- 浏览: 17971 次
- 性别:
- 来自: 北京
最新评论
- BloomFilter是什么?
BloomFilter主要提供两种操作: add()和contains(),作用分别是将元素加入其中以及判断一个元素是否在其中,类似于Java中的Set接口,它内部采用的byte数组来节省空间。其独特之处在于contains()方法,当我们需要查询某个元素是否包含在BloomFilter中时,如果返回true,结果可能是不正确的,也就是元素也有可能不在其中;但是如果返回的是false,那么元素一定不在其中。这也就是所谓的no false negative和small probability of false positive。通俗地来就是,“说了没有就是没有”,“说有但实际上有可能没有”。
- 为什么要使用BloomFilter?
任何一种数据结构,特别是比较巧妙的,都有它的应用场景,BloomFilter也不例外。许多实际背景和应用这里不再啰嗦,举个简单例子:我们需要存储大量的URL,并且对于新得到的URL需要知道是否已经存储了。如果将这些URL全扔进Set,那就悲剧了,内存可吃不消。这个时候就要想到用byte来存储了,可以节省大量的空间。
- BloomFilter实现
既然涉及到byte存储,那么必然需要一种映射关系了,也就是需要知道一个元素用哪些byte来表示,这也就是hash函数所干的事情。直观地想,一个元素一个byte基本上不可能,一般情况下这样的hash函数可以说不存在,所以这里假设用k位来表示,一般采用k次hash来确定这些byte。实际上,BloomFilter中一般包含m(byte数组的大小),k(hash次数)和n(需要存储的数据量)。 在元素加入实现add()操作时,连续k次hash,将得到的对应k位全置为1。当查询元素是否在集合中时,也是连续k次hash,如果这k次得到的位不是全为1,那么返回false;否则返回 true。传统的算法优化都是以时间换空间或者以空间换时间,BloomFilter则是以正确率换空间。
Class BloomFilter<E> { public BloomFilter(int m, int k){……} public void add(E obj){……} public boolean contains(E obj){……} }
- BloomFilter相关结论
根据上面的标记,可以采用数学方法推导出false positive的概率大约是p = (1-exp(-kn/m))^k,那么由此可得出,最优的k=ln(2)*(m/n)。我们可以计算一下上面提到的例子,假设共有10000000个URL(n=10000000),如果采用m=80000000,k=8,得出p大约2%;但是所占用的内存只有10M,相同情况下使用Set则需要1G的内存。
具体的实现如下(来自项目http://code.google.com/p/java-bloomfilter/,代码实现不错,可直接使用):
/** * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package com.skjegstad.utils; import java.io.Serializable; import java.nio.charset.Charset; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.util.BitSet; import java.util.Collection; /** * Implementation of a Bloom-filter, as described here: * http://en.wikipedia.org/wiki/Bloom_filter * * For updates and bugfixes, see http://github.com/magnuss/java-bloomfilter * * Inspired by the SimpleBloomFilter-class written by Ian Clarke. This * implementation provides a more evenly distributed Hash-function by * using a proper digest instead of the Java RNG. Many of the changes * were proposed in comments in his blog: * http://blog.locut.us/2008/01/12/a-decent-stand-alone-java-bloom-filter-implementation/ * * @param <E> Object type that is to be inserted into the Bloom filter, e.g. String or Integer. * @author Magnus Skjegstad <magnus@skjegstad.com> */ public class BloomFilter<E> implements Serializable { private BitSet bitset; private int bitSetSize; private double bitsPerElement; private int expectedNumberOfFilterElements; private int numberOfAddedElements; private int k; // number of hash functions static final Charset charset = Charset.forName("UTF-8"); static final String hashName = "MD5"; static final MessageDigest digestFunction; static { // The digest method is reused between instances MessageDigest tmp; try { tmp = java.security.MessageDigest.getInstance(hashName); } catch (NoSuchAlgorithmException e) { tmp = null; } digestFunction = tmp; } /** * Constructs an empty Bloom filter. The total length of the Bloom filter will be * c*n. * * @param c is the number of bits used per element. * @param n is the expected number of elements the filter will contain. * @param k is the number of hash functions used. */ public BloomFilter(double c, int n, int k) { this.expectedNumberOfFilterElements = n; this.k = k; this.bitsPerElement = c; this.bitSetSize = (int)Math.ceil(c * n); numberOfAddedElements = 0; this.bitset = new BitSet(bitSetSize); } /** * Constructs an empty Bloom filter. The optimal number of hash functions (k) is estimated from * the total size of the Bloom * and the number of expected elements. * * @param bitSetSize defines how many bits should be used in total for the filter. * @param expectedNumberOElements defines the maximum number of elements the filter is * expected to contain. */ public BloomFilter(int bitSetSize, int expectedNumberOElements) { this(bitSetSize / (double)expectedNumberOElements, expectedNumberOElements, (int) Math.round((bitSetSize / (double)expectedNumberOElements) * Math.log(2.0))); } /** * Constructs an empty Bloom filter with a given false positive probability. The number of bits per * element and the number of hash functions is estimated * to match the false positive probability. * * @param falsePositiveProbability is the desired false positive probability. * @param expectedNumberOfElements is the expected number of elements in the Bloom filter. */ public BloomFilter(double falsePositiveProbability, int expectedNumberOfElements) { this(Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2))) / Math.log(2), expectedNumberOfElements, (int)Math.ceil(-(Math.log(falsePositiveProbability) / Math.log(2)))); } /** * Construct a new Bloom filter based on existing Bloom filter data. * * @param