`

区块链基础:Merkle Tree算法解析

阅读更多

Merkle Tree概念

这里写图片描述 
Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树。Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值。非叶节点是其对应子节点串联字符串的hash。[1]

1、Hash

Hash是一个把任意长度的数据映射成固定长度数据的函数[2]。例如,对于数据完整性校验,最简单的方法是对整个数据做Hash运算得到固定长度的Hash值,然后把得到的Hash值公布在网上,这样用户下载到数据之后,对数据再次进行Hash运算,比较运算结果和网上公布的Hash值进行比较,如果两个Hash值相等,说明下载的数据没有损坏。可以这样做是因为输入数据的稍微改变就会引起Hash运算结果的面目全非,而且根据Hash值反推原始输入数据的特征是困难的。[3] 
  这里写图片描述 
如果从一个稳定的服务器进行下载,采用单一Hash是可取的。但如果数据源不稳定,一旦数据损坏,就需要重新下载,这种下载的效率是很低的。

2、Hash List 
在点对点网络中作数据传输的时候,会同时从多个机器上下载数据,而且很多机器可以认为是不稳定或者不可信的。为了校验数据的完整性,更好的办法是把大的文件分割成小的数据块(例如,把分割成2K为单位的数据块)。这样的好处是,如果小块数据在传输过程中损坏了,那么只要重新下载这一快数据就行了,不用重新下载整个文件。

怎么确定小的数据块没有损坏哪?只需要为每个数据块做Hash。BT下载的时候,在下载到真正数据之前,我们会先下载一个Hash列表。那么问题又来了,怎么确定这个Hash列表本事是正确的哪?答案是把每个小块数据的Hash值拼到一起,然后对这个长字符串在作一次Hash运算,这样就得到Hash列表的根Hash(Top Hash or Root Hash)。下载数据的时候,首先从可信的数据源得到正确的根Hash,就可以用它来校验Hash列表了,然后通过校验后的Hash列表校验数据块。 
这里写图片描述

3、 Merkle Tree

Merkle Tree可以看做Hash List的泛化(Hash List可以看作一种特殊的Merkle Tree,即树高为2的多叉Merkle Tree)。

在最底层,和哈希列表一样,我们把数据分成小的数据块,有相应地哈希和它对应。但是往上走,并不是直接去运算根哈希,而是把相邻的两个哈希合并成一个字符串,然后运算这个字符串的哈希,这样每两个哈希就结婚生子,得到了一个”子哈希“。如果最底层的哈希总数是单数,那到最后必然出现一个单身哈希,这种情况就直接对它进行哈希运算,所以也能得到它的子哈希。于是往上推,依然是一样的方式,可以得到数目更少的新一级哈希,最终必然形成一棵倒挂的树,到了树根的这个位置,这一代就剩下一个根哈希了,我们把它叫做 Merkle Root[3]。

在p2p网络下载网络之前,先从可信的源获得文件的Merkle Tree树根。一旦获得了树根,就可以从其他从不可信的源获取Merkle tree。通过可信的树根来检查接受到的Merkle Tree。如果Merkle Tree是损坏的或者虚假的,就从其他源获得另一个Merkle Tree,直到获得一个与可信树根匹配的Merkle Tree。

Merkle Tree和Hash List的主要区别是,可以直接下载并立即验证Merkle Tree的一个分支。因为可以将文件切分成小的数据块,这样如果有一块数据损坏,仅仅重新下载这个数据块就行了。如果文件非常大,那么Merkle tree和Hash list都很到,但是Merkle tree可以一次下载一个分支,然后立即验证这个分支,如果分支验证通过,就可以下载数据了。而Hash list只有下载整个hash list才能验证。 
  这里写图片描述

Merkle Tree的特点

  1. MT是一种树,大多数是二叉树,也可以多叉树,无论是几叉树,它都具有树结构的所有特点;
  2. Merkle Tree的叶子节点的value是数据集合的单元数据或者单元数据HASH。
  3. 非叶子节点的value是根据它下面所有的叶子节点值,然后按照Hash算法计算而得出的。[4][5] 
      

通常,加密的hash方法像SHA-2和MD5用来做hash。但如果仅仅防止数据不是蓄意的损坏或篡改,可以改用一些安全性低但效率高的校验和算法,如CRC。

Second Preimage Attack: Merkle tree的树根并不表示树的深度,这可能会导致second-preimage attack,即攻击者创建一个具有相同Merkle树根的虚假文档。一个简单的解决方法在Certificate Transparency中定义:当计算叶节点的hash时,在hash数据前加0x00。当计算内部节点是,在前面加0x01。另外一些实现限制hash tree的根,通过在hash值前面加深度前缀。因此,前缀每一步会减少,只有当到达叶子时前缀依然为正,提取的hash链才被定义为有效。

