`
cuker919
  • 浏览: 97761 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

JVM内存管理:深入Java内存区域与OOM、深入垃圾收集器与内存分配策略

 
阅读更多

JVM内存管理:深入Java内存区域与OOM



Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。

概述:

对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝又是执行最基础工作的劳动人民——拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的维护责任。

对于Java程序员来说,不需要在为每一个new操作去写配对的delete/free,不容易出现内容泄漏和内存溢出错误,看起来由JVM管理内存一切都很美好。不过,也正是因为Java程序员把内存控制的权力交给了JVM,一旦出现泄漏和溢出,如果不了解JVM是怎样使用内存的,那排查错误将会是一件非常困难的事情。

VM运行时数据区域

JVM执行Java程序的过程中,会使用到各种数据区域,这些区域有各自的用途、创建和销毁时间。根据《Java虚拟机规范(第二版)》(下文称VM Spec)的规定,JVM包括下列几个运行时数据区域:

1.程序计数器(Program Counter Register):

每一个Java线程都有一个程序计数器来用于保存程序执行到当前方法的哪一个指令,对于非Native方法,这个区域记录的是正在执行的VM原语的地址,如果正在执行的是Natvie方法,这个区域则为空(undefined)。此内存区域是唯一一个在VM Spec中没有规定任何OutOfMemoryError情况的区域。

2.Java虚拟机栈(JavaVirtual Machine Stacks)

与程序计数器一样,VM栈的生命周期也是与线程相同。VM栈描述的是Java方法调用的内存模型:每个方法被执行的时候,都会同时创建一个帧(Frame)用于存储本地变量表、操作栈、动态链接、方法出入口等信息。每一个方法的调用至完成,就意味着一个帧在VM栈中的入栈至出栈的过程。在后文中,我们将着重讨论VM栈中本地变量表部分。

经常有人把Java内存简单的区分为堆内存(Heap)和栈内存(Stack),实际中的区域远比这种观点复杂,这样划分只是说明与变量定义密切相关的内存区域是这两块。其中所指的“堆”后面会专门描述,而所指的“栈”就是VM栈中各个帧的本地变量表部分。本地变量表存放了编译期可知的各种标量类型(boolean、byte、char、short、int、float、long、double)、对象引用(不是对象本身,仅仅是一个引用指针)、方法返回地址等。其中long和double会占用2个本地变量空间(32bit),其余占用1个。本地变量表在进入方法时进行分配,当进入一个方法时,这个方法需要在帧中分配多大的本地变量是一件完全确定的事情,在方法运行期间不改变本地变量表的大小。

在VM Spec中对这个区域规定了2中异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果VM栈可以动态扩展(VM Spec中允许固定长度的VM栈),当扩展时无法申请到足够内存则抛出OutOfMemoryError异常。

3.本地方法栈(Native Method Stacks)

本地方法栈与VM栈所发挥作用是类似的,只不过VM栈为虚拟机运行VM原语服务,而本地方法栈是为虚拟机使用到的Native方法服务。它的实现的语言、方式与结构并没有强制规定,甚至有的虚拟机(譬如SunHotspot虚拟机)直接就把本地方法栈和VM栈合二为一。和VM栈一样,这个区域也会抛出StackOverflowError和OutOfMemoryError异常。


4.Java堆(Java Heap)

对于绝大多数应用来说,Java堆是虚拟机管理最大的一块内存。Java堆是被所有线程共享的,在虚拟机启动时创建。Java堆的唯一目的就是存放对象实例,绝大部分的对象实例都在这里分配。这一点在VMSpec中的描述是:所有的实例以及数组都在堆上分配(原文:The heap is the runtime data area from which memory for all classinstances and arrays is allocated),但是在逃逸分析和标量替换优化技术出现后,VM Spec的描述就显得并不那么准确了。

Java堆内还有更细致的划分:新生代、老年代,再细致一点的:eden、from survivor、to survivor,甚至更细粒度的本地线程分配缓冲(TLAB)等,无论对Java堆如何划分,目的都是为了更好的回收内存,或者更快的分配内存,在本章中我们仅仅针对内存区域的作用进行讨论,Java堆中的上述各个区域的细节,可参见本文第二章《JVM内存管理:深入垃圾收集器与内存分配策略》。

根据VM Spec的要求,Java堆可以处于物理上不连续的内存空间,它逻辑上是连续的即可,就像我们的磁盘空间一样。实现时可以选择实现成固定大小的,也可以是可扩展的,不过当前所有商业的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。如果在堆中无法分配内存,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。

5.方法区(Method Area)

叫“方法区”可能认识它的人还不太多,如果叫永久代(PermanentGeneration)它的粉丝也许就多了。它还有个别名叫做Non-Heap(非堆),但是VM Spec上则描述方法区为堆的一个逻辑部分(原文:the method area is logically part of the heap),这个名字的问题还真容易令人产生误解,我们在这里就不纠结了。

方法区中存放了每个Class的结构信息,包括常量池、字段描述、方法描述等等。VM Space描述中对这个区域的限制非常宽松,除了和Java堆一样不需要连续的内存,也可以选择固定大小或者可扩展外,甚至可以选择不实现垃圾收集。相对来说,垃圾收集行为在这个区域是相对比较少发生的,但并不是某些描述那样永久代不会发生GC(至少对当前主流的商业JVM实现来说是如此),这里的GC主要是对常量池的回收和对类的卸载,虽然回收的“成绩”一般也比较差强人意,尤其是类卸载,条件相当苛刻。

6.运行时常量池(Runtime Constant Pool)

Class文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量表(constant_pool table),用于存放编译期已可知的常量,这部分内容将在类加载后进入方法区(永久代)存放。但是Java语言并不要求常量一定只有编译期预置入Class的常量表的内容才能进入方法区常量池,运行期间也可将新内容放入常量池(最典型的String.intern()方法)。