bitSetSize defines how many bits should be used for the filter. * @param expectedNumberOfFilterElements defines the maximum number of elements the filter * is expected to contain. * @param actualNumberOfFilterElements specifies how many elements have been inserted into * the <code>filterData</code> BitSet. * @param filterData a BitSet representing an existing Bloom filter. */ public BloomFilter(int bitSetSize, int expectedNumberOfFilterElements, int actualNumberOfFilterElements, BitSet filterData) { this(bitSetSize, expectedNumberOfFilterElements); this.bitset = filterData; this.numberOfAddedElements = actualNumberOfFilterElements; } /** * Generates a digest based on the contents of a String. * * @param val specifies the input data. * @param charset specifies the encoding of the input data. * @return digest as long. */ public static int createHash(String val, Charset charset) { return createHash(val.getBytes(charset)); } /** * Generates a digest based on the contents of a String. * * @param val specifies the input data. The encoding is expected to be UTF-8. * @return digest as long. */ public static int createHash(String val) { return createHash(val, charset); } /** * Generates a digest based on the contents of an array of bytes. * * @param data specifies input data. * @return digest as long. */ public static int createHash(byte[] data) { return createHashes(data, 1)[0]; } /** * Generates digests based on the contents of an array of bytes and splits the result into * 4-byte int's and store them in an array. The * digest function is called until the required number of int's are produced. For each call to * digest a salt * is prepended to the data. The salt is increased by 1 for each call. * * @param data specifies input data. * @param hashes number of hashes/int's to produce. * @return array of int-sized hashes */ public static int[] createHashes(byte[] data, int hashes) { int[] result = new int[hashes]; int k = 0; byte salt = 0; while (k < hashes) { byte[] digest; synchronized (digestFunction) { digestFunction.update(salt); salt++; digest = digestFunction.digest(data); } for (int i = 0; i < digest.length/4 && k < hashes; i++) { int h = 0; for (int j = (i*4); j < (i*4)+4; j++) { h <<= 8; h |= ((int) digest[j]) & 0xFF; } result[k] = h; k++; } } return result; } /** * Compares the contents of two instances to see if they are equal. * * @param obj is the object to compare to. * @return True if the contents of the objects are equal. */ @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final BloomFilter<E> other = (BloomFilter<E>) obj; if (this.expectedNumberOfFilterElements != other.expectedNumberOfFilterElements) { return false; } if (this.k != other.k) { return false; } if (this.bitSetSize != other.bitSetSize) { return false; } if (this.bitset != other.bitset && (this.bitset == null || !this.bitset.equals(other.bitset))) { return false; } return true; } /** * Calculates a hash code for this class. * @return hash code representing the contents of an instance of this class. */ @Override public int hashCode() { int hash = 7; hash = 61 * hash + (this.bitset != null ? this.bitset.hashCode() : 0); hash = 61 * hash + this.expectedNumberOfFilterElements; hash = 61 * hash + this.bitSetSize; hash = 61 * hash + this.k; return hash; } /** * Calculates the expected probability of false positives based on * the number of expected filter elements and the size of the Bloom filter. * <br /><br /> * The value returned by this method is the <i>expected</i> rate of false * positives, assuming the number of inserted elements equals the number of * expected elements. If the number of elements in the Bloom filter is less * than the expected value, the true probability of false positives will be lower. * * @return expected probability of false positives. */ public double expectedFalsePositiveProbability() { return getFalsePositiveProbability(expectedNumberOfFilterElements); } /** * Calculate the probability of a false positive given the specified * number of inserted elements. * * @param numberOfElements number of inserted elements. * @return probability of a false positive. */ public double getFalsePositiveProbability(double numberOfElements) { // (1 - e^(-k * n / m)) ^ k return Math.pow((1 - Math.exp(-k * (double) numberOfElements / (double) bitSetSize)), k); } /** * Get the current probability of a false positive. The probability is calculated from * the size of the Bloom filter and the current number of elements added to it. * * @return probability of false positives. */ public double getFalsePositiveProbability() { return getFalsePositiveProbability(numberOfAddedElements); } /** * Returns the value chosen for K.