Merkle Tree的操作

1、创建Merckle Tree

  加入最底层有9个数据块。

  step1:(红色线)对数据块做hash运算,Node0i = hash(Data0i), i=1,2,…,9

  step2: (橙色线)相邻两个hash块串联,然后做hash运算,Node1((i+1)/2) = hash(Node0i+Node0(i+1)), i=1,3,5,7;对于i=9, Node1((i+1)/2) = hash(Node0i)

  step3: (黄色线)重复step2

  step4:(绿色线)重复step2

  step5:(蓝色线)重复step2,生成Merkle Tree Root 
这里写图片描述 
易得,创建Merkle Tree是O(n)复杂度(这里指O(n)次hash运算),n是数据块的大小。得到Merkle Tree的树高是log(n)+1。

2、检索数据块

为了更好理解,我们假设有A和B两台机器,A需要与B相同目录下有8个文件,文件分别是f1 f2 f3 ….f8。这个时候我们就可以通过Merkle Tree来进行快速比较。假设我们在文件创建的时候每个机器都构建了一个Merkle Tree。具体如下图: 
这里写图片描述 
从上图可得知,叶子节点node7的value = hash(f1),是f1文件的HASH;而其父亲节点node3的value = hash(v7, v8),也就是其子节点node7 node8的值得HASH。就是这样表示一个层级运算关系。root节点的value其实是所有叶子节点的value的唯一特征。

  假如A上的文件5与B上的不一样。我们怎么通过两个机器的merkle treee信息找到不相同的文件? 这个比较检索过程如下:

  Step1. 首先比较v0是否相同,如果不同,检索其孩子node1和node2.

  Step2. v1 相同,v2不同。检索node2的孩子node5 node6;

  Step3. v5不同,v6相同,检索比较node5的孩子node 11 和node 12

  Step4. v11不同,v12相同。node 11为叶子节点,获取其目录信息。

  Step5. 检索比较完毕。

  以上过程的理论复杂度是Log(N)。过程描述图如下:

这里写图片描述 
从上图可以得知真个过程可以很快的找到对应的不相同的文件。

3、更新,插入和删除

  虽然网上有很多关于Merkle Tree的资料,但大部分没有涉及Merkle Tree的更新、插入和删除操作,讨论Merkle Tree的检索和遍历的比较多。我也是非常困惑,一种树结构的操作肯定不仅包括查找,也包括更新、插入和删除的啊。后来查到stackexchange上的一个问题,才稍微有点明白,原文见[6]。

  对于Merkle Tree数据块的更新操作其实是很简单的,更新完数据块,然后接着更新其到树根路径上的Hash值就可以了,这样不会改变Merkle Tree的结构。但是,插入和删除操作肯定会改变Merkle Tree的结构,如下图,一种插入操作是这样的: 
这里写图片描述 
插入数据块0后(考虑数据块的位置),Merkle Tree的结构是这样的: 
这里写图片描述 
而[6]中的同学在考虑一种插入的算法,满足下面条件: 
- re-hashing操作的次数控制在log(n)以内 
- 数据块的校验在log(n)+1以内 
- 除非原始树的n是偶数,插入数据后的树没有孤儿,并且如果有孤儿,那么孤儿是最后一个数据块 
- 数据块的顺序保持一致 
- 插入后的Merkle Tree保持平衡

然后上面的插入结果就会变成这样: 
这里写图片描述 
根据[6]中回答者所说,Merkle Tree的插入和删除操作其实是一个工程上的问题,不同问题会有不同的插入方法。如果要确保树是平衡的或者是树高是log(n)的,可以用任何的标准的平衡二叉树的模式,如AVL树,红黑树,伸展树,2-3树等。这些平衡二叉树的更新模式可以在O(lgn)时间内完成插入操作,并且能保证树高是O(lgn)的。那么很容易可以看出更新所有的Merkle Hash可以在O((lgn)2)时间内完成(对于每个节点如要更新从它到树根O(lgn)个节点,而为了满足树高的要求需要更新O(lgn)个节点)。如果仔细分析的话,更新所有的hash实际上可以在O(lgn)时间内完成,因为要改变的所有节点都是相关联的,即他们要不是都在从某个叶节点到树根的一条路径上,或者这种情况相近。

[6]的回答者说实际上Merkle Tree的结构(是否平衡,树高限制多少)在大多数应用中并不重要,而且保持数据块的顺序也在大多数应用中也不需要。因此,可以根据具体应用的情况,设计自己的插入和删除操作。一个通用的Merkle Tree插入删除操作是没有意义的。

Merkle Tree的应用

1、数字签名

最初Merkle Tree目的是高效的处理Lamport one-time signatures。 每一个Lamport key只能被用来签名一个消息,但是与Merkle tree结合可以来签名多条Merkle。这种方法成为了一种高效的数字签名框架,即Merkle Signature Scheme。

