`

sigslot示例

阅读更多

//测试代码

#include "sigslot.h"
#include <string>
#include <stdio.h>
#include <iostream>
using namespace std;

class CSender
{
public:
	sigslot::signal2<string, int> m_pfnsigDanger;

	void Panic()
	{
		static int nVal = 0;
		char szVal[20] = {0};
		sprintf(szVal, "help--%d", nVal);
		m_pfnsigDanger(szVal, nVal++);
	}
};

class CReceiver:public sigslot::has_slots<>
{
public:
	void OnDanger(string strMsg, int nVal)
	{
		//printf("%s ==> %d", strMsg.c_str(), nVal);
		cout << strMsg.c_str() << " ==> " << nVal << endl;
	}
};

int main()
{
	CSender sender;
	CReceiver recever;

	cout << "create object ok..." << endl;

	sender.m_pfnsigDanger.connect(&recever, &CReceiver::OnDanger);

	cout << "connect succ!" << endl;

	while (1)
	{
		cout << "in while..." << endl;
		
		sender.Panic();
		sleep(2);

		cout << "end of sleep" << endl;
	}

	return 0;
}
 

 

//sigslot

// sigslot.h: Signal/Slot classes
// 
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
//          the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION 
//		
//				(see also the full documentation at http://sigslot.sourceforge.net/)
//
//		#define switches
//			SIGSLOT_PURE_ISO			- Define this to force ISO C++ compliance. This also disables
//										  all of the thread safety support on platforms where it is 
//										  available.
//
//			SIGSLOT_USE_POSIX_THREADS	- Force use of Posix threads when using a C++ compiler other than
//										  gcc on a platform that supports Posix threads. (When using gcc,
//										  this is the default - use SIGSLOT_PURE_ISO to disable this if 
//										  necessary)
//
//			SIGSLOT_DEFAULT_MT_POLICY	- Where thread support is enabled, this defaults to multi_threaded_global.
//										  Otherwise, the default is single_threaded. #define this yourself to
//										  override the default. In pure ISO mode, anything other than
//										  single_threaded will cause a compiler error.
//
//		PLATFORM NOTES
//
//			Win32						- On Win32, the WIN32 symbol must be #defined. Most mainstream
//										  compilers do this by default, but you may need to define it
//										  yourself if your build environment is less standard. This causes
//										  the Win32 thread support to be compiled in and used automatically.
//
//			Unix/Linux/BSD, etc.		- If you're using gcc, it is assumed that you have Posix threads
//										  available, so they are used automatically. You can override this
//										  (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
//										  something other than gcc but still want to use Posix threads, you
//										  need to #define SIGSLOT_USE_POSIX_THREADS.
//
//			ISO C++						- If none of the supported platforms are detected, or if
//										  SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
//										  along with any code that might cause a pure ISO C++ environment to
//										  complain. Before you ask, gcc -ansi -pedantic won't compile this 
//										  library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
//										  errors that aren't really there. If you feel like investigating this,
//										  please contact the author.
//
//		
//		THREADING MODES
//
//			single_threaded				- Your program is assumed to be single threaded from the point of view
//										  of signal/slot usage (i.e. all objects using signals and slots are
//										  created and destroyed from a single thread). Behaviour if objects are
//										  destroyed concurrently is undefined (i.e. you'll get the occasional
//										  segmentation fault/memory exception).
//
//			multi_threaded_global		- Your program is assumed to be multi threaded. Objects using signals and
//										  slots can be safely created and destroyed from any thread, even when
//										  connections exist. In multi_threaded_global mode, this is achieved by a
//										  single global mutex (actually a critical section on Windows because they
//										  are faster). This option uses less OS resources, but results in more
//										  opportunities for contention, possibly resulting in more context switches
//										  than are strictly necessary.
//
//			multi_threaded_local		- Behaviour in this mode is essentially the same as multi_threaded_global,
//										  except that each signal, and each object that inherits has_slots, all 
//										  have their own mutex/critical section. In practice, this means that
//										  mutex collisions (and hence context switches) only happen if they are
//										  absolutely essential. However, on some platforms, creating a lot of 
//										  mutexes can slow down the whole OS, so use this option with care.
//
//		USING THE LIBRARY
//
//			See the full documentation at http://sigslot.sourceforge.net/
//
//