运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法在申请到内存时会抛出OutOfMemoryError异常。

7.本机直接内存(Direct Memory)

直接内存并不是虚拟机运行时数据区的一部分,它根本就是本机内存而不是VM直接管理的区域。但是这部分内存也会导致OutOfMemoryError异常出现,因此我们放到这里一起描述。

在JDK1.4中新加入了NIO类,引入一种基于渠道与缓冲区的I/O方式,它可以通过本机Native函数库直接分配本机内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java对和本机堆中来回复制数据。

显然本机直接内存的分配不会受到Java堆大小的限制,但是即然是内存那肯定还是要受到本机物理内存(包括SWAP区或者Windows虚拟内存)的限制的,一般服务器管理员配置JVM参数时,会根据实际内存设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),而导致动态扩展时出现OutOfMemoryError异常。

实战OutOfMemoryError

上述区域中,除了程序计数器,其他在VM Spec中都描述了产生OutOfMemoryError(下称OOM)的情形,那我们就实战模拟一下,通过几段简单的代码,令对应的区域产生OOM异常以便加深认识,同时初步介绍一些与内存相关的虚拟机参数。下文的代码都是基于Sun Hotspot虚拟机1.6版的实现,对于不同公司的不同版本的虚拟机,参数与程序运行结果可能结果会有所差别。

Java堆

Java堆存放的是对象实例,因此只要不断建立对象,并且保证GC Roots到对象之间有可达路径即可产生OOM异常。测试中限制Java堆大小为20M,不可扩展,通过参数-XX:+HeapDumpOnOutOfMemoryError让虚拟机在出现OOM异常的时候Dump出内存映像以便分析。(关于Dump映像文件分析方面的内容,可参见本文第三章《JVM内存管理:深入JVM内存异常分析与调优》。)

清单1:Java堆OOM测试

/**

* VM Args:-Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError

* @author zzm

*/

public class HeapOOM {

static class OOMObject {

}

public static void main(String[] args) {

List<OOMObject> list = new ArrayList<OOMObject>();

while (true) {

list.add(new OOMObject());

}

}

}

运行结果:

java.lang.OutOfMemoryError: Java heap space

Dumping heap to java_pid3404.hprof ...

Heap dump file created [22045981 bytes in 0.663 secs]

VM栈和本地方法栈

Hotspot虚拟机并不区分VM栈和本地方法栈,因此-Xoss参数实际上是无效的,栈容量只由-Xss参数设定。关于VM栈和本地方法栈在VM Spec描述了两种异常:StackOverflowError与OutOfMemoryError,当栈空间无法继续分配分配时,到底是内存太小还是栈太大其实某种意义上是对同一件事情的两种描述而已,在笔者的实验中,对于单线程应用尝试下面3种方法均无法让虚拟机产生OOM,全部尝试结果都是获得SOF异常。

1.使用-Xss参数削减栈内存容量。结果:抛出SOF异常时的堆栈深度相应缩小。

2.定义大量的本地变量,增大此方法对应帧的长度。结果:抛出SOF异常时的堆栈深度相应缩小。

3.创建几个定义很多本地变量的复杂对象,打开逃逸分析和标量替换选项,使得JIT编译器允许对象拆分后在栈中分配。结果:实际效果同第二点。

清单2:VM栈和本地方法栈OOM测试(仅作为第1点测试程序)

/**

* VM Args:-Xss128k

* @author zzm

*/

public class JavaVMStackSOF {

private int stackLength = 1;

public void stackLeak() {

stackLength++;

stackLeak();

}

public static void main(String[] args) throws Throwable {

JavaVMStackSOF oom = new JavaVMStackSOF();

try {

oom.stackLeak();

} catch (Throwable e) {

System.out.println("stack length:" + oom.stackLength);

throw e;

}

}

}

运行结果:

stack length:2402

Exception in thread "main" java.lang.StackOverflowError

at org.fenixsoft.oom.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:20)

at org.fenixsoft.oom.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:21)

at org.fenixsoft.oom.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:21)

如果在多线程环境下,不断建立线程倒是可以产生OOM异常,但是基本上这个异常和VM栈空间够不够关系没有直接关系,甚至是给每个线程的VM栈分配的内存越多反而越容易产生这个OOM异常。

原因其实很好理解,操作系统分配给每个进程的内存是有限制的,譬如32位Windows限制为2G,Java堆和方法区的大小JVM有参数可以限制最大值,那剩余的内存为2G(操作系统限制)-Xmx(最大堆)-MaxPermSize(最大方法区),程序计数器消耗内存很小,可以忽略掉,那虚拟机进程本身耗费的内存不计算的话,剩下的内存就供每一个线程的VM栈和本地方法栈瓜分了,那自然每个线程中VM栈分配内存越多,就越容易把剩下的内存耗尽。

清单3:创建线程导致OOM异常

/**

* VM Args:-Xss2M (这时候不妨设大些)

* @author zzm

*/

public class JavaVMStackOOM {

private void dontStop() {

while (true) {

}

}

public void stackLeakByThread() {

while (true) {

Thread thread = new Thread(new Runnable() {

@Override

public void run() {

dontStop();

}

});

thread.start();

}

}

public static void main(String[] args) throws Throwable {

JavaVMStackOOM oom = new JavaVMStackOOM();

oom.stackLeakByThread();

}

}

特别提示一下,如果读者要运行上面这段代码,记得要存盘当前工作,上述代码执行时有很大令操作系统卡死的风险。

运行结果:

Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread



运行时常量池

要在常量池里添加内容,最简单的就是使用String.intern()这个Native方法。由于常量池分配在方法区内,我们只需要通过-XX:PermSize和-XX:MaxPermSize限制方法区大小即可限制常量池容量。实现代码如下:

