`

Linux内核中流量控制(9)

阅读更多
本文档的Copyleft归yfydz所有,使用GPL发布,可以自由拷贝,转载,转载时请保持文档的完整性,严禁用于任何商业用途。
msn: yfydz_no1@hotmail.com
来源:http://yfydz.cublog.cn

5.9 ingress

ingress流控方法是针对输入数据进行流控处理的,在net/sched/sch_ingress.c中定义, 使用时要求在内核配置中定义CONFIG_NET_CLS_ACT或CONFIG_NETFILTER,不过从代码实现看起来好象没什么意义。

5.9.1 ingress操作结构定义

// ingress私有数据结构
struct ingress_qdisc_data {
// 内部流控
 struct Qdisc  *q;
// 过滤规则
 struct tcf_proto *filter_list;
};

// ingress流控操作结构
static struct Qdisc_ops ingress_qdisc_ops = {
 .next  = NULL,
 .cl_ops  = &ingress_class_ops,
 .id  = "ingress",
 .priv_size = sizeof(struct ingress_qdisc_data),
 .enqueue = ingress_enqueue,
 .dequeue = ingress_dequeue,
 .requeue = ingress_requeue,
 .drop  = ingress_drop,
 .init  = ingress_init,
 .reset  = ingress_reset,
 .destroy = ingress_destroy,
// 无change函数
 .change  = NULL,
 .dump  = ingress_dump,
 .owner  = THIS_MODULE,
};
 
// ingress类别操作结构
static struct Qdisc_class_ops ingress_class_ops = {
 .graft  = ingress_graft,
 .leaf  = ingress_leaf,
 .get  = ingress_get,
 .put  = ingress_put,
 .change  = ingress_change,
 .delete  = NULL,
 .walk  = ingress_walk,
 .tcf_chain = ingress_find_tcf,
 .bind_tcf = ingress_bind_filter,
 .unbind_tcf = ingress_put,
 .dump  = NULL,
};

5.9.1 ingress的netfilter节点

// 没定义NET_CLS_ACT, 而定义了NETFILTER的情况下才有效, 在netfilter节点中进行
// 数据包是否接收的判断
// 但如果定义了NET_CLS_ACT后, 该段代码无效
#ifndef CONFIG_NET_CLS_ACT
#ifdef CONFIG_NETFILTER
/* after ipt_filter */
static struct nf_hook_ops ing_ops = {
// 钩子函数
 .hook           = ing_hook,
 .owner  = THIS_MODULE,
 .pf             = PF_INET,
// 挂接在PREROUTING点
 .hooknum        = NF_IP_PRE_ROUTING,
// 优先权NF_IP_PRI_FILTER + 1, 不过在PREROUTING点缺省好象没定义NF_IP_PRI_FILTER
// 级别的节点
 .priority       = NF_IP_PRI_FILTER + 1,
};
static struct nf_hook_ops ing6_ops = {
 .hook           = ing_hook,
 .owner  = THIS_MODULE,
 .pf             = PF_INET6,
 .hooknum        = NF_IP6_PRE_ROUTING,
 .priority       = NF_IP6_PRI_FILTER + 1,
};

static unsigned int
ing_hook(unsigned int hook, struct sk_buff **pskb,
                             const struct net_device *indev,
                             const struct net_device *outdev,
                      int (*okfn)(struct sk_buff *))
{
 
 struct Qdisc *q;
 struct sk_buff *skb = *pskb;
        struct net_device *dev = skb->dev;
// 缺省动作, 接受
 int fwres=NF_ACCEPT;
 DPRINTK("ing_hook: skb %s dev=%s len=%u\n",
  skb->sk ? "(owned)" : "(unowned)",
  skb->dev ? (*pskb)->dev->name : "(no dev)",
  skb->len);
/*
revisit later: Use a private since lock dev->queue_lock is also
used on the egress (might slow things for an iota)
*/
// 如果设备里定义了接收流控
 if (dev->qdisc_ingress) {
  spin_lock(&dev->queue_lock);
  if ((q = dev->qdisc_ingress) != NULL)
// 调用接收流控的入队函数, 返回值是对数据包的判断结果
   fwres = q->enqueue(skb, q);
  spin_unlock(&dev->queue_lock);
        }
// 如果没定义, 就直接返回缺省动作: 通过 
 return fwres;
}
#endif
#endif