#ifndef TALK_BASE_SIGSLOT_H__
#define TALK_BASE_SIGSLOT_H__

#include <set>
#include <list>

// On our copy of sigslot.h, we force single threading
#define SIGSLOT_PURE_ISO

#if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
#	define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
#	define _SIGSLOT_HAS_WIN32_THREADS
#	include <windows.h>
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
#	define _SIGSLOT_HAS_POSIX_THREADS
#	include <pthread.h>
#else
#	define _SIGSLOT_SINGLE_THREADED
#endif

#ifndef SIGSLOT_DEFAULT_MT_POLICY
#	ifdef _SIGSLOT_SINGLE_THREADED
#		define SIGSLOT_DEFAULT_MT_POLICY single_threaded
#	else
#		define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
#	endif
#endif

// TODO: change this namespace to talk_base?
namespace sigslot {

	class single_threaded
	{
	public:
		single_threaded()
		{
			;
		}

		virtual ~single_threaded()
		{
			;
		}

		virtual void lock()
		{
			;
		}

		virtual void unlock()
		{
			;
		}
	};

#ifdef _SIGSLOT_HAS_WIN32_THREADS
	// The multi threading policies only get compiled in if they are enabled.
	class multi_threaded_global
	{
	public:
		multi_threaded_global()
		{
			static bool isinitialised = false;

			if(!isinitialised)
			{
				InitializeCriticalSection(get_critsec());
				isinitialised = true;
			}
		}

		multi_threaded_global(const multi_threaded_global&)
		{
			;
		}

		virtual ~multi_threaded_global()
		{
			;
		}

		virtual void lock()
		{
			EnterCriticalSection(get_critsec());
		}

		virtual void unlock()
		{
			LeaveCriticalSection(get_critsec());
		}

	private:
		CRITICAL_SECTION* get_critsec()
		{
			static CRITICAL_SECTION g_critsec;
			return &g_critsec;
		}
	};

	class multi_threaded_local
	{
	public:
		multi_threaded_local()
		{
			InitializeCriticalSection(&m_critsec);
		}

		multi_threaded_local(const multi_threaded_local&)
		{
			InitializeCriticalSection(&m_critsec);
		}

		virtual ~multi_threaded_local()
		{
			DeleteCriticalSection(&m_critsec);
		}

		virtual void lock()
		{
			EnterCriticalSection(&m_critsec);
		}

		virtual void unlock()
		{
			LeaveCriticalSection(&m_critsec);
		}

	private:
		CRITICAL_SECTION m_critsec;
	};
#endif // _SIGSLOT_HAS_WIN32_THREADS

#ifdef _SIGSLOT_HAS_POSIX_THREADS
	// The multi threading policies only get compiled in if they are enabled.
	class multi_threaded_global
	{
	public:
		multi_threaded_global()
		{
			pthread_mutex_init(get_mutex(), NULL);
		}

		multi_threaded_global(const multi_threaded_global&)
		{
			;
		}

		virtual ~multi_threaded_global()
		{
			;
		}

		virtual void lock()
		{
			pthread_mutex_lock(get_mutex());
		}

		virtual void unlock()
		{
			pthread_mutex_unlock(get_mutex());
		}

	private:
		pthread_mutex_t* get_mutex()
		{
			static pthread_mutex_t g_mutex;
			return &g_mutex;
		}
	};

	class multi_threaded_local
	{
	public:
		multi_threaded_local()
		{
			pthread_mutex_init(&m_mutex, NULL);
		}

		multi_threaded_local(const multi_threaded_local&)
		{
			pthread_mutex_init(&m_mutex, NULL);
		}

		virtual ~multi_threaded_local()
		{
			pthread_mutex_destroy(&m_mutex);
		}

		virtual void lock()
		{
			pthread_mutex_lock(&m_mutex);
		}

		virtual void unlock()
		{
			pthread_mutex_unlock(&m_mutex);
		}

	private:
		pthread_mutex_t m_mutex;
	};
#endif // _SIGSLOT_HAS_POSIX_THREADS

	template<class mt_policy>
	class lock_block
	{
	public:
		mt_policy *m_mutex;

		lock_block(mt_policy *mtx)
			: m_mutex(mtx)
		{
			m_mutex->lock();
		}

		~lock_block()
		{
			m_mutex->unlock();
		}
	};

	template<class mt_policy>
	class has_slots;