清单4:运行时常量池导致的OOM异常

/**

* VM Args:-XX:PermSize=10M -XX:MaxPermSize=10M

* @author zzm

*/

public class RuntimeConstantPoolOOM {

public static void main(String[] args) {

// 使用List保持着常量池引用,压制Full GC回收常量池行为

List<String> list = new ArrayList<String>();

// 10M的PermSize在integer范围内足够产生OOM了

int i = 0;

while (true) {

list.add(String.valueOf(i++).intern());

}

}

}

运行结果:

Exception in thread "main" java.lang.OutOfMemoryError: PermGen space

at java.lang.String.intern(Native Method)

at org.fenixsoft.oom.RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java:18)

方法区

上文讲过,方法区用于存放Class相关信息,所以这个区域的测试我们借助CGLib直接操作字节码动态生成大量的Class,值得注意的是,这里我们这个例子中模拟的场景其实经常会在实际应用中出现:当前很多主流框架,如Spring、Hibernate对类进行增强时,都会使用到CGLib这类字节码技术,当增强的类越多,就需要越大的方法区用于保证动态生成的Class可以加载入内存。

清单5:借助CGLib使得方法区出现OOM异常

/**

* VM Args: -XX:PermSize=10M -XX:MaxPermSize=10M

* @author zzm

*/

public class JavaMethodAreaOOM {

public static void main(String[] args) {

while (true) {

Enhancer enhancer = new Enhancer();

enhancer.setSuperclass(OOMObject.class);

enhancer.setUseCache(false);

enhancer.setCallback(new MethodInterceptor() {

public Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy) throws Throwable {

return proxy.invokeSuper(obj, args);

}

});

enhancer.create();

}

}

static class OOMObject {

}

}

运行结果:

Caused by: java.lang.OutOfMemoryError: PermGen space

at java.lang.ClassLoader.defineClass1(Native Method)

at java.lang.ClassLoader.defineClassCond(ClassLoader.java:632)

at java.lang.ClassLoader.defineClass(ClassLoader.java:616)

... 8 more

本机直接内存

DirectMemory容量可通过-XX:MaxDirectMemorySize指定,不指定的话默认与Java堆(-Xmx指定)一样,下文代码越过了DirectByteBuffer,直接通过反射获取Unsafe实例进行内存分配(Unsafe类的getUnsafe()方法限制了只有引导类加载器才会返回实例,也就是基本上只有rt.jar里面的类的才能使用),因为DirectByteBuffer也会抛OOM异常,但抛出异常时实际上并没有真正向操作系统申请分配内存,而是通过计算得知无法分配既会抛出,真正申请分配的方法是unsafe.allocateMemory()。

/**

* VM Args:-Xmx20M -XX:MaxDirectMemorySize=10M

* @author zzm

*/

public class DirectMemoryOOM {

private static final int _1MB = 1024 * 1024;

public static void main(String[] args) throws Exception {

Field unsafeField = Unsafe.class.getDeclaredFields()[0];

unsafeField.setAccessible(true);

Unsafe unsafe = (Unsafe) unsafeField.get(null);

while (true) {

unsafe.allocateMemory(_1MB);

}

}

}

运行结果:

Exception in thread "main" java.lang.OutOfMemoryError

at sun.misc.Unsafe.allocateMemory(Native Method)

at org.fenixsoft.oom.DirectMemoryOOM.main(DirectMemoryOOM.java:20)

总结

到此为止,我们弄清楚虚拟机里面的内存是如何划分的,哪部分区域,什么样的代码、操作可能导致OOM异常。虽然Java有垃圾收集机制,但OOM仍然离我们并不遥远,本章内容我们只是知道各个区域OOM异常出现的原因,下一章我们将看看Java垃圾收集机制为了避免OOM异常出现,做出了什么样的努力。



JVM内存管理:深入垃圾收集器与内存分配策略


概述:

  说起垃圾收集(Garbage Collection,下文简称GC),大部分人都把这项技术当做Java语言的伴生产物。事实上GC的历史远远比Java来得久远,在1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言。当Lisp还在胚胎时期,人们就在思考GC需要完成的3件事情:哪些内存需要回收?什么时候回收?怎么样回收?

  经过半个世纪的发展,目前的内存分配策略与垃圾回收技术已经相当成熟,一切看起来都进入“自动化”的时代,那为什么我们还要去了解GC和内存分配?答案很简单:当需要排查各种内存溢出、泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就需要对这些“自动化”的技术有必要的监控、调节手段。

  把时间从1960年拨回现在,回到我们熟悉的Java语言。本文第一章中介绍了Java内存运行时区域的各个部分,其中程序计数器、VM栈、本地方法栈三个区域随线程而生,随线程而灭;栈中的帧随着方法进入、退出而有条不紊的进行着出栈入栈操作;每一个帧中分配多少内存基本上是在Class文件生成时就已知的(可能会由JIT动态晚期编译进行一些优化,但大体上可以认为是编译期可知的),因此这几个区域的内存分配和回收具备很高的确定性,因此在这几个区域不需要过多考虑回收的问题。而Java堆和方法区(包括运行时常量池)则不一样,我们必须等到程序实际运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,我们本文后续讨论中的“内存”分配与回收仅仅指这一部分内存。

对象已死?