2、P2P网络

在P2P网络中,Merkle Tree用来确保从其他节点接受的数据块没有损坏且没有被替换,甚至检查其他节点不会欺骗或者发布虚假的块。大家所熟悉的BT下载就是采用了P2P技术来让客户端之间进行数据传输,一来可以加快数据下载速度,二来减轻下载服务器的负担。BT即BitTorrent,是一种中心索引式的P2P文件分分析通信协议[7]。

要进下载必须从中心索引服务器获取一个扩展名为torrent的索引文件(即大家所说的种子),torrent文件包含了要共享文件的信息,包括文件名,大小,文件的Hash信息和一个指向Tracker的URL[8]。Torrent文件中的Hash信息是每一块要下载的文件内容的加密摘要,这些摘要也可运行在下载的时候进行验证。大的torrent文件是Web服务器的瓶颈,而且也不能直接被包含在RSS或gossiped around(用流言传播协议进行传播)。一个相关的问题是大数据块的使用,因为为了保持torrent文件的非常小,那么数据块Hash的数量也得很小,这就意味着每个数据块相对较大。大数据块影响节点之间进行交易的效率,因为只有当大数据块全部下载下来并校验通过后,才能与其他节点进行交易。

就解决上面两个问题是用一个简单的Merkle Tree代替Hash List。设计一个层数足够多的满二叉树,叶节点是数据块的Hash,不足的叶节点用0来代替。上层的节点是其对应孩子节点串联的hash。Hash算法和普通torrent一样采用SHA1。其数据传输过程和第一节中描述的类似。 
这里写图片描述

3、Trusted Computing

可信计算是可信计算组为分布式计算环境中参与节点的计算平台提供端点可信性而提出的。可信计算技术在计算平台的硬件层引入可信平台模块(Trusted Platform,TPM),实际上为计算平台提供了基于硬件的可信根(Root of trust,RoT)。从可信根出发,使用信任链传递机制,可信计算技术可对本地平台的硬件及软件实施逐层的完整性度量,并将度量结果可靠地保存再TPM的平台配置寄存器(Platform configuration register,PCR)中,此后远程计算平台可通过远程验证机制(Remote Attestation)比对本地PCR中度量结果,从而验证本地计算平台的可信性。可信计算技术让分布式应用的参与节点摆脱了对中心服务器的依赖,而直接通过用户机器上的TPM芯片来建立信任,使得创建扩展性更好、可靠性更高、可用性更强的安全分布式应用成为可能[10]。可信计算技术的核心机制是远程验证(remote attestation),分布式应用的参与结点正是通过远程验证机制来建立互信,从而保障应用的安全。 
这里写图片描述

文献[10]提出了一种基于Merkle Tree的远程验证机制,其核心是完整性度量值哈希树。

首先,RAMT 在内核中维护的不再是一张完整性度量值列表(ML),而是一棵完整性度量值哈希树(integrity measurement hash tree,简称IMHT).其中,IMHT的叶子结点存储的数据对象是待验证计算平台上被度量的各种程序的完整性哈希值,而其内部结点则依据Merkle 哈希树的构建规则由子结点的连接的哈希值动态生成。

其次,为了维护IMHT 叶子结点的完整性,RAMT 需要使用TPM 中的一段存储器来保存IMHT 可信根哈希的值。

再次,RAMT 的完整性验证过程基于认证路径(authentication path)实施.认证路径是指IMHT 上从待验证叶子结点到根哈希的路径。

4、IPFS

IPFS(InterPlanetary File System)是很多NB的互联网技术的综合体,如DHT( Distributed HashTable,分布式哈希表),Git版本控制系统,Bittorrent等。它创建了一个P2P的集群,这个集群允许IPFS对象的交换。全部的IPFS对象形成了一个被称作Merkle DAG的加密认证数据结构。

IPFS对象是一个含有两个域的数据结构:

  • Data – 非结构的二进制数据,大小小于256kB
  • Links – 一个Link数据结构的数组。IPFS对象通过他们链接到其他对象

Link数据结构包含三个域:

  • Name – Link的名字
  • Hash – Link链接到对象的Hash
  • Size – Link链接到对象的累积大小,包括它的Links

这里写图片描述 
通过Name和Links,IPFS的集合组成了一个Merkle DAG(有向无环图)。

这里写图片描述 
对于小文件(<256kB),是一个没有Links的IPFS对象。 
这里写图片描述

对于大文件,被表示为一个文件块(<256kB)的集合。只有拥有最小的Data的对象来代表这个大文件。这个对象的Links的名字都为空字符串。 
这里写图片描述 
这里写图片描述 
目录结构:目录是没有数据的IPFS对象,它的链接指向其包含的文件和目录。 
这里写图片描述 
IPFS可以表示Git使用的数据结构,Git commit object。Commit Object主要的特点是他有一个或多个名为’parent0’和‘parent1’等的链接(这些链接指向前一个版本),以及一个名为object的对象(在Git中成为tree)指向引用这个commit的文件系统结构。 
这里写图片描述

