double> matrixMinus(ArrayList<Double> a1, ArrayList<Double> a2) {
		ArrayList<Double> res = new ArrayList<Double>();
		for(int i = 0; i < a1.size(); i++) {
			res.add(a1.get(i) - a2.get(i));
		}
		return res;
	}
	
	/**
	 * 
	* @Title: matrixSum 
	* @Description: 返回矩阵每行之和(mark==2)或每列之和(mark==1)
	* @return ArrayList<Double>
	* @throws
	 */
	public static double[] matrixSum(double[][] a, int mark) {
		double res[] = new double[a.length];
		if(mark == 1) { // 计算每列之和,返回行向量
			res = new double[a[0].length];
			for(int i = 0; i < a[0].length; i++) {
				for(int j = 0; j < a.length; j++) {
					res[i] += a[j][i];
				}
			}
		} else if (mark == 2) { // 计算每行之和, 返回列向量
			for(int i = 0; i < a.length; i++) {
				for(int j = 0; j < a[0].length; j++) {
					res[i] += a[i][j];
				}
		}
		
	}
	return res;
}
	
	public static double[][] toArray(ArrayList<ArrayList<Double>> a) {
		int dataDimen = a.size();
		double[][] res = new double[dataDimen][dataDimen];
		
		for(int i = 0; i < dataDimen; i++) {
			for(int j = 0; j < dataDimen; j++) {
				res[i][j] = a.get(i).get(j);
			}
		}
		
		return res;
	}
	
	public static double[][] toArray1(ArrayList<Double> a) {
		int dataDimen = a.size();
		double[][] res = new double[1][dataDimen];
		
		for(int i = 0; i < dataDimen; i++) {
				res[1][i] = a.get(i);
		}
		
		return res;
	}
	
	/**
	 * 
	* @Title: matrixReverse 
	* @Description: 矩阵专制
	* @return double[][]
	* @throws
	 */
	public static double[][] matrixReverse(double[][] a) {
		double[][] res = new double[a[0].length][a.length];
		for(int i = 0; i < a.length; i++) {
			for(int j = 0; j < a[0].length; j++) {
				res[j][i] = a[i][j];
			}
		}
		return res;
	}
	
	/**
	 * 
	* @Title: diag 
	* @Description: 向量对角化
	* @return double[][]
	* @throws
	 */
	public static double[][] diag(double[] a) {
		double[][] res = new double[a.length][a.length];
		for(int i = 0; i < a.length; i++) {
			for(int j = 0; j < a.length; j++) {
				if(i == j) {
					res[i][j] = a[i];
				}
			}
		}
		return res;
	}
}

 

 

 

分享到:
评论
1 楼 V3551G 2017-08-14  
你好, 请问有没有测试的demo

相关推荐

    GMM算法java实现

    所谓混合高斯模型(GMM)就是指对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的...

    GMM算法的 EM实现

    **GMM算法与EM实现详解** GMM,全称为高斯混合模型(Gaussian Mixture Model),是一种概率模型,常用于统计建模和机器学习领域。它假设数据是由多个高斯分布(正态分布)的混合体生成的,每个分布对应一个隐含的...

    GMM java代码

    多元高斯混合模型(GMM,Gaussian Mixture Model)是一种概率模型,广泛...综上所述,GMM Java代码的实现涵盖了概率建模、聚类算法、迭代优化等多个IT领域知识点,对于理解和应用这些概念提供了一个实际的编程基础。

    GMM.rar_Java gmm_混合高斯_混合高斯模型

    3. **EM算法实现**:实现E步和M步的逻辑,用于迭代优化模型参数。 4. **数据预处理**:可能需要对输入数据进行标准化或归一化,以便于模型学习。 5. **分类和识别**:使用训练好的GMM模型对新的数据点进行分类或识别...

    期望最大化算法java数据挖掘算法源码

    在实际项目中,开发者可以利用Java库如Weka或者自定义代码来实现EM算法,并应用于各种数据挖掘任务。 总的来说,期望最大化算法是一种强大的统计工具,尤其在处理含有隐藏变量的问题时,能有效估计模型参数。通过...