  在堆里面存放着Java世界中几乎所有的对象,在回收前首先要确定这些对象之中哪些还在存活,哪些已经“死去”了,即不可能再被任何途径使用的对象。

引用计数算法(Reference Counting)

  最初的想法,也是很多教科书判断对象是否存活的算法是这样的:给对象中添加一个引用计数器,当有一个地方引用它,计数器加1,当引用失效,计数器减1,任何时刻计数器为0的对象就是不可能再被使用的。

  客观的说,引用计数算法实现简单,判定效率很高,在大部分情况下它都是一个不错的算法,但引用计数算法无法解决对象循环引用的问题。举个简单的例子:对象A和B分别有字段b、a,令A.b=B和B.a=A,除此之外这2个对象再无任何引用,那实际上这2个对象已经不可能再被访问,但是引用计数算法却无法回收他们。

根搜索算法(GC Roots Tracing)

  在实际生产的语言中(Java、C#、甚至包括前面提到的Lisp),都是使用根搜索算法判定对象是否存活。算法基本思路就是通过一系列的称为“GC Roots”的点作为起始进行向下搜索,当一个对象到GC Roots没有任何引用链(Reference Chain)相连,则证明此对象是不可用的。在Java语言中,GC Roots包括:

  1.在VM栈(帧中的本地变量)中的引用
  2.方法区中的静态引用
  3.JNI(即一般说的Native方法)中的引用

生存还是死亡?

  判定一个对象死亡,至少经历两次标记过程:如果对象在进行根搜索后,发现没有与GC Roots相连接的引用链,那它将会被第一次标记,并在稍后执行他的finalize()方法(如果它有的话)。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束。这点是必须的,否则一个对象在finalize()方法执行缓慢,甚至有死循环什么的将会很容易导致整个系统崩溃。finalize()方法是对象最后一次逃脱死亡命运的机会,稍后GC将进行第二次规模稍小的标记,如果在finalize()中对象成功拯救自己(只要重新建立到GC Roots的连接即可,譬如把自己赋值到某个引用上),那在第二次标记时它将被移除出“即将回收”的集合,如果对象这时候还没有逃脱,那基本上它就真的离死不远了。

  需要特别说明的是,这里对finalize()方法的描述可能带点悲情的艺术加工,并不代表笔者鼓励大家去使用这个方法来拯救对象。相反,笔者建议大家尽量避免使用它,这个不是C/C++里面的析构函数,它运行代价高昂,不确定性大,无法保证各个对象的调用顺序。需要关闭外部资源之类的事情,基本上它能做的使用try-finally可以做的更好。

关于方法区

  方法区即后文提到的永久代,很多人认为永久代是没有GC的,《Java虚拟机规范》中确实说过可以不要求虚拟机在这区实现GC,而且这区GC的“性价比”一般比较低:在堆中,尤其是在新生代,常规应用进行一次GC可以一般可以回收70%~95%的空间,而永久代的GC效率远小于此。虽然VM Spec不要求,但当前生产中的商业JVM都有实现永久代的GC,主要回收两部分内容:废弃常量与无用类。这两点回收思想与Java堆中的对象回收很类似,都是搜索是否存在引用,常量的相对很简单,与对象类似的判定即可。而类的回收则比较苛刻,需要满足下面3个条件:

  1.该类所有的实例都已经被GC,也就是JVM中不存在该Class的任何实例。
  2.加载该类的ClassLoader已经被GC。
  3.该类对应的java.lang.Class 对象没有在任何地方被引用,如不能在任何地方通过反射访问该类的方法。

  是否对类进行回收可使用-XX:+ClassUnloading参数进行控制,还可以使用-verbose:class或者-XX:+TraceClassLoading、-XX:+TraceClassUnLoading查看类加载、卸载信息。

  在大量使用反射、动态代理、CGLib等bytecode框架、动态生成JSP以及OSGi这类频繁自定义ClassLoader的场景都需要JVM具备类卸载的支持以保证永久代不会溢出。

垃圾收集算法

  在这节里不打算大量讨论算法实现,只是简单的介绍一下基本思想以及发展过程。最基础的搜集算法是“标记-清除算法”(Mark-Sweep),如它的名字一样,算法分层“标记”和“清除”两个阶段,首先标记出所有需要回收的对象,然后回收所有需要回收的对象,整个过程其实前一节讲对象标记判定的时候已经基本介绍完了。说它是最基础的收集算法原因是后续的收集算法都是基于这种思路并优化其缺点得到的。它的主要缺点有两个,一是效率问题,标记和清理两个过程效率都不高,二是空间问题,标记清理之后会产生大量不连续的内存碎片,空间碎片太多可能会导致后续使用中无法找到足够的连续内存而提前触发另一次的垃圾搜集动作。

  为了解决效率问题,一种称为“复制”(Copying)的搜集算法出现,它将可用内存划分为两块,每次只使用其中的一块,当半区内存用完了,仅将还存活的对象复制到另外一块上面,然后就把原来整块内存空间一次过清理掉。这样使得每次内存回收都是对整个半区的回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存就可以了,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,未免太高了一点。

  现在的商业虚拟机中都是用了这一种收集算法来回收新生代,IBM有专门研究表明新生代中的对象98%是朝生夕死的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的eden空间和2块较少的survivor空间,每次使用eden和其中一块survivor,当回收时将eden和survivor还存活的对象一次过拷贝到另外一块survivor空间上,然后清理掉eden和用过的survivor。Sun Hotspot虚拟机默认eden和survivor的大小比例是8:1,也就是每次只有10%的内存是“浪费”的。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有10%以内的对象存活,当survivor空间不够用时,需要依赖其他内存(譬如老年代)进行分配担保(Handle Promotion)。

  复制收集算法在对象存活率高的时候,效率有所下降。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保用于应付半区内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。因此人们提出另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然一样,但后续步骤不是进行直接清理,而是令所有存活的对象一端移动,然后直接清理掉这端边界以外的内存。

  当前商业虚拟机的垃圾收集都是采用“分代收集”(Generational Collecting)算法,这种算法并没有什么新的思想出现,只是根据对象不同的存活周期将内存划分为几块。一般是把Java堆分作新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法,譬如新生代每次GC都有大批对象死去,只有少量存活,那就选用复制算法只需要付出少量存活对象的复制成本就可以完成收集。