5、BitCoin和Ethereum[12][13]

Merkle Proof最早的应用是Bitcoin,它是由中本聪在2009年描述并创建的。Bitcoin的Blockchain利用Merkle proofs来存储每个区块的交易。 
  这里写图片描述

而这样做的好处,也就是中本聪描述到的“简化支付验证”(Simplified Payment Verification,SPV)的概念:一个“轻客户端”(light client)可以仅下载链的区块头即每个区块中的80byte的数据块,仅包含五个元素,而不是下载每一笔交易以及每一个区块:

  • 上一区块头的哈希值
  • 时间戳
  • 挖矿难度值
  • 工作量证明随机数(nonce)
  • 包含该区块交易的Merkle Tree的根哈希 
    如果客户端想要确认一个交易的状态,它只需简单的发起一个Merkle proof请求,这个请求显示出这个特定的交易在Merkle trees的一个之中,而且这个Merkle Tree的树根在主链的一个区块头中。

但是Bitcoin的轻客户端有它的局限。一个局限是,尽管它可以证明包含的交易,但是它不能进行涉及当前状态的证明(如数字资产的持有,名称注册,金融合约的状态等)。

Bitcoin如何查询你当前有多少币?一个比特币轻客户端,可以使用一种协议,它涉及查询多个节点,并相信其中至少会有一个节点会通知你,关于你的地址中任何特定的交易支出,而这可以让你实现更多的应用。但对于其他更为复杂的应用而言,这些远远是不够的。一笔交易影响的确切性质(precise nature),可以取决于此前的几笔交易,而这些交易本身则依赖于更为前面的交易,所以最终你可以验证整个链上的每一笔交易。为了解决这个问题,Ethereum的Merkle Tree的概念,会更进一步。

Ethereum的Merkle Proof

每个以太坊区块头不是包括一个Merkle树,而是为三种对象设计的三棵树:

  • 交易Transaction
  • 收据Receipts(本质上是显示每个交易影响的多块数据)
  • 状态State 
    这里写图片描述
    这使得一个非常先进的轻客户端协议成为了可能,它允许轻客户端轻松地进行并核实以下类型的查询答案:
  • 这笔交易被包含在特定的区块中了么?
  • 告诉我这个地址在过去30天中,发出X类型事件的所有实例(例如,一个众筹合约完成了它的目标)
  • 目前我的账户余额是多少?
  • 这个账户是否存在?
  • 假如在这个合约中运行这笔交易,它的输出会是什么? 
    第一种是由交易树(transaction tree)来处理的;第三和第四种则是由状态树(state tree)负责处理,第二种则由收据树(receipt tree)处理。计算前四个查询任务是相当简单的。服务器简单地找到对象,获取Merkle分支,并通过分支来回复轻客户端。

第五种查询任务同样也是由状态树处理,但它的计算方式会比较复杂。这里,我们需要构建一个Merkle状态转变证明(Merkle state transition proof)。从本质上来讲,这样的证明也就是在说“如果你在根S的状态树上运行交易T,其结果状态树将是根为S’,log为L,输出为O” (“输出”作为存在于以太坊的一种概念,因为每一笔交易都是一个函数调用;它在理论上并不是必要的)。

为了推断这个证明,服务器在本地创建了一个假的区块,将状态设为 S,并在请求这笔交易时假装是一个轻客户端。也就是说,如果请求这笔交易的过程,需要客户端确定一个账户的余额,这个轻客户端(由服务器模拟的)会发出一个余额查询请求。如果需要轻客户端在特点某个合约的存储中查询特定的条目,这个轻客户端就会发出这样的请求。也就是说服务器(通过模拟一个轻客户端)正确回应所有自己的请求,但服务器也会跟踪它所有发回的数据。

然后,服务器从上述的这些请求中把数据合并并把数据以一个证明的方式发送给客户端。

然后,客户端会进行相同的步骤,但会将服务器提供的证明作为一个数据库来使用。如果客户端进行步骤的结果和服务器提供的是一样的话,客户端就接受这个证明。 
这里写图片描述

MPT(Merkle Patricia Trees)

前面我们提到,最为简单的一种Merkle Tree大多数情况下都是一棵二叉树。然而,Ethereum所使用的Merkle Tree则更为复杂,我们称之为“梅克尔.帕特里夏树”(Merkle Patricia tree)。