5.9.3 初始化

static int ingress_init(struct Qdisc *sch,struct rtattr *opt)
{
 struct ingress_qdisc_data *p = PRIV(sch);
/* Make sure either netfilter or preferably CLS_ACT is
* compiled in */
// 输入接收流控必须在内核选项中定义分类动作NET_CLS_ACT或NETFILTER
#ifndef CONFIG_NET_CLS_ACT
#ifndef CONFIG_NETFILTER
// 两者都没定义的话就初始化失败
 printk("You MUST compile classifier actions into the kernel\n");
 return -EINVAL;
#else
// 使用NET_CLS_ACT优于使用NETFILTER
 printk("Ingress scheduler: Classifier actions prefered over netfilter\n");
#endif
#endif
                                                                               
#ifndef CONFIG_NET_CLS_ACT
#ifdef CONFIG_NETFILTER
// 没定义NET_CLS_ACT, 而定义了NETFILTER的情况
// 登记输入流控的netfilter钩子节点函数
 if (!nf_registered) {
// 登记IPV4钩子节点
  if (nf_register_hook(&ing_ops) < 0) {
   printk("ingress qdisc registration error \n");
   return -EINVAL;
  }
// 非0表示已经登记了
  nf_registered++;

// 登记IPV4钩子节点
  if (nf_register_hook(&ing6_ops) < 0) {
   printk("IPv6 ingress qdisc registration error, " \
       "disabling IPv6 support.\n");
  } else
   nf_registered++;
 }
#endif
#endif
 DPRINTK("ingress_init(sch %p,[qdisc %p],opt %p)\n",sch,p,opt);
// 初始内部流控初始化为noop, 丢包的
 p->q = &noop_qdisc;
 return 0;
}
 
5.9.5 入队

sstatic int ingress_enqueue(struct sk_buff *skb,struct Qdisc *sch)
{
// 接收流控私有数据
 struct ingress_qdisc_data *p = PRIV(sch);
// 分类结果
 struct tcf_result res;
 int result;
 D2PRINTK("ingress_enqueue(skb %p,sch %p,[qdisc %p])\n", skb, sch, p);
// 对数据进行分类
 result = tc_classify(skb, p->filter_list, &res);
 D2PRINTK("result %d class 0x%04x\n", result, res.classid);
 /*
  * Unlike normal "enqueue" functions, ingress_enqueue returns a
  * firewall FW_* code.
  */
#ifdef CONFIG_NET_CLS_ACT
// 在定义了NET_CLS_ACT的情况, 这时不会返回NF_*, 而是返回TC_ACT_*
 sch->bstats.packets++;
 sch->bstats.bytes += skb->len;
 switch (result) {
  case TC_ACT_SHOT:
// 丢包
   result = TC_ACT_SHOT;
   sch->qstats.drops++;
   break;
  case TC_ACT_STOLEN:
  case TC_ACT_QUEUED:
// 偷包, 重新处理
   result = TC_ACT_STOLEN;
   break;
  case TC_ACT_RECLASSIFY:
  case TC_ACT_OK:
  case TC_ACT_UNSPEC:
  default:
// 接受, 计算tc_index
   skb->tc_index = TC_H_MIN(res.classid);
   result = TC_ACT_OK;
   break;
 };
/* backward compat */
#else
// 在没有定义了NET_CLS_ACT的情况, 这时存在netfilter节点, 返回NF_*结果
#ifdef CONFIG_NET_CLS_POLICE 
// 在定义了NET_CLS_POLICE的情况
 switch (result) {
  case TC_POLICE_SHOT:
// 丢包
  result = NF_DROP;
  sch->qstats.drops++;
  break;
  case TC_POLICE_RECLASSIFY: /* DSCP remarking here ? */
  case TC_POLICE_OK:
  case TC_POLICE_UNSPEC:
  default:
// 其他情况都是ACCEPT
  sch->bstats.packets++;
  sch->bstats.bytes += skb->len;
  result = NF_ACCEPT;
  break;
 };
#else
// 那两个NET_CLS选项都没定义的话直接ACCEPT
 D2PRINTK("Overriding result to ACCEPT\n");
 result = NF_ACCEPT;
 sch->bstats.packets++;
 sch->bstats.bytes += skb->len;
#endif
#endif
 return result;
}
 