	template<class mt_policy>
	class _connection_base0
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit() = 0;
		virtual _connection_base0* clone() = 0;
		virtual _connection_base0* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class mt_policy>
	class _connection_base1
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type) = 0;
		virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
		virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class mt_policy>
	class _connection_base2
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type) = 0;
		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _connection_base3
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
	class _connection_base4
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy>
	class _connection_base5
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type) = 0;
		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* clone() = 0;
		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy>
	class _connection_base6
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type) = 0;
		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* clone() = 0;
		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _connection_base7
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type, arg7_type) = 0;
		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
	class _connection_base8
	{
	public:
		virtual has_slots<mt_policy>* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type, arg7_type, arg8_type) = 0;
		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest) = 0;
	};

	template<class mt_policy>
	class _signal_base : public mt_policy
	{
	public:
		virtual void slot_disconnect(has_slots<mt_policy>* pslot) = 0;
		virtual void slot_duplicate(const has_slots<mt_policy>* poldslot, has_slots<mt_policy>* pnewslot) = 0;
	};

	template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class has_slots : public mt_policy 
	{
	private:
		typedef typename std::set<_signal_base<mt_policy> *> sender_set;
		typedef typename sender_set::const_iterator const_iterator;

	public:
		has_slots()
		{
			;
		}

		has_slots(const has_slots& hs)
			: mt_policy(hs)
		{
			lock_block<mt_policy> lock(this);
			const_iterator it = hs.m_senders.begin();
			const_iterator itEnd = hs.m_senders.end();

			while(it != itEnd)
			{
				(*it)->slot_duplicate(&hs, this);
				m_senders.insert(*it);
				++it;
			}
		} 

		void signal_connect(_signal_base<mt_policy>* sender)
		{
			lock_block<mt_policy> lock(this);
			m_senders.insert(sender);
		}

		void signal_disconnect(_signal_base<mt_policy>* sender)
		{
			lock_block<mt_policy> lock(this);
			m_senders.erase(sender);
		}

		virtual ~has_slots()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			const_iterator it = m_senders.begin();
			const_iterator itEnd = m_senders.end();

			while(it != itEnd)
			{
				(*it)->slot_disconnect(this);
				++it;
			}

			m_senders.erase(m_senders.begin(), m_senders.end());
		}

	private:
		sender_set m_senders;
	};

	template<class mt_policy>
	class _signal_base0 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base0<mt_policy> *>  connections_list;

		_signal_base0()
		{
			;
		}

		_signal_base0(const _signal_base0& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		~_signal_base0()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class mt_policy>
	class _signal_base1 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base1<arg1_type, mt_policy> *>  connections_list;

		_signal_base1()
		{
			;
		}

		_signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base1()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}


	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class mt_policy>
	class _signal_base2 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
			connections_list;

		_signal_base2()
		{
			;
		}

		_signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base2()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _signal_base3 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
			connections_list;

		_signal_base3()
		{
			;
		}

		_signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base3()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
	class _signal_base4 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
			arg4_type, mt_policy> *>  connections_list;

		_signal_base4()
		{
			;
		}

		_signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base4()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy>
	class _signal_base5 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, mt_policy> *>  connections_list;

		_signal_base5()
		{
			;
		}

		_signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base5()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy>
	class _signal_base6 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type, 
			arg4_type, arg5_type, arg6_type, mt_policy> *>  connections_list;

		_signal_base6()
		{
			;
		}

		_signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base6()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _signal_base7 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type, 
			arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *>  connections_list;

		_signal_base7()
		{
			;
		}

		_signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base7()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
	class _signal_base8 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type, 
			arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
			connections_list;

		_signal_base8()
		{
			;
		}

		_signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots<mt_policy>* oldtarget, has_slots<mt_policy>* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base8()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots<mt_policy>* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots<mt_policy>* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					m_connected_slots.erase(it);
					//			delete *it;
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;   
	};


	template<class dest_type, class mt_policy>
	class _connection0 : public _connection_base0<mt_policy>
	{
	public:
		_connection0()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection0(dest_type* pobject, void (dest_type::*pmemfun)())
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base0<mt_policy>* clone()
		{
			return new _connection0<dest_type, mt_policy>(*this);
		}

		virtual _connection_base0<mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit()
		{
			(m_pobject->*m_pmemfun)();
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)();
	};

	template<class dest_type, class arg1_type, class mt_policy>
	class _connection1 : public _connection_base1<arg1_type, mt_policy>
	{
	public:
		_connection1()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base1<arg1_type, mt_policy>* clone()
		{
			return new _connection1<dest_type, arg1_type, mt_policy>(*this);
		}

		virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1)
		{
			(m_pobject->*m_pmemfun)(a1);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
	class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
	{
	public:
		_connection2()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
		{
			return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
		}