对于验证属于list格式(本质上来讲,它就是一系列前后相连的数据块)的信息而言,二叉Merkle Tree是非常好的数据结构。对于交易树来说,它们也同样是不错的,因为一旦树已经建立,花多少时间来编辑这棵树并不重要,树一旦建立了,它就会永远存在并且不会改变。

但是,对于状态树,情况会更复杂些。以太坊中的状态树基本上包含了一个键值映射,其中的键是地址,而值包括账户的声明、余额、随机数nounce、代码以及每一个账户的存储(其中存储本身就是一颗树)。例如,摩登测试网络(the Morden testnet )的创始状态如下所示: 
这里写图片描述 
然而,不同于交易历史记录,状态树需要经常地进行更新:账户余额和账户的随机数nonce经常会更变,更重要的是,新的账户会频繁地插入,存储的键( key)也会经常被插入以及删除。我们需要这样的数据结构,它能在一次插入、更新、删除操作后快速计算到树根,而不需要重新计算整个树的Hash。这种数据结构同样得包括两个非常好的第二特征:

  • 树的深度是有限制的,即使考虑攻击者会故意地制造一些交易,使得这颗树尽可能地深。不然,攻击者可以通过操纵树的深度,执行拒绝服务攻击(DOS attack),使得更新变得极其缓慢。
  • 树的根只取决于数据,和其中的更新顺序无关。换个顺序进行更新,甚至重新从头计算树,并不会改变根。 
    MPT是最接近同时满足上面的性质的的数据结构。MPT的工作原理的最简单的解释是,值通过键来存储,键被编码到搜索树必须要经过的路径中。每个节点有16个孩子,因此路径又16进制的编码决定:例如,键‘dog’的16进制编码是6 4 6 15 6 7,所以从root开始到第六个分支,然后到第四个,再到第六个,再到第十五个,这样依次进行到达树的叶子。

在实践中,当树稀少时也会有一些额外的优化,我们会使过程更为有效,但这是基本的原则。

6、其他应用

用到Merkle Tree的应用还有很多,比如Git,Amazon Dynamo,Apache Wave Protocol,Tahoe-LAFS backup system,Certificate Transparency framework,NoSQL systems like Apache Cassadra and Riak等

参考

[1] https://en.wikipedia.org/wiki/Merkle_tree

[2] https://en.wikipedia.org/wiki/Hash_function#Hash_function_algorithms

[3] http://www.jianshu.com/p/458e5890662f

[4] http://blog.csdn.net/xtu_xiaoxin/article/details/8148237

[5] http://blog.csdn.net/yuanrxdu/article/details/22474697?utm_source=tuicool&utm_medium=referral

[6] http://crypto.stackexchange.com/questions/22669/merkle-hash-tree-updates

[7] https://en.wikipedia.org/wiki/BitTorrent

[8] 梁成仁, 李健勇, 黄道颖, 等. 基于 Merkle 树的 BT 系统 torrent 文件优化策略[J]. 计算机工程, 2008, 34(3): 85-87.

[9] http://bittorrent.org/beps/bep_0030.html

[10] 徐梓耀, 贺也平, 邓灵莉. 一种保护隐私的高效远程验证机制[J]. Journal of Software, 2011, 22(2).

[11] http://whatdoesthequantsay.com/2015/09/13/ipfs-introduction-by-example/

[12] https://www.weusecoins.com/what-is-a-merkle-tree/

[13] http://www.8btc.com/merkling-in-ethereum

 

原文链接:http://www.cnblogs.com/fengzhiwu/p/5524324.html

分享到:
评论

相关推荐

    [武汉大学]密码学.rar

    11. **密码学与区块链**:介绍比特币和以太坊等区块链系统中的密码学应用,如工作量证明(Proof of Work)、零知识证明(Zero-Knowledge Proof)和默克尔树(Merkle Tree)。 12. **量子密码学**:讨论量子计算对...

    基于模糊故障树的工业控制系统可靠性分析与Python实现

    内容概要:本文探讨了模糊故障树(FFTA)在工业控制系统可靠性分析中的应用,解决了传统故障树方法无法处理不确定数据的问题。文中介绍了模糊数的基本概念和实现方式,如三角模糊数和梯形模糊数,并展示了如何用Python实现模糊与门、或门运算以及系统故障率的计算。此外,还详细讲解了最小割集的查找方法、单元重要度的计算,并通过实例说明了这些方法的实际应用场景。最后,讨论了模糊运算在处理语言变量方面的优势,强调了在可靠性分析中处理模糊性和优化计算效率的重要性。 适合人群:从事工业控制系统设计、维护的技术人员,以及对模糊数学和可靠性分析感兴趣的科研人员。 使用场景及目标:适用于需要评估复杂系统可靠性的场合,特别是在面对不确定数据时,能够提供更准确的风险评估。目标是帮助工程师更好地理解和预测系统故障,从而制定有效的预防措施。 其他说明:文中提供的代码片段和方法可用于初步方案验证和技术探索,但在实际工程项目中还需进一步优化和完善。