垃圾收集器

  垃圾收集器就是收集算法的具体实现,不同的虚拟机会提供不同的垃圾收集器。并且提供参数供用户根据自己的应用特点和要求组合各个年代所使用的收集器。本文讨论的收集器基于Sun Hotspot虚拟机1.6版。

图1.Sun JVM1.6的垃圾收集器


  图1展示了1.6中提供的6种作用于不同年代的收集器,两个收集器之间存在连线的话就说明它们可以搭配使用。在介绍着些收集器之前,我们先明确一个观点:没有最好的收集器,也没有万能的收集器,只有最合适的收集器。

1.Serial收集器
  单线程收集器,收集时会暂停所有工作线程(我们将这件事情称之为Stop The World,下称STW),使用复制收集算法,虚拟机运行在Client模式时的默认新生代收集器。

2.ParNew收集器
  ParNew收集器就是Serial的多线程版本,除了使用多条收集线程外,其余行为包括算法、STW、对象分配规则、回收策略等都与Serial收集器一摸一样。对应的这种收集器是虚拟机运行在Server模式的默认新生代收集器,在单CPU的环境中,ParNew收集器并不会比Serial收集器有更好的效果。

3.Parallel Scavenge收集器
  Parallel Scavenge收集器(下称PS收集器)也是一个多线程收集器,也是使用复制算法,但它的对象分配规则与回收策略都与ParNew收集器有所不同,它是以吞吐量最大化(即GC时间占总运行时间最小)为目标的收集器实现,它允许较长时间的STW换取总吞吐量最大化。

4.Serial Old收集器
  Serial Old是单线程收集器,使用标记-整理算法,是老年代的收集器,上面三种都是使用在新生代收集器。

5.Parallel Old收集器
  老年代版本吞吐量优先收集器,使用多线程和标记-整理算法,JVM 1.6提供,在此之前,新生代使用了PS收集器的话,老年代除Serial Old外别无选择,因为PS无法与CMS收集器配合工作。

6.CMS(Concurrent Mark Sweep)收集器
  CMS是一种以最短停顿时间为目标的收集器,使用CMS并不能达到GC效率最高(总体GC时间最小),但它能尽可能降低GC时服务的停顿时间,这一点对于实时或者高交互性应用(譬如证券交易)来说至关重要,这类应用对于长时间STW一般是不可容忍的。CMS收集器使用的是标记-清除算法,也就是说它在运行期间会产生空间碎片,所以虚拟机提供了参数开启CMS收集结束后再进行一次内存压缩。
内存分配与回收策略

  了解GC其中很重要一点就是了解JVM的内存分配策略:即对象在哪里分配和对象什么时候回收。

  关于对象在哪里分配,往大方向讲,主要就在堆上分配,但也可能经过JIT进行逃逸分析后进行标量替换拆散为原子类型在栈上分配,也可能分配在DirectMemory中(详见本文第一章)。往细节处讲,对象主要分配在新生代eden上,也可能会直接老年代中,分配的细节决定于当前使用的垃圾收集器类型与VM相关参数设置。我们可以通过下面代码来验证一下Serial收集器(ParNew收集器的规则与之完全一致)的内存分配和回收的策略。读者看完Serial收集器的分析后,不妨自己根据JVM参数文档写一些程序去实践一下其它几种收集器的分配策略。

清单1:内存分配测试代码

Java代码 收藏代码
  1. publicclassYoungGenGC{
  2. privatestaticfinalint_1MB=1024*1024;
  3. publicstaticvoidmain(String[]args){
  4. //testAllocation();
  5. testHandlePromotion();
  6. //testPretenureSizeThreshold();
  7. //testTenuringThreshold();
  8. //testTenuringThreshold2();
  9. }
  10. /**
  11. *VM参数:-verbose:gc-Xms20M-Xmx20M-Xmn10M-XX:+PrintGCDetails-XX:SurvivorRatio=8
  12. */
  13. @SuppressWarnings("unused")
  14. publicstaticvoidtestAllocation(){
  15. byte[]allocation1,allocation2,allocation3,allocation4;
  16. allocation1=newbyte[2*_1MB];
  17. allocation2=newbyte[2*_1MB];
  18. allocation3=newbyte[2*_1MB];
  19. allocation4=newbyte[4*_1MB];//出现一次MinorGC
  20. }
  21. /**
  22. *VM参数:-verbose:gc-Xms20M-Xmx20M-Xmn10M-XX:+PrintGCDetails-XX:SurvivorRatio=8
  23. *-XX:PretenureSizeThreshold=3145728
  24. */
  25. @SuppressWarnings("unused")
  26. publicstaticvoidtestPretenureSizeThreshold(){
  27. byte[]allocation;
  28. allocation=newbyte[4*_1MB];//直接分配在老年代中
  29. }
  30. /**
  31. *VM参数:-verbose:gc-Xms20M-Xmx20M-Xmn10M-XX:+PrintGCDetails-XX:SurvivorRatio=8-XX:MaxTenuringThreshold=1
  32. *-XX:+PrintTenuringDistribution
  33. */
  34. @SuppressWarnings("unused")
  35. publicstaticvoidtestTenuringThreshold(){
  36. byte[]allocation1,allocation2,allocation3;
  37. allocation1=newbyte[_1MB/4];//什么时候进入老年代决定于XX:MaxTenuringThreshold设置
  38. allocation2=newbyte[4*_1MB];
  39. allocation3=newbyte[4*_1MB];
  40. allocation3=null;
  41. allocation3=newbyte[4*_1MB];
  42. }
  43. /**
  44. *VM参数:-verbose:gc-Xms20M-Xmx20M-Xmn10M-XX:+PrintGCDetails-XX:SurvivorRatio=8-XX:MaxTenuringThreshold=15
  45. *-XX:+PrintTenuringDistribution
  46. */
  47. @SuppressWarnings("unused")
  48. publicstaticvoidtestTenuringThreshold2(){
  49. byte[]allocation1,allocation2,allocation3,allocation4;
  50. allocation1=newbyte[_1MB/4];//allocation1+allocation2大于survivo空间一半
  51. allocation2=newbyte[_1MB/4];
  52. allocation3=newbyte[4*_1MB];
  53. allocation4=newbyte[4*_1MB];
  54. allocation4=null;
  55. allocation4=newbyte[4*_1MB];
  56. }
  57. /**
  58. *VM参数:-verbose:gc-Xms20M-Xmx20M-Xmn10M-XX:+PrintGCDetails-XX:SurvivorRatio=8-XX:-HandlePromotionFailure
  59. */
  60. @SuppressWarnings("unused")
  61. publicstaticvoidtestHandlePromotion(){
  62. byte[]allocation1,allocation2,allocation3,allocation4,allocation5,allocation6,allocation7;
  63. allocation1=newbyte[2*_1MB];
  64. allocation2=newbyte[2*_1MB];
  65. allocation3=newbyte[2*_1MB];
  66. allocation1=null;
  67. allocation4=newbyte[2*_1MB];
  68. allocation5=newbyte[2*_1MB];
  69. allocation6=newbyte[2*_1MB];
  70. allocation4=null;
  71. allocation5=null;
  72. allocation6=null;
  73. allocation7=newbyte[2*_1MB];
  74. }
  75. }