		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2)
		{
			(m_pobject->*m_pmemfun)(a1, a2);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
	{
	public:
		_connection3()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
		{
			return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
		}

		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class mt_policy>
	class _connection4 : public _connection_base4<arg1_type, arg2_type,
		arg3_type, arg4_type, mt_policy>
	{
	public:
		_connection4()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
		{
			return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
		}

		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, 
			arg4_type a4)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
			arg4_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class mt_policy>
	class _connection5 : public _connection_base5<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, mt_policy>
	{
	public:
		_connection5()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, mt_policy>* clone()
		{
			return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, mt_policy>(*this);
		}

		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class mt_policy>
	class _connection6 : public _connection_base6<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
	{
	public:
		_connection6()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, arg6_type, mt_policy>* clone()
		{
			return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, arg6_type, mt_policy>(*this);
		}

		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, arg6_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _connection7 : public _connection_base7<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
	{
	public:
		_connection7()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, arg6_type, arg7_type, mt_policy>* clone()
		{
			return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, arg6_type, arg7_type, mt_policy>(*this);
		}

		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class arg7_type, 
	class arg8_type, class mt_policy>
	class _connection8 : public _connection_base8<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
	{
	public:
		_connection8()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, 
			arg7_type, arg8_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
		{
			return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
		}

		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type, 
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots<mt_policy>* pnewdest)
		{
			return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, 
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
		}

		virtual has_slots<mt_policy>* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type);
	};

	template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal0 : public _signal_base0<mt_policy>
	{
	public:
		typedef _signal_base0<mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal0()
		{
			;
		}

		signal0(const signal0<mt_policy>& s)
			: _signal_base0<mt_policy>(s)
		{
			;
		}

		template<class desttype>
			void connect(desttype* pclass, void (desttype::*pmemfun)())
		{
			lock_block<mt_policy> lock(this);
			_connection0<desttype, mt_policy>* conn = 
				new _connection0<desttype, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit();

				it = itNext;
			}
		}

		void operator()()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit();

				it = itNext;
			}
		}
	};

	template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal1 : public _signal_base1<arg1_type, mt_policy>
	{
	public:
		typedef _signal_base1<arg1_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal1()
		{
			;
		}

		signal1(const signal1<arg1_type, mt_policy>& s)
			: _signal_base1<arg1_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
			void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
		{
			lock_block<mt_policy> lock(this);
			_connection1<desttype, arg1_type, mt_policy>* conn = 
				new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1);

				it = itNext;
			}
		}

		void operator()(arg1_type a1)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
	{
	public:
		typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal2()
		{
			;
		}

		signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
			: _signal_base2<arg1_type, arg2_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
			void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type))
		{
			lock_block<mt_policy> lock(this);
			_connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
				_connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
	{
	public:
		typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal3()
		{
			;
		}

		signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
			: _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
			void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type))
		{
			lock_block<mt_policy> lock(this);
			_connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn = 
				new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
				pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
		arg4_type, mt_policy>
	{
	public:
		typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal4()
		{
			;
		}

		signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
			: _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
			void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type))
		{
			lock_block<mt_policy> lock(this);
			_connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
				conn = new _connection4<desttype, arg1_type, a

  


  
分享到:
评论

相关推荐

    Sigslot的简单应用

    Sigslot的简单应用,vc6.0实现 sigslot的出现为我们提供了一种解决问题的思想,它用“信号”的概念实现不同模块之间的传输问题,sigslot本身类似于一条通讯电缆,两端提供发送器和接收器,只要把两个模块用这条电缆...

    sigslot信号槽demo以及原文件

    本篇将详细介绍`sigslot`库的使用,包括其基本概念、API使用、示例代码和官方英文文档。 **一、`sigslot`基本概念** 1. **信号(Signal)**:信号是对象发出的一种通知,表示某种事件的发生。当信号被触发时,它会...

    sigslot信号槽 c++库

    Sigslot是C++中一种实现信号(signals)与槽(slots)机制的库,它提供了一种方便的方式来处理对象间的通信。在C++的世界里,信号与槽是一种事件驱动编程模型,广泛应用于GUI编程和多线程环境中。下面将详细阐述这个...