    风力发电领域双馈风力发电机(DFIG)Simulink模型的构建与电流电压波形分析

    内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。

    基于西门子S7-200 PLC和组态王的八层电梯控制系统设计与实现

    内容概要:本文详细介绍了基于西门子S7-200 PLC和组态王软件构建的八层电梯控制系统。首先阐述了系统的硬件配置,包括PLC的IO分配策略,如输入输出信号的具体分配及其重要性。接着深入探讨了梯形图编程逻辑,涵盖外呼信号处理、轿厢运动控制以及楼层判断等关键环节。随后讲解了组态王的画面设计,包括动画效果的实现方法,如楼层按钮绑定、轿厢移动动画和门开合效果等。最后分享了一些调试经验和注意事项,如模拟困人场景、防抖逻辑、接线艺术等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和组态软件有一定基础的人群。 使用场景及目标:适用于需要设计和实施小型电梯控制系统的工程项目。主要目标是帮助读者掌握PLC编程技巧、组态画面设计方法以及系统联调经验,从而提高项目的成功率。 其他说明:文中提供了详细的代码片段和调试技巧,有助于读者更好地理解和应用相关知识点。此外,还强调了安全性和可靠性方面的考量,如急停按钮的正确接入和硬件互锁设计等。

    CarSim与Simulink联合仿真:基于MPC模型预测控制实现智能超车换道

    内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。

    基于单片机的鱼缸监测设计(51+1602+AD0809+18B20+UART+JKx2)#0107

    包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51单片机作为主控; 2、采用AD0809(仿真0808)检测"PH、氨、亚硝酸盐、硝酸盐"模拟传感; 3、采用DS18B20检测温度; 4、采用1602液晶显示检测值; 5、检测值同时串口上传,调试助手监看; 6、亦可通过串口指令对加热器、制氧机进行控制;

    风电领域双馈永磁风电机组并网仿真及短路故障分析与MPPT控制

    内容概要:本文详细介绍了双馈永磁风电机组并网仿真模型及其短路故障分析方法。首先构建了一个9MW风电场模型,由6台1.5MW双馈风机构成,通过升压变压器连接到120kV电网。文中探讨了风速模块的设计,包括渐变风、阵风和随疾风的组合形式,并提供了相应的Python和MATLAB代码示例。接着讨论了双闭环控制策略,即功率外环和电流内环的具体实现细节,以及MPPT控制用于最大化风能捕获的方法。此外,还涉及了短路故障模块的建模,包括三相电压电流特性和离散模型与phasor模型的应用。最后,强调了永磁同步机并网模型的特点和注意事项。 适合人群:从事风电领域研究的技术人员、高校相关专业师生、对风电并网仿真感兴趣的工程技术人员。 使用场景及目标:适用于风电场并网仿真研究,帮助研究人员理解和优化风电机组在不同风速条件下的性能表现,特别是在短路故障情况下的应对措施。目标是提高风电系统的稳定性和可靠性。 其他说明:文中提供的代码片段和具体参数设置有助于读者快速上手并进行实验验证。同时提醒了一些常见的错误和需要注意的地方,如离散化步长的选择、初始位置对齐等。

    空手道训练测试系统BLE106版本

    适用于空手道训练和测试场景

    【音乐创作领域AI提示词】AI音乐提示词(deepseek,豆包,kimi,chatGPT,扣子空间,manus,AI训练师)

    内容概要:本文介绍了金牌音乐作词大师的角色设定、背景经历、偏好特点、创作目标、技能优势以及工作流程。金牌音乐作词大师凭借深厚的音乐文化底蕴和丰富的创作经验,能够为不同风格的音乐创作歌词,擅长将传统文化元素与现代流行文化相结合,创作出既富有情感又触动人心的歌词。在创作过程中,会严格遵守社会主义核心价值观,尊重用户需求,提供专业修改建议,确保歌词内容健康向上。; 适合人群:有歌词创作需求的音乐爱好者、歌手或音乐制作人。; 使用场景及目标:①为特定主题或情感创作歌词,如爱情、励志等;②融合传统与现代文化元素创作独特风格的歌词;③对已有歌词进行润色和优化。; 阅读建议:阅读时可以重点关注作词大师的创作偏好、技能优势以及工作流程,有助于更好地理解如何创作出高质量的歌词。同时,在提出创作需求时,尽量详细描述自己的情感背景和期望,以便获得更贴合心意的作品。

    linux之用户管理教程.md

    linux之用户管理教程.md

    基于单片机的搬运机器人设计(51+1602+L298+BZ+KEY6)#0096

    包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示设置及状态; 3、采用L298驱动两个电机,模拟机械臂动力、移动底盘动力; 3、首先按键配置-待搬运物块的高度和宽度(为0不能开始搬运); 4、按下启动键开始搬运,搬运流程如下: 机械臂先把物块抓取到机器车上, 机械臂减速 机器车带着物块前往目的地 机器车减速 机械臂把物块放下来 机械臂减速 机器车回到物块堆积处(此时机器车是空车) 机器车减速 蜂鸣器提醒 按下复位键,结束本次搬运