规则一:通常情况下,对象在eden中分配。当eden无法分配时,触发一次Minor GC。

  执行testAllocation()方法后输出了GC日志以及内存分配状况。-Xms20M -Xmx20M -Xmn10M这3个参数确定了Java堆大小为20M,不可扩展,其中10M分配给新生代,剩下的10M即为老年代。-XX:SurvivorRatio=8决定了新生代中eden与survivor的空间比例是1:8,从输出的结果也清晰的看到“eden space 8192K、from space 1024K、to space 1024K”的信息,新生代总可用空间为9216K(eden+1个survivor)。

  我们也注意到在执行testAllocation()时出现了一次Minor GC,GC的结果是新生代6651K变为148K,而总占用内存则几乎没有减少(因为几乎没有可回收的对象)。这次GC是发生的原因是为allocation4分配内存的时候,eden已经被占用了6M,剩余空间已不足分配allocation4所需的4M内存,因此发生Minor GC。GC期间虚拟机发现已有的3个2M大小的对象全部无法放入survivor空间(survivor空间只有1M大小),所以直接转移到老年代去。GC后4M的allocation4对象分配在eden中。

清单2:testAllocation()方法输出结果

[GC [DefNew: 6651K->148K(9216K), 0.0070106 secs] 6651K->6292K(19456K), 0.0070426 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
def new generation total 9216K, used 4326K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000)
from space 1024K, 14% used [0x032d0000, 0x032f5370, 0x033d0000)
to space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000)
tenured generation total 10240K, used 6144K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 60% used [0x033d0000, 0x039d0030, 0x039d0200, 0x03dd0000)
compacting perm gen total 12288K, used 2114K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fe0998, 0x03fe0a00, 0x049d0000)
No shared spaces configured.

规则二:配置了PretenureSizeThreshold的情况下,对象大于设置值将直接在老年代分配。

  执行testPretenureSizeThreshold()方法后,我们看到eden空间几乎没有被使用,而老年代的10M控件被使用了40%,也就是4M的allocation对象直接就分配在老年代中,则是因为PretenureSizeThreshold被设置为3M,因此超过3M的对象都会直接从老年代分配。

清单3:

Heap
def new generation total 9216K, used 671K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 8% used [0x029d0000, 0x02a77e98, 0x031d0000)
from space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000)
to space 1024K, 0% used [0x032d0000, 0x032d0000, 0x033d0000)
tenured generation total 10240K, used 4096K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 40% used [0x033d0000, 0x037d0010, 0x037d0200, 0x03dd0000)
compacting perm gen total 12288K, used 2107K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fdefd0, 0x03fdf000, 0x049d0000)
No shared spaces configured.

规则三:在eden经过GC后存活,并且survivor能容纳的对象,将移动到survivor空间内,如果对象在survivor中继续熬过若干次回收(默认为15次)将会被移动到老年代中。回收次数由MaxTenuringThreshold设置。

  分别以-XX:MaxTenuringThreshold=1和-XX:MaxTenuringThreshold=15两种设置来执行testTenuringThreshold(),方法中allocation1对象需要256K内存,survivor空间可以容纳。当MaxTenuringThreshold=1时,allocation1对象在第二次GC发生时进入老年代,新生代已使用的内存GC后非常干净的变成0KB。而MaxTenuringThreshold=15时,第二次GC发生后,allocation1对象则还留在新生代survivor空间,这时候新生代仍然有404KB被占用。

清单4:
MaxTenuringThreshold=1

[GC [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
- age 1: 414664 bytes, 414664 total
: 4859K->404K(9216K), 0.0065012 secs] 4859K->4500K(19456K), 0.0065283 secs] [Times: user=0.02 sys=0.00, real=0.02 secs]
[GC [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 1)
: 4500K->0K(9216K), 0.0009253 secs] 8596K->4500K(19456K), 0.0009458 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
def new generation total 9216K, used 4178K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000)
from space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000)
to space 1024K, 0% used [0x032d0000, 0x032d0000, 0x033d0000)
tenured generation total 10240K, used 4500K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 43% used [0x033d0000, 0x03835348, 0x03835400, 0x03dd0000)
compacting perm gen total 12288K, used 2114K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fe0998, 0x03fe0a00, 0x049d0000)
No shared spaces configured.

