`
czhsuccess
  • 浏览: 41982 次
社区版块
存档分类
最新评论

java实现简单的感知器算法(Perceptron Algorithm)

阅读更多

使用诸如matlab之类的实验室语言实现各类DM算法很方便,可以很快的获得实验结果,因为各类经典的数学或者DM算法都以函数的形式体现,你要做的大部分工作都可以调用这些函数,而你只需要编写少量代码就ok。但使用这类语言也有缺点,其一是这样做的效率可能不怎么高,原因是你不清楚底层代码的实现而盲目调用。其二是无法真正理解这些经典的数学或者是DM算法(看懂一个算法距离实现一个算法还是很遥远的)。 so,我尝试使用java实现一系列经典的DM算法,以加深对它们的理解。先从比较简单的感知器算法开始。 感知器算法流程:

/**
 * 感知器算法:作为adaboost算法的弱分类器
 * 参考资料:http://wenku.baidu.com/view/f2aeda2458fb770bf78a55e5.html###
 * @author zhenhua.chen
 * @Description: TODO
 * @date 2013-3-7 上午9:31:01 
 *
 */
public class PerceptronApproach {
	private static final int T = 100; // 最大迭代次数
	
	/**
	 * 
	 * @param dataSet:数据集
	 * @param weight:每条数据的权重
	 * @return
	 */
	public ArrayList<Double> getWeightVector(ArrayList<ArrayList<Double>> dataSet, ArrayList<Double> dataWeight) {
		int dataLength = 0;
		if(null == dataSet) {
			return null;
		} else {
			dataLength = dataSet.get(0).size();
		}
		
		// 初始化感知器的权重向量
		ArrayList<Double> sensorWeightVector = new ArrayList<Double>(); 
		for(int i = 0; i < dataLength; i++) {
			sensorWeightVector.add(1d);
		}
		
		// 初始化感知器的增量
//		int increment = 1;
		
		int sign = 0; // 迭代终止的条件: 权值向量的的值连续dataSet.size()次大于0
		for(int i = 0; i < T && sign < dataSet.size(); i++) { // 最大迭代次数
			for(int z = 0; z < dataSet.size(); z++) {
				double result = 0;
				for(int j = 0 ; j < dataLength; j++) {
					result += dataSet.get(z).get(j) * sensorWeightVector.get(j);
				}
				if(result > 0) {
					sign++;
					if(sign >= dataSet.size()) break;
				} else {
					sign = 0;
					for(int k = 0; k < dataLength; k++) { //更新权值向量
						sensorWeightVector.set(k, sensorWeightVector.get(k) + dataSet.get(z).get(k) * dataWeight.get(z));
					}
				}
			}
		}
		
		return sensorWeightVector;
	}
	
	public static void main(String[] args) {
		File f = new File("E:/PA.txt");
		BufferedReader reader = null;
		
		try {
			reader = new BufferedReader(new FileReader(f));
			String str = null;
			try {
				ArrayList<ArrayList<Double>> dataSet = new ArrayList<ArrayList<Double>>();
				while((str = reader.readLine()) != null) {
					ArrayList<Double> tmpList = new ArrayList<Double>();
					String[] s = str.split("\t");
					for(int i = 0; i < s.length; i++) {
						tmpList.add(Double.parseDouble(s[i]));
					}
					dataSet.add(tmpList);
				}
				
				ArrayList<Double> dataWeight = new ArrayList<Double>();
				for(int i = 0; i < dataSet.size(); i++) {
					dataWeight.add(1d);
				}
				
				PerceptronApproach d = new PerceptronApproach();
				d.getWeightVector(dataSet, dataWeight);
				System.out.println(d.getWeightVector(dataSet, dataWeight));
				
			} catch (IOException e) {
				e.printStackTrace();
			}
			
		} catch (FileNotFoundException e) {
			e.printStackTrace();
		}
	}
	
}

 

 

 

 

  • 大小: 47.8 KB
分享到:
评论
2 楼 vigiles 2015-05-13  
微笑春天 写道
楼主   for(int i = 0; i < dataLength; i++) { 
            sensorWeightVector.add(1d); 
        } 
这句话中ld表示啥子意思 我怎么没有看懂啊 ld 我也没有找到 呜呜

------------------------------------
这个是数字1和字母d,表示将这个1作为一个double类型
1 楼 微笑春天 2014-09-23  
楼主   for(int i = 0; i < dataLength; i++) { 
            sensorWeightVector.add(1d); 
        } 
这句话中ld表示啥子意思 我怎么没有看懂啊 ld 我也没有找到 呜呜

相关推荐

    Neural-Network:KNN、Kmeans、感知器和遗传算法算法的实现

    在Java中,可以使用Deeplearning4j等深度学习库实现感知器,或者根据梯度下降法则编写自己的感知器算法。 4. 遗传算法: 遗传算法是一种基于生物进化原理的全局优化方法,通过模拟自然选择、遗传、突变和交叉等过程...

    神经网络-反向传播算法.zip

    反向传播算法(Backpropagation Algorithm)是训练多层感知器(Multilayer Perceptron, MLP)模型的主要方法,其核心思想是通过梯度下降来优化权重参数,以最小化损失函数。 1. **多层神经网络结构** 多层神经网络...

    joone.zip_joone

    3. **网络模型**:Joone支持多种网络模型,如多层感知器(Multilayer Perceptron)、径向基函数网络(Radial Basis Function Network)和Hopfield网络。这些模型各有特点,适用于不同的应用场景,例如分类、回归、...