    sigslot(解决浅拷贝问题, 增加信号拦截机制).rar

    五、示例 ```cpp #include "sigslot.h" class MyClass { public: sigslot::signal1, std::string&gt; mySignal; void emitSignal(int value, std::string message) { mySignal.emit(value, message); } void ...

    sigslot C++开源库-解决信号对象拷贝问题.zip

    Sigslot 是一个小型但功能强大的 C++ 开源库,专门用于实现信号(signals)和槽(slots)机制。这个库的特色在于它只有一个头文件 `sigslot.h`,因此非常便于集成到任何项目中,无需额外的编译步骤或依赖。在 C++ 中...

    sigslot_g++4.0下也能编译

    2. 可能的示例代码或者测试用例,帮助用户了解如何使用这个库。 3. 构建脚本或Makefile,用于编译和链接sigslot库。 4. 可能的文档,如README文件,说明如何安装和使用这个库。 在使用这个库时,开发者需要了解以下...

    sigslot.h 对象之间发送和接收消息的机制

    sigslot的头文件,sigslot.h 包含了sigslot的实现

    c++ sigslot

    sigslot的出现为我们提供了一种解决问题的思想,它用“信号”的概念实现不同模块之间的传输问题,sigslot本身类似于一条通讯电缆,两端提供发送器和接收器,只要把两个模块用这条电缆连接起来就可以实现接口调用,而...

    c++ sigslot 库

    sigslot是一个用标准C++语法实现的信号与槽机制的函数库,简单到只有一个头文件 sigslot.h

    轻量级消息架构sigslot库

    原头文件在gcc编译中会出现问题,这是修改过去掉模板的资源,linux下随意使用。 sig---信号 slot---插槽 信号.connect(&插槽对象,&插槽类::插槽类成员函数)

    线程和类型安全的sigslot源码

    很好用,可以用在多线程里面,跨平台,类型安全,线程安全 只有一个头文件。 google的libjingle里面用到了

    sigslot文档,pdf格式

    ### sigslot库详解 #### 一、引言与概述 sigslot是一个强大的C++库,它为开发人员提供了一个线程安全且类型安全的信号(signal)与槽(slot)机制实现。这种机制允许对象之间在不知道对方具体细节的情况下进行通信...

    C++ Signal/Slot Library (sigslot)

    4. **示例应用** - 假设我们有一个`Window`类,当窗口大小改变时会触发`size_changed`信号,而一个`StatusBar`类有更新状态栏的`updateStatusBar`槽函数。我们可以连接这两个,当窗口大小改变时自动更新状态栏。 5...

    c++sigslot实例

    - `实例`:实际的C++代码示例,展示了如何声明和使用信号和插槽,以及如何进行连接和断开操作。 通过这个实例,你可以学习如何在自己的项目中使用`sigslot`库来实现组件间的异步通信,提高代码的模块化和可维护性。...

    simple sigslot

    Simple signal slot implementation. As simple as a single header file.

    callback_sigslot

    回调函数(callback)和信号槽(sigslot)是软件设计模式中的两种常见机制,它们用于在对象之间建立通信,实现事件驱动或者异步处理。在C++编程中,回调和信号槽尤其受到重视,因为它们可以增强代码的灵活性和可扩展...

    sigslot-1-0-0

    一个非常精简的signal & slot 实现库,整个库只有一个&lt;&lt; sigslot.h &gt;&gt;文件。

    SignalSlot

    这里,我们讨论的是一个纯C++实现的SignalSlot机制,参考自`sigslot.h`库。 **描述:** 这个SignalSlot实现支持最多10个参数的传递,这意味着你可以将多个数据值随信号一起发送,并在槽函数中进行处理。此外,该...

    QtSigSlot.7z

    【Qt信号与槽机制详解】 Qt库是C++中用于构建图形用户界面(GUI)的开源框架,由Trolltech公司开发,现由The Qt Company维护。Qt的一大特色就是其强大的信号与槽(Signal & Slot)机制,它提供了一种在对象间通信的...

    Signal.rar

    这种机制常被用于GUI编程,例如Qt库中,但也有独立实现,如本示例中的"Signal.rar"。这个压缩包包含了一个使用 sigslot 库实现的信号槽机制的例子,适用于Linux环境。 `sigslot.h` 是一个头文件,它定义了信号和槽...

Global site tag (gtag.js) - Google Analytics