MaxTenuringThreshold=15
[GC [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 1: 414664 bytes, 414664 total
: 4859K->404K(9216K), 0.0049637 secs] 4859K->4500K(19456K), 0.0049932 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[GC [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
- age 2: 414520 bytes, 414520 total
: 4500K->404K(9216K), 0.0008091 secs] 8596K->4500K(19456K), 0.0008305 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
def new generation total 9216K, used 4582K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000)
from space 1024K, 39% used [0x031d0000, 0x03235338, 0x032d0000)
to space 1024K, 0% used [0x032d0000, 0x032d0000, 0x033d0000)
tenured generation total 10240K, used 4096K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 40% used [0x033d0000, 0x037d0010, 0x037d0200, 0x03dd0000)
compacting perm gen total 12288K, used 2114K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fe0998, 0x03fe0a00, 0x049d0000)
No shared spaces configured.

规则四:如果在survivor空间中相同年龄所有对象大小的累计值大于survivor空间的一半,大于或等于个年龄的对象就可以直接进入老年代,无需达到MaxTenuringThreshold中要求的年龄。

  执行testTenuringThreshold2()方法,并将设置-XX:MaxTenuringThreshold=15,发现运行结果中survivor占用仍然为0%,而老年代比预期增加了6%,也就是说allocation1、allocation2对象都直接进入了老年代,而没有等待到15岁的临界年龄。因为这2个对象加起来已经到达了512K,并且它们是同年的,满足同年对象达到survivor空间的一半规则。我们只要注释掉其中一个对象new操作,就会发现另外一个就不会晋升到老年代中去了。

清单5:
[GC [DefNew
Desired survivor size 524288 bytes, new threshold 1 (max 15)
- age 1: 676824 bytes, 676824 total
: 5115K->660K(9216K), 0.0050136 secs] 5115K->4756K(19456K), 0.0050443 secs] [Times: user=0.00 sys=0.01, real=0.01 secs]
[GC [DefNew
Desired survivor size 524288 bytes, new threshold 15 (max 15)
: 4756K->0K(9216K), 0.0010571 secs] 8852K->4756K(19456K), 0.0011009 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
def new generation total 9216K, used 4178K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000)
from space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000)
to space 1024K, 0% used [0x032d0000, 0x032d0000, 0x033d0000)
tenured generation total 10240K, used 4756K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 46% used [0x033d0000, 0x038753e8, 0x03875400, 0x03dd0000)
compacting perm gen total 12288K, used 2114K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fe09a0, 0x03fe0a00, 0x049d0000)
No shared spaces configured.

规则五:在Minor GC触发时,会检测之前每次晋升到老年代的平均大小是否大于老年代的剩余空间,如果大于,改为直接进行一次Full GC,如果小于则查看HandlePromotionFailure设置看看是否允许担保失败,如果允许,那仍然进行Minor GC,如果不允许,则也要改为进行一次Full GC。

  前面提到过,新生代才有复制收集算法,但为了内存利用率,只使用其中一个survivor空间来作为轮换备份,因此当出现大量对象在GC后仍然存活的情况(最极端就是GC后所有对象都存活),就需要老年代进行分配担保,把survivor无法容纳的对象直接放入老年代。与生活中贷款担保类似,老年代要进行这样的担保,前提就是老年代本身还有容纳这些对象的剩余空间,一共有多少对象在GC之前是无法明确知道的,所以取之前每一次GC晋升到老年代对象容量的平均值与老年代的剩余空间进行比较决定是否进行Full GC来让老年代腾出更多空间。

  取平均值进行比较其实仍然是一种动态概率的手段,也就是说如果某次Minor GC存活后的对象突增,大大高于平均值的话,依然会导致担保失败,这样就只好在失败后重新进行一次Full GC。虽然担保失败时做的绕的圈子是最大的,但大部分情况下都还是会将HandlePromotionFailure打开,避免Full GC过于频繁。

清单6:
HandlePromotionFailure = false

[GC [DefNew: 6651K->148K(9216K), 0.0078936 secs] 6651K->4244K(19456K), 0.0079192 secs] [Times: user=0.00 sys=0.02, real=0.02 secs]
[GC [DefNew: 6378K->6378K(9216K), 0.0000206 secs][Tenured: 4096K->4244K(10240K), 0.0042901 secs] 10474K->4244K(19456K), [Perm : 2104K->2104K(12288K)], 0.0043613 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

HandlePromotionFailure = true

[GC [DefNew: 6651K->148K(9216K), 0.0054913 secs] 6651K->4244K(19456K), 0.0055327 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[GC [DefNew: 6378K->148K(9216K), 0.0006584 secs] 10474K->4244K(19456K), 0.0006857 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

总结

  本章介绍了垃圾收集的算法、6款主要的垃圾收集器,以及通过代码实例具体介绍了新生代串行收集器对内存分配及回收的影响。

  GC在很多时候都是系统并发度的决定性因素,虚拟机之所以提供多种不同的收集器,提供大量的调节参数,是因为只有根据实际应用需求、实现方式选择最优的收集方式才能获取最好的性能。没有固定收集器、参数组合,也没有最优的调优方法,虚拟机也没有什么必然的行为。笔者看过一些文章,撇开具体场景去谈论老年代达到92%会触发Full GC(92%应当来自CMS收集器触发的默认临界点)、98%时间在进行垃圾收集系统会抛出OOM异常(98%应该来自parallel收集器收集时间比率的默认临界点)其实意义并不太大。因此学习GC如果要到实践调优阶段,必须了解每个具体收集器的行为、优势劣势、调节参数。





分享到:
评论

相关推荐

    java入门、java内存区域和OOM、垃圾回收器和垃圾回收策略

    本教程将涵盖Java的基础知识,特别是关于内存管理的重要概念——Java内存区域、Out of Memory (OOM)错误以及垃圾回收器和垃圾回收策略。 1. **Java入门**: Java的学习始于基础语法,包括变量、数据类型、运算符、...