5.9.6 重入队

空函数
static int ingress_requeue(struct sk_buff *skb,struct Qdisc *sch)
{
/*
 struct ingress_qdisc_data *p = PRIV(sch);
 D2PRINTK("ingress_requeue(skb %p,sch %p,[qdisc %p])\n",skb,sch,PRIV(p));
*/
 return 0;
}
 
5.9.7 出队

// 空函数,因为不会有真正的dequeue操作
static struct sk_buff *ingress_dequeue(struct Qdisc *sch)
{
/*
 struct ingress_qdisc_data *p = PRIV(sch);
 D2PRINTK("ingress_dequeue(sch %p,[qdisc %p])\n",sch,PRIV(p));
*/
 return NULL;
}
 
5.9.8 丢包
// 基本也是空函数
static unsigned int ingress_drop(struct Qdisc *sch)
{
#ifdef DEBUG_INGRESS
 struct ingress_qdisc_data *p = PRIV(sch);
#endif
 DPRINTK("ingress_drop(sch %p,[qdisc %p])\n", sch, p);
 return 0;
}
 

5.9.9 复位

sstatic void ingress_reset(struct Qdisc *sch)
{
 struct ingress_qdisc_data *p = PRIV(sch);
 DPRINTK("ingress_reset(sch %p,[qdisc %p])\n", sch, p);
/*
#if 0
*/
/* for future use */
// 复位内部流控节点
 qdisc_reset(p->q);
/*
#endif
*/
}
 
5.9.10 释放

static void ingress_destroy(struct Qdisc *sch)
{
// 私有数据
 struct ingress_qdisc_data *p = PRIV(sch);
 struct tcf_proto *tp;
 DPRINTK("ingress_destroy(sch %p,[qdisc %p])\n", sch, p);
// 释放TC过滤规则
 while (p->filter_list) {
  tp = p->filter_list;
  p->filter_list = tp->next;
  tcf_destroy(tp);
 }
#if 0
/* for future use */
 qdisc_destroy(p->q);
#endif
}

5.9.11 输出参数

static int ingress_dump(struct Qdisc *sch, struct sk_buff *skb)
{
 unsigned char *b = skb->tail;
 struct rtattr *rta;
 rta = (struct rtattr *) b;
// 起始什么数据也没有
 RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
 rta->rta_len = skb->tail - b;
 return skb->len;
rtattr_failure:
 skb_trim(skb, b - skb->data);
 return -1;
}

5.9.13 ingress类别操作

// 嫁接, 增加叶子节点
// 基本是空函数, 恒返回1
static int ingress_graft(struct Qdisc *sch,unsigned long arg,
    struct Qdisc *new,struct Qdisc **old)
{
#ifdef DEBUG_INGRESS
 struct ingress_qdisc_data *p = PRIV(sch);
#endif
 DPRINTK("ingress_graft(sch %p,[qdisc %p],new %p,old %p)\n",
  sch, p, new, old);
 DPRINTK("\n ingress_graft: You cannot add qdiscs to classes");
        return 1;
}

// 叶子, 空函数
static struct Qdisc *ingress_leaf(struct Qdisc *sch, unsigned long arg)
{
 return NULL;
}