    基于下垂控制的三相逆变器电压电流双闭环仿真及MATLAB/Simulink/PLECS实现

    内容概要:本文详细介绍了基于下垂控制的三相逆变器电压电流双闭环控制的仿真方法及其在MATLAB/Simulink和PLECS中的具体实现。首先解释了下垂控制的基本原理,即有功调频和无功调压,并给出了相应的数学表达式。随后讨论了电压环和电流环的设计与参数整定,强调了两者带宽的差异以及PI控制器的参数选择。文中还提到了一些常见的调试技巧,如锁相环的响应速度、LC滤波器的谐振点处理、死区时间设置等。此外,作者分享了一些实用的经验,如避免过度滤波、合理设置采样周期和下垂系数等。最后,通过突加负载测试展示了系统的动态响应性能。 适合人群:从事电力电子、微电网研究的技术人员,尤其是有一定MATLAB/Simulink和PLECS使用经验的研发人员。 使用场景及目标:适用于希望深入了解三相逆变器下垂控制机制的研究人员和技术人员,旨在帮助他们掌握电压电流双闭环控制的具体实现方法,提高仿真的准确性和效率。 其他说明:本文不仅提供了详细的理论讲解,还结合了大量的实战经验和调试技巧,有助于读者更好地理解和应用相关技术。

    光伏并网逆变器全栈开发资料:硬件设计、控制算法及实战经验

    内容概要:本文详细介绍了光伏并网逆变器的全栈开发资料,涵盖了从硬件设计到控制算法的各个方面。首先,文章深入探讨了功率接口板的设计,包括IGBT缓冲电路、PCB布局以及EMI滤波器的具体参数和设计思路。接着,重点讲解了主控DSP板的核心控制算法,如MPPT算法的实现及其注意事项。此外,还详细描述了驱动扩展板的门极驱动电路设计,特别是光耦隔离和驱动电阻的选择。同时,文章提供了并联仿真的具体实现方法,展示了环流抑制策略的效果。最后,分享了许多宝贵的实战经验和调试技巧,如主变压器绕制、PWM输出滤波、电流探头使用等。 适合人群:从事电力电子、光伏系统设计的研发工程师和技术爱好者。 使用场景及目标:①帮助工程师理解和掌握光伏并网逆变器的硬件设计和控制算法;②提供详细的实战经验和调试技巧,提升产品的可靠性和性能;③适用于希望深入了解光伏并网逆变器全栈开发的技术人员。 其他说明:文中不仅提供了具体的电路设计和代码实现,还分享了许多宝贵的实际操作经验和常见问题的解决方案,有助于提高开发效率和产品质量。

    机器人轨迹规划中粒子群优化与3-5-3多项式结合的时间最优路径规划

    内容概要:本文详细介绍了粒子群优化(PSO)算法与3-5-3多项式相结合的方法,在机器人轨迹规划中的应用。首先解释了粒子群算法的基本原理及其在优化轨迹参数方面的作用,随后阐述了3-5-3多项式的数学模型,特别是如何利用不同阶次的多项式确保轨迹的平滑过渡并满足边界条件。文中还提供了具体的Python代码实现,展示了如何通过粒子群算法优化时间分配,使3-5-3多项式生成的轨迹达到时间最优。此外,作者分享了一些实践经验,如加入惩罚项以避免超速,以及使用随机扰动帮助粒子跳出局部最优。 适合人群:对机器人运动规划感兴趣的科研人员、工程师和技术爱好者,尤其是有一定编程基础并对优化算法有初步了解的人士。 使用场景及目标:适用于需要精确控制机器人运动的应用场合,如工业自动化生产线、无人机导航等。主要目标是在保证轨迹平滑的前提下,尽可能缩短运动时间,提高工作效率。 其他说明:文中不仅给出了理论讲解,还有详细的代码示例和调试技巧,便于读者理解和实践。同时强调了实际应用中需要注意的问题,如系统的建模精度和安全性考量。