    毕业设计物联网实战项目基于Eclipse Theia开源框架开发的物联网在线编程IDE.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    Android毕设实战项目基于Android的医院挂号系统.zip

    【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    (源码)基于Python的KMeans和EM算法结合图像分割项目.zip

    # 基于Python的KMeans和EM算法结合图像分割项目 ## 项目简介 本项目结合KMeans聚类和EM(期望最大化)算法,实现对马赛克图像的精准分割。通过Gabor滤波器提取图像的多维特征,并利用KMeans进行初步聚类,随后使用EM算法优化聚类结果,最终生成高质量的分割图像。 ## 项目的主要特性和功能 1. 图像导入和预处理: 支持导入马赛克图像,并进行灰度化、滤波等预处理操作。 2. 特征提取: 使用Gabor滤波器提取图像的多维特征向量。 3. 聚类分析: 使用KMeans算法对图像进行初步聚类。 利用KMeans的聚类中心初始化EM算法,进一步优化聚类结果。 4. 图像生成和比较: 生成分割后的图像,并与原始图像进行比较,评估分割效果。 5. 数值比较: 通过计算特征向量之间的余弦相似度,量化分割效果的提升。 ## 安装使用步骤 ### 假设用户已经下载了项目的源码文件 1. 环境准备:

    HCIP第一次作业:静态路由综合实验

    HCIP第一次作业:静态路由综合实验

    毕设单片机实战项目基于stm32、esp8266和Android的智能家居系统-设备端.zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    统计学基于Python的Johnson-SU分布参数计算与优化:数据拟合及弹性网络参数优化方法实现(复现论文或解答问题,含详细可运行代码及解释)

    内容概要:本文详细介绍了Johnson-SU分布的参数计算与优化过程,涵盖位置参数γ、形状参数δ、尺度参数ξ和伸缩参数λ的计算方法,并实现了相应的Python代码。文中首先导入必要的库并设置随机种子以确保结果的可复现性。接着,分别定义了四个参数的计算函数,其中位置参数γ通过加权平均值计算,形状参数δ基于局部均值和标准差的比值,尺度参数ξ结合峰度和绝对偏差,伸缩参数λ依据偏态系数。此外,还实现了Johnson-SU分布的概率密度函数(PDF),并使用负对数似然函数作为目标函数,采用L-BFGS-B算法进行参数优化。最后,通过弹性网络的贝叶斯优化展示了另一种参数优化方法。; 适合人群:具有Python编程基础,对统计学和机器学习有一定了解的研究人员或工程师。; 使用场景及目标:①需要对复杂数据分布进行建模和拟合的场景;②希望通过优化算法提升模型性能的研究项目;③学习如何实现和应用先进的统计分布及优化技术。; 阅读建议:由于涉及较多数学公式和编程实现,建议读者在阅读时结合相关数学知识,同时动手实践代码,以便更好地理解和掌握Johnson-SU分布及其优化方法。

    TSP问题的3种智能优化方法求解(研究生课程《智能优化算法》结课大作业).zip

    TSP问题的3种智能优化方法求解(研究生课程《智能优化算法》结课大作业).zip

    毕业设计物联网实战项目基于Rtthread和MQTT搭建的物联网网关.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    基于STM32F103C8T6的温湿度传感器(HAL库版),通过串口向电脑端反馈数据(附通过ESP8266-01s模块连接WIFI上传云平台的资料代码-固件库版本).zip

    【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    自动发布Java项目(Tomcat)Shell脚本

    自动发布Java项目(Tomcat)Shell脚本

    (源码)基于webpack和Vue的前端项目构建方案.zip

    # 基于webpack和Vue的前端项目构建方案 ## 项目简介 本项目是基于webpack和Vue构建的前端项目方案,借助webpack强大的打包能力以及Vue的开发特性,可用于快速搭建现代化的前端应用。项目不仅完成了基本的webpack与Vue的集成配置,还在构建速度优化和代码规范性方面做了诸多配置。 ## 项目的主要特性和功能 1. 打包功能运用webpack进行模块打包,支持将scss转换为css,借助babel实现语法转换。 2. Vue开发支持集成Vue框架,能使用Vue单文件组件的开发模式。 3. 构建优化采用threadloader实现多进程打包,cacheloader缓存资源,极大提高构建速度开启热更新功能,开发更高效。 4. 错误处理与优化提供不同环境下的错误映射配置,便于定位错误利用webpackbundleanalyzer分析打包体积。

    Hands-On Large Language Models - Jay Alammar 袋鼠书 《动手学大语言模型》

    Hands-On Large Language Models - Jay Alammar 袋鼠书 《动手学大语言模型》PDF

    《基于YOLOv8的舞蹈动作分析系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    (源码)基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统.zip

    # 基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统 ## 项目简介 本项目是一个基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统。系统通过Arduino Feather M0采集传感器数据,并通过WiFi将数据传输到Raspberry Pi。Raspberry Pi运行BalenaOS,集成了MySQL、PHP、NGINX、Apache和Grafana等工具,用于数据的存储、处理和可视化。项目适用于环境监测、物联网设备监控等场景。 ## 项目的主要特性和功能 1. 传感器数据采集使用Arduino Feather M0和AM2315传感器采集温度和湿度数据。 2. WiFi数据传输Arduino Feather M0通过WiFi将采集到的数据传输到Raspberry Pi。

    《基于YOLOv8的音响设备识别系统》(包含源码、完整数据集、可视化界面、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

    资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。

    Android毕设实战项目这是一个android 图书管理系统.zip

    【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

    毕业设计物联网实战项目基于智龙2.0开发板和窄带物联网模块BC95。操作系统为RTT2.1。.zip

    【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。

Global site tag (gtag.js) - Google Analytics