    Kmeams与EM算法的java版本

    在这个Java实现中,我们将深入探讨这两种算法以及它们在Java编程语言中的实现。 K-means算法是一种迭代的聚类方法,其目标是最小化簇内平方误差和最大化簇间的距离。它的工作流程主要包括以下步骤: 1. 初始化:...

    EM算法的C++、java、matlab实现

    在Java中实现EM算法,可以创建表示模型参数、观测数据和隐变量的类,并定义E步骤和M步骤的方法。 - **Matlab**:Matlab是数学和工程领域的常用工具,其内置的矩阵运算和优化工具箱使得实现EM算法相对简单。通过编写...

    EM算法求高斯混合分布java代码

    `GMM.java`可能包含了GMM模型的定义和EM算法的实现,`GMMClient.java`可能是主程序,负责读取数据(如`testData.txt`),实例化GMM对象并运行EM算法,最后展示或保存结果。`testData.txt`文件可能包含了一组用于训练...

    datamining:Java 中的 DBSCAN、GMM 和 Kmeans 算法

    在Java中,实现数据挖掘任务的一种常见方法是利用聚类算法,如DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、GMM(Gaussian Mixture Model)和K-means。这三种算法在处理不同类型的数据...

    EM算法实现

    在给定的资料中,包含了用JAVA实现的EM算法源代码,这对于理解EM算法的实际应用非常有帮助。JAVA是一种广泛应用于大数据和机器学习领域的编程语言,其严谨的面向对象特性使得代码结构清晰,易于理解和维护。你可以...

    国科大 电子学院 叶齐祥老师 机器学习 课程作业,手写高斯混合模型算法,手写支持向量机算法,手写卷积神经网络算法+源代码+文档说

    4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划...

    语音识别引擎(java版本)

    同时,对于模型训练和识别,可能采用了自定义的算法实现或者第三方库,如OpenCV或Java版的HTK(隐马尔可夫工具包)。 在深入研究这个项目时,你需要关注以下几点: 1. 音频数据的读取与预处理:了解如何使用Java...

    EM.rar_EM_EM java_EM java

    总的来说,EM算法是解决含有隐藏变量的概率模型参数估计问题的重要工具,而其在Java中的实现则为数据科学家和工程师提供了便利的工具,使得他们能够在实际问题中有效地运用这一算法。通过阅读提供的PDF资料,我们...

    grabCut 算法抠图

    在VS2013环境下,配合OpenCV 2.4.13库,我们可以实现GrabCut算法的应用。OpenCV是一个强大的开源计算机视觉库,它包含了各种图像处理和计算机视觉的函数,包括GrabCut算法。首先,你需要安装OpenCV库并配置好项目...

    Java写的运动检测代码

    Java中,可以结合第三方库如OpenCV或自己实现光流算法,如Lucas-Kanade方法。 在压缩包的"server"文件中,可能包含了服务器端的Java代码,用于接收、处理来自USB摄像头的视频流,并可能使用网络通信技术(如Socket...

    基于python的改进高斯混合模型的图割算法研究源码数据库论文.docx

    在Python环境中实现这些算法,可以利用如scikit-learn库进行GMM建模,用networkx或scipy库实现图割操作。同时,结合Java和jsp技术,可以构建一个Web应用程序,让用户上传图像并实时进行基于GMM和图割的图像分割,...

    基于改进高斯混合模型的图割算法研究源码&python毕业设计.zip

    该项目是基于Python编程语言,利用改进的高斯混合模型(GMM)和图割算法进行的一项研究,结合了Django框架,适用于毕业设计或课程设计。以下是对该项目中涉及的知识点的详细说明: 1. **高斯混合模型(Gaussian ...

    BUPT web search home work。基于SML算法的GMM模型。.zip

    对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同...

    HMM源码及资料_HMM_hiddenmarkovmodel_settingb78_

    6. **源码实现**:在压缩包中的源码,可能是用某种编程语言(如Python、C++或Java)实现了这些算法,提供了一种直接理解HMM计算过程的方式。通过阅读和分析源码,可以深入理解这些算法的细节,提高编程实现HMM的能力...

Global site tag (gtag.js) - Google Analytics