<br /> * <br /> * K is the optimal number of hash functions based on the size * of the Bloom filter and the expected number of inserted elements. * * @return optimal k. */ public int getK() { return k; } /** * Sets all bits to false in the Bloom filter. */ public void clear() { bitset.clear(); numberOfAddedElements = 0; } /** * Adds an object to the Bloom filter. The output from the object's * toString() method is used as input to the hash functions. * * @param element is an element to register in the Bloom filter. */ public void add(E element) { add(element.toString().getBytes(charset)); } /** * Adds an array of bytes to the Bloom filter. * * @param bytes array of bytes to add to the Bloom filter. */ public void add(byte[] bytes) { int[] hashes = createHashes(bytes, k); for (int hash : hashes) bitset.set(Math.abs(hash % bitSetSize), true); numberOfAddedElements ++; } /** * Adds all elements from a Collection to the Bloom filter. * @param c Collection of elements. */ public void addAll(Collection<? extends E> c) { for (E element : c) add(element); } /** * Returns true if the element could have been inserted into the Bloom filter. * Use getFalsePositiveProbability() to calculate the probability of this * being correct. * * @param element element to check. * @return true if the element could have been inserted into the Bloom filter. */ public boolean contains(E element) { return contains(element.toString().getBytes(charset)); } /** * Returns true if the array of bytes could have been inserted into the Bloom filter. * Use getFalsePositiveProbability() to calculate the probability of this * being correct. * * @param bytes array of bytes to check. * @return true if the array could have been inserted into the Bloom filter. */ public boolean contains(byte[] bytes) { int[] hashes = createHashes(bytes, k); for (int hash : hashes) { if (!bitset.get(Math.abs(hash % bitSetSize))) { return false; } } return true; } /** * Returns true if all the elements of a Collection could have been inserted * into the Bloom filter. Use getFalsePositiveProbability() to calculate the * probability of this being correct. * @param c elements to check. * @return true if all the elements in c could have been inserted into the Bloom filter. */ public boolean containsAll(Collection<? extends E> c) { for (E element : c) if (!contains(element)) return false; return true; } /** * Read a single bit from the Bloom filter. * @param bit the bit to read. * @return true if the bit is set, false if it is not. */ public boolean getBit(int bit) { return bitset.get(bit); } /** * Set a single bit in the Bloom filter. * @param bit is the bit to set. * @param value If true, the bit is set. If false, the bit is cleared. */ public void setBit(int bit, boolean value) { bitset.set(bit, value); } /** * Return the bit set used to store the Bloom filter. * @return bit set representing the Bloom filter. */ public BitSet getBitSet() { return bitset; } /** * Returns the number of bits in the Bloom filter. Use count() to retrieve * the number of inserted elements. * * @return the size of the bitset used by the Bloom filter. */ public int size() { return this.bitSetSize; } /** * Returns the number of elements added to the Bloom filter after it * was constructed or after clear() was called. * * @return number of elements added to the Bloom filter. */ public int count() { return this.numberOfAddedElements; } /** * Returns the expected number of elements to be inserted into the filter. * This value is the same value as the one passed to the constructor. * * @return expected number of elements. */ public int getExpectedNumberOfElements() { return expectedNumberOfFilterElements; } /** * Get expected number of bits per element when the Bloom filter is full. This value is set by the constructor * when the Bloom filter is created. See also getBitsPerElement(). * * @return expected number of bits per element. */ public double getExpectedBitsPerElement() { return this.bitsPerElement; } /** * Get actual number of bits per element based on the number of elements that have currently been inserted and the length * of the Bloom filter. See also getExpectedBitsPerElement(). * * @return number of bits per element. */ public double getBitsPerElement() { return this.bitSetSize / (double)numberOfAddedElements; } }
实际应用中,重要的往往是m,n,k的选择以及hash函数的设定。在Oracle 11g中就采用了BloomFilter来实现分布式数据库中两表的join操作;在网络中应用则更加广泛,例如分布式web代理Squid;此外还有拼写检查、海量数据处理等领域中都能搞看到它的身影。
相关推荐
"一种新的基于Bloom filter数据结构的数据消冗算法" 本文提出了一种新的基于Bloom filter数据结构的数据消冗算法,该算法首先利用完全文件检测算法对数据进行检验匹配,通过的数据块再利用CDC分块检测算法进行...