    【KUKA 机器人资料】:kuka机器人压铸欧洲标准.pdf

    KUKA机器人相关资料

    光子晶体中BIC与OAM激发的模拟及三维Q值计算

    内容概要:本文详细探讨了光子晶体中的束缚态在连续谱中(BIC)及其与轨道角动量(OAM)激发的关系。首先介绍了光子晶体的基本概念和BIC的独特性质,随后展示了如何通过Python代码模拟二维光子晶体中的BIC,并解释了BIC在光学器件中的潜在应用。接着讨论了OAM激发与BIC之间的联系,特别是BIC如何增强OAM激发效率。文中还提供了使用有限差分时域(FDTD)方法计算OAM的具体步骤,并介绍了计算本征态和三维Q值的方法。此外,作者分享了一些实验中的有趣发现,如特定条件下BIC表现出OAM特征,以及不同参数设置对Q值的影响。 适合人群:对光子晶体、BIC和OAM感兴趣的科研人员和技术爱好者,尤其是从事微纳光子学研究的专业人士。 使用场景及目标:适用于希望通过代码模拟深入了解光子晶体中BIC和OAM激发机制的研究人员。目标是掌握BIC和OAM的基础理论,学会使用Python和其他工具进行模拟,并理解这些现象在实际应用中的潜力。 其他说明:文章不仅提供了详细的代码示例,还分享了许多实验心得和技巧,帮助读者避免常见错误,提高模拟精度。同时,强调了物理离散化方式对数值计算结果的重要影响。

    C#联合Halcon 17.12构建工业视觉项目的配置与应用

    内容概要:本文详细介绍了如何使用C#和Halcon 17.12构建一个功能全面的工业视觉项目。主要内容涵盖项目配置、Halcon脚本的选择与修改、相机调试、模板匹配、生产履历管理、历史图像保存以及与三菱FX5U PLC的以太网通讯。文中不仅提供了具体的代码示例,还讨论了实际项目中常见的挑战及其解决方案,如环境配置、相机控制、模板匹配参数调整、PLC通讯细节、生产数据管理和图像存储策略等。 适合人群:从事工业视觉领域的开发者和技术人员,尤其是那些希望深入了解C#与Halcon结合使用的专业人士。 使用场景及目标:适用于需要开发复杂视觉检测系统的工业应用场景,旨在提高检测精度、自动化程度和数据管理效率。具体目标包括但不限于:实现高效的视觉处理流程、确保相机与PLC的无缝协作、优化模板匹配算法、有效管理生产和检测数据。 其他说明:文中强调了框架整合的重要性,并提供了一些实用的技术提示,如避免不同版本之间的兼容性问题、处理实时图像流的最佳实践、确保线程安全的操作等。此外,还提到了一些常见错误及其规避方法,帮助开发者少走弯路。

    基于Matlab的9节点配电网中分布式电源接入对节点电压影响的研究

    内容概要:本文探讨了分布式电源(DG)接入对9节点配电网节点电压的影响。首先介绍了9节点配电网模型的搭建方法,包括定义节点和线路参数。然后,通过在特定节点接入分布式电源,利用Matlab进行潮流计算,模拟DG对接入点及其周围节点电压的影响。最后,通过绘制电压波形图,直观展示了不同DG容量和接入位置对配电网电压分布的具体影响。此外,还讨论了电压越限问题以及不同线路参数对电压波动的影响。 适合人群:电力系统研究人员、电气工程学生、从事智能电网和分布式能源研究的专业人士。 使用场景及目标:适用于研究分布式电源接入对配电网电压稳定性的影响,帮助优化分布式电源的规划和配置,确保电网安全稳定运行。 其他说明:文中提供的Matlab代码和图表有助于理解和验证理论分析,同时也为后续深入研究提供了有价值的参考资料。

    电力市场领域中基于CVaR风险评估的省间交易商最优购电模型研究与实现

    内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。

    西门子1200 PLC轴运动控制程序模板及其实战应用详解

    内容概要:本文详细介绍了一套成熟的西门子1200 PLC轴运动控制程序模板,涵盖多轴伺服控制、电缸控制、PLC通讯、气缸报警块、完整电路图、威纶通触摸屏程序和IO表等方面的内容。该模板已在多个项目中成功应用,如海康威视的路由器外壳装配机,确保了系统的稳定性和可靠性。文中不仅提供了具体的代码示例,还分享了许多实战经验和技巧,如参数设置、异常处理机制、通讯优化等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC编程和轴运动控制的从业者。 使用场景及目标:适用于需要快速搭建稳定可靠的PLC控制系统的企业和个人开发者。通过学习和应用该模板,可以提高开发效率,减少调试时间和错误发生率,从而更好地满足项目需求。 其他说明:文章强调了程序模板的实用性,特别是在异常处理和参数配置方面的独特设计,能够有效应对复杂的工业环境挑战。此外,还提到了一些常见的陷阱和解决方案,帮助读者避开常见错误,顺利实施项目。

Global site tag (gtag.js) - Google Analytics