    JVM内存空间分配笔记

    Java堆是Java虚拟机所管理的内存中最大的一块,它是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的是存放对象实例,几乎所有的对象实例都在这里分配内存。 - **特点**: - 线程共享。 - ...

    Sun JVM原理与内存管理

    ### Sun JVM原理与内存管理 #### 一、Sun JDK 1.6 GC (Garbage Collector) Sun JDK 1.6 的垃圾收集器(GC)是其内存管理的关键组成部分,它负责自动地回收不再使用的对象所占用的内存。本文将详细介绍Sun JDK 1.6 GC...

    Jvm内存分配(7)

    在Java程序运行时,JVM会为不同部分的内存区域进行分配,以保证程序的正常执行。以下是对这一主题的详细阐述: 1. **Java内存模型**: Java内存模型分为堆内存、栈内存、方法区、程序计数器、本地方法栈等几个部分...

    JVM内存管理、调优与监控考据

    Java虚拟机(JVM)内存管理、调优与监控是Java开发者关注的重要话题,因为它们直接影响到应用程序的性能和稳定性。本文将从JVM内存结构、调优策略以及监控工具等多个角度进行深入考据。 首先,JVM内存分为几个主要...

    JVM优化与OOM分析PPT

    - **堆**:是虚拟机中最大的一块内存区域,几乎所有的对象实例都在这里分配内存。 - **程序计数器**:用于记录当前线程所执行的字节码指令地址。 - **本地方法栈**:与虚拟机栈所发挥的作用非常相似,其区别只是...

    【深入Java虚拟机(8)】Java垃圾收集机制编程开发技

    本文将详细解析Java虚拟机(JVM)中的垃圾收集工作原理、不同类型的垃圾收集器以及如何通过编程接口进行垃圾收集的控制。 1. **垃圾收集概述** 垃圾收集(Garbage Collection, GC)是Java语言的一大特色,它自动...

    基于Java的内存泄露分析及定位

    内存泄漏通常发生在程序错误地管理内存,导致某些不再使用的对象无法被垃圾收集器正常回收。 Java内存管理主要包括内存的分配和释放。内存分配主要通过`new`关键字创建对象来实现,而内存的释放则是由垃圾收集器...

    精选_毕业设计_基于JAVA的内存管理模拟_完整源码

    5. **垃圾收集**:Java的内存管理主要依赖于垃圾收集器(Garbage Collector, GC)。GC自动回收不再使用的对象,避免内存泄漏。常见的GC算法有标记-清除、复制、标记-整理、分代收集等。JVM提供了多种GC策略,如串行...

    Java虚拟机_JVM_参数配置

    JVM参数配置是优化Java应用程序性能的关键环节,通过调整这些参数,我们可以控制JVM的行为,包括内存分配、垃圾收集、类加载等方面。在本文中,我们将深入探讨Java虚拟机的参数配置及其对程序性能的影响。 首先,...

    深入了解jvm(Inside java virture machine)

    以上内容只是JVM深度探索的一部分,实际学习中还需要了解更多的细节,如内存分配策略、类加载的双亲委派模型、垃圾收集器的性能特征以及JIT的优化技术等。通过深入理解JVM,开发者可以更好地优化Java程序,提高系统...

    java内存分析-内存泄露问题.rar

    在Java虚拟机(JVM)中,垃圾收集器(Garbage Collector, GC)负责自动管理内存,回收不再使用的对象所占用的空间。 内存泄露通常发生在对象不再被程序引用,但仍然占据着内存空间,导致GC无法回收的情况。这可能是...

    Tomcat内存溢出的解决方法(java.util.concurrent.ExecutionException)

    6. **使用垃圾收集器**:选择合适的垃圾收集器,如G1或ZGC,它们能更有效地管理内存并降低内存碎片。 7. **数据库连接池优化**:确保数据库连接池大小适当,避免过多的连接占用内存。 8. **定期重启**:在生产环境...

    笔记,2、内存分配与回收策略~深入理解垃圾回收器1

    内存分配与回收是编程语言中一个关键的概念,尤其是在Java这样的自动管理内存的语言中。本篇文章主要探讨了Java的内存管理,特别是垃圾回收机制(GC),并对比了与C++等语言的区别。 首先,Java和C++的一个显著差异...

    经典之谈——Java内存分配

    在实际开发中,理解这些内存区域的工作原理,掌握如何有效地分配和管理内存,对于编写高效、稳定的Java应用程序至关重要。通过对“详谈Java的内存分配.pdf”的深入学习,开发者可以更深入地理解Java内存管理机制,...

    JAVA内存溢出详解.doc

    Java内存溢出(Out Of Memory,OOM)是Java应用程序运行时常见的问题,它通常发生在程序对内存需求超过了Java虚拟机(JVM)所能提供的可用内存时。本文将深入探讨Java内存溢出的原因、表现以及如何解决。 1. **Java...

    笔记,2、垃圾回收器和内存分配策略3

    《垃圾回收器与内存分配策略详解》 在Java编程中,理解垃圾回收(Garbage Collection,简称GC)机制和内存分配策略是至关重要的。GC的主要目的是自动管理内存,避免程序员手动进行繁琐且容易出错的内存释放工作。而...

    用于复现 OOM bug,模拟JVM调优经历-JVMTest.zip

    3. **内存分配策略**:调整新生代与老年代的比例,以及新生代内部Eden和Survivor区的比例,平衡对象的生命周期和GC效率。 4. **类加载和卸载**:优化类加载机制,减少无用类的驻留,避免`Metaspace`溢出。 5. **监控...

    Java八股文之JVM与多线程

    Java虚拟机(JVM)是Java程序运行的基础,它提供了执行字节码...在面试中,理解JVM的工作原理、内存管理、垃圾回收机制以及多线程的实现与优化,不仅能展示出对Java底层机制的掌握,也是解决问题和提升系统性能的关键。

Global site tag (gtag.js) - Google Analytics