Bloom Filter是一种高效的数据结构,主要用于快速查询一个元素是否存在于一个集合中。它通过牺牲一定的精确度来换取存储空间的极大节省。Bloom Filter的核心思想是使用一个位数组以及多个独立的哈希函数来表示一个...
- **bloomfilter.h**:这是一个头文件,很可能包含了Bloom Filter的数据结构定义和相关操作函数的声明。在C语言中,头文件通常用于提供接口给其他源文件使用,这里可能是为了在spider.c中方便地调用Bloom Filter的...
Bloom Filter是一种高效的数据结构,主要用于近似地判断一个元素是否在一个集合中。它的主要特点是空间效率高,但允许存在一定的误报率(即可能会错误地报告一个元素属于某个集合,这种错误被称为“假正例”)。...
**Python-bloomfilter过滤器详解** Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否在一个集合中。在Python开发中,尤其是在处理大量数据时,Bloom Filter可以有效地节省内存空间,尤其适用...
- **构建:** 对于每个SSTable,构建一个小的Bloom Filter,并将其与SSTable的元数据一起存储。 - **调整策略:** 根据访问频率动态调整Bloom Filter的激活状态。具体来说,对于频繁访问的SSTable,其Bloom Filter将被...
Bloom filter是一个简明的空间效率极高的随机的数据结构。用Bloom filter 表示 cache 内容 ,可以高效地实现cache 协作。本文对BloomFilter及其改进型进行了综述性分析,探讨了它的实用性。
布隆过滤器(Bloom Filter)是计算机科学中一种高效的空间节省的数据结构,主要用于判断一个元素是否可能存在于一个大规模集合中。它由伯特·布隆(Burton Howard Bloom)在1970年提出,因此得名。布隆过滤器在处理...
Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在传统的Bloom Filter中,它通常处理单一的关键字,而在“多字段矩阵型Bloom Filter”中,这一概念被扩展到了支持多个字段...
2. Bloom Filter技术:Bloom Filter是一种空间效率很高的随机数据结构,它使用位数组来简洁地表示一个集合,并且能够快速判断一个元素是否属于这个集合。Bloom Filter的引入是为了高效利用数据空间,在海量数据匹配...
Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。由Burton Howard Bloom在1970年提出,它的主要特点是能够在牺牲一定的判断准确性(可能存在误判)的前提下,极大地节省...
**布隆过滤器(Bloom Filter)**是一种空间效率极高的概率型数据结构,用于测试一个元素是否在一个集合中。由Burton Howard Bloom在1970年提出,主要用于节省存储空间,尤其在大数据场景下,它能有效地解决大规模...
在Go编程语言中,Bloom Filter和Cuckoo Filter是两种流行的数据结构,用于空间效率高的近似存在检查。本篇文章将深入探讨Cuckoo Filter如何在某些情况下优于Bloom Filter,以及Go语言中实现Cuckoo Filter的细节。 ...
本文将深入探讨标题提及的"Go-一个CuckooFilter的Go库BloomFilter的替代物",以及其背后的CuckooFilter数据结构和它如何成为BloomFilter的一种优化方案。 首先,Bloom Filter是一种空间效率极高的概率数据结构,...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率数据结构,用于判断一个元素是否可能在一个集合中。它由布伦南·布隆在1970年提出,最初是为了解决查找问题中的空间效率问题。这篇论文资料集合涵盖了布隆过滤器...
Bloom Filter 是一种基于哈希、概率性的数据结构,用于空间高效的集合表示。它可以快速判断一个元素是否在集合中,但可能存在假阳性(False Positive),却从不出现假阴性(False Negative)。 Bloom Filter 的...
布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在大数据处理、缓存系统、分布式存储等领域有着广泛的应用。这个压缩包文件“bloom filter布隆过滤器学习...
布隆过滤器是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它是由 Burton Howard Bloom 在1970年提出的,主要应用于大数据存储和检索,尤其在数据库、缓存系统和网络搜索等领域有广泛...