// 计数增加, 使用类别ID计算
static unsigned long ingress_get(struct Qdisc *sch,u32 classid)
{
#ifdef DEBUG_INGRESS
 struct ingress_qdisc_data *p = PRIV(sch);
#endif
 DPRINTK("ingress_get(sch %p,[qdisc %p],classid %x)\n", sch, p, classid);
 return TC_H_MIN(classid) + 1;
}

// 绑定TC过滤规则表
static unsigned long ingress_bind_filter(struct Qdisc *sch,
    unsigned long parent, u32 classid)
{
 return ingress_get(sch, classid);
}

// 计数减少, 空函数
static void ingress_put(struct Qdisc *sch, unsigned long cl)
{
}

// 空函数
static int ingress_change(struct Qdisc *sch, u32 classid, u32 parent,
    struct rtattr **tca, unsigned long *arg)
{
#ifdef DEBUG_INGRESS
 struct ingress_qdisc_data *p = PRIV(sch);
#endif
 DPRINTK("ingress_change(sch %p,[qdisc %p],classid %x,parent %x),"
  "arg 0x%lx\n", sch, p, classid, parent, *arg);
 DPRINTK("No effect. sch_ingress doesn't maintain classes at the moment");
 return 0;
}
 
// 遍历, 空函数
static void ingress_walk(struct Qdisc *sch,struct qdisc_walker *walker)
{
#ifdef DEBUG_INGRESS
 struct ingress_qdisc_data *p = PRIV(sch);
#endif
 DPRINTK("ingress_walk(sch %p,[qdisc %p],walker %p)\n", sch, p, walker);
 DPRINTK("No effect. sch_ingress doesn't maintain classes at the moment");
}

// 获取TC过滤规则表
static struct tcf_proto **ingress_find_tcf(struct Qdisc *sch,unsigned long cl)
{
 struct ingress_qdisc_data *p = PRIV(sch);
 return &p->filter_list;
}
 
...... 待续 ......
分享到:
评论

相关推荐

    Linux网络体系结构 Linux内核中网络协议的设计与实现

    在Linux内核中,TCP和UDP模块处理连接建立、数据传输、流量控制和拥塞控制等问题。 5. **应用层**:这一层包含各种应用协议,如HTTP、FTP、SMTP等,它们直接与用户交互。Linux内核通过socket API为上层应用提供了与...

    基于Linux内核的BT流量控制的原理与实现.pdf

    【基于Linux内核的BT流量控制的原理与实现】 Linux操作系统以其开源、可定制的特点,在系统开发领域广泛应用,尤其在网络流量控制方面具有显著优势。针对BitTorrent(BT)这种大量占用带宽的P2P协议,Linux内核提供...

    Linux内核完全注释V3.0_linux内核_linux_

    4. **网络堆栈**:从硬件接口到应用层协议的整个网络传输流程,如TCP/IP协议族、套接字API、网络设备驱动程序以及流量控制策略。 5. **设备驱动**:内核如何与硬件交互,驱动程序的工作原理,包括字符设备、块设备...

    深入分析Linux内核源码

    通过分析源码,我们可以了解到数据包的接收与发送过程,理解TCP连接的建立与断开、拥塞控制、流量控制等机制,这对于网络编程和网络故障排查非常有帮助。 此外,Linux内核还涉及中断处理、设备驱动、I/O管理等多个...

    基于Linux内核扩展模块的P2P流量控制.pdf

    【基于Linux内核扩展模块的P2P流量控制】这篇文献主要探讨了如何在Linux操作系统中,通过内核扩展模块来实现对P2P流量的有效控制。P2P(Peer-to-Peer)技术的兴起改变了互联网的中心化结构,使得资源分享更为便捷,...

    基于Linux内核扩展模块的P2P流量控制

    基于Linux内核扩展模块的P2P流量控制

    基于Linux LQL流量控制系统的研究与实现.pdf

    基于LQL库的流量控制方法可以直接在Linux内核的框架下实现,而不需要使用传统方法中的TC命令解析、netlink传输和内核空间执行的三层结构。这可以提高流量控制的效率和可靠性,同时也可以减少流量控制的延迟和资源...

    Linux内核修炼之道精华版

    书中的内容涵盖了从内核基础到高级技术的方方面面,为那些希望提升Linux内核理解和开发能力的读者提供了宝贵的资源。在本文中,我们将探讨几个关键的知识点,包括Linux内核的基本结构、进程管理、内存管理和设备驱动...

    Linux内核源码(2.6.24)

    2.6.24版本在网络方面加强了IPv6的支持,并改进了网络流量控制算法。 6. **安全与权限管理**:Linux内核采用了用户和组的概念,通过权限系统(如chmod、chown等)来控制文件访问。此外,还有SELinux(Security-...

    深入理解linux内核word版本

    接着,作者深入剖析了网络设备数据结构net_device,它包含了设备的配置信息、统计信息、状态标志以及各种管理列表和流量控制字段,这些细节揭示了网络设备如何在内核中被抽象和管理。 通过以上内容,我们可以看到,...

    Linux内核情景分析(上下全集高清版)

    9. **安全与权限管理**:Linux内核遵循Unix的安全模型,使用用户ID和组ID进行权限控制,还提供了SELinux这样的强制访问控制机制,增强了系统的安全性。 10. **系统调用**:作为用户空间与内核空间交互的桥梁,系统...

    linux高级路由和流量控制HOWTO中文版(牛老师译)

    9. **流量控制**:流量控制是为了避免网络拥塞,确保数据包的稳定传输。Linux中的流量控制机制包括`iptables`、`tc`(Traffic Control)和`netem`(Network Emulation)。 10. **iptables**:iptables是Linux内核...

    基于Linux的网络流量控制机制

    该模型内置于Linux内核中,并利用队列算法对不同服务质量(Quality of Service, QoS)需求的数据流进行分类,以提供灵活且差异化的服务。实验结果表明,采用该流量控制模型后,网络性能显著提高,并能很好地适应未来...

    《Linux内核源码剖析 TCP IP实现(上册) 樊东东 莫澜 pdf扫描版.

    同时,还会讨论TCP的流量控制和拥塞控制机制,如滑动窗口、慢启动、快速重传和快速恢复算法等,这些都是保证网络通信质量和效率的关键。 其次,关于IP协议,书里会涉及IP地址、子网掩码、路由选择等概念,以及IP分...

    TC(linux下流量控制工具)详细说明及应用实例借鉴.pdf

    TC 工具基于 Linux 内核的网络设备驱动程序,通过对网络设备的控制,来实现流量控制。TC 的工作原理可以分为以下三个阶段: 1. 流量控制方式:TC 提供了多种流量控制方式,包括 Token Bucket Filter(TBF)、...

    TC(linux下流量控制工具)详细说明及应用实例.pdf

    TC(Linux 下流量控制工具)详细说明及应用实例 TC 是 Linux 下的一种流量控制工具,用于控制和管理网络流量。它提供了一个灵活的方式来管理网络带宽、延迟和丢包率等网络性能参数,以满足不同应用场景的需求。 TC...

    linux内核协议栈源码解析(2.6.18内核)

    2. **TCP/IP协议**:在传输层,TCP(传输控制协议)提供可靠的数据传输服务,通过确认、重传和流量控制确保数据的完整性和顺序。IP(互联网协议)在网络层负责数据包的路由和分片,是互联网的基础协议。 3. **套接...

    linux内核中sock和socket数据结构

    Linux内核中的sock和socket数据结构是网络编程的核心组成部分,它们是实现网络通信的基础构件。在Linux操作系统中,网络通信的实现依赖于BSD套接字接口,而这一接口在内核中是通过sock和socket数据结构来实现的。 ...

Global site tag (gtag.js) - Google Analytics