`
agapple
  • 浏览: 1597768 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

操作database TableMeta几点内容

 
阅读更多

背景

   今天早上,领导给了我一个任务:在老的系统运行中,DBA反馈说获取database TableMeta操作有点慢,让我分析下基于oracle driver驱动是否可以做下优化。由此引出了本文,仅仅做一个记录。

内容

在补充几点背景知识:

 

1.  老系统介绍

  • 老系统主要负责的业务是做跨机房之间的数据库记录同步,需要获取数据库的table meta信息,进行构造对应的sql。将源数据的columns变化,通过sql方式更新到目标库上。
  • table meta信息分析时,需要获取table的字段,主键,需要支持视图,同义词等表查询

2.  table meta操作原理

jdbcTemplate.execute(new ConnectionCallback() {

            public Object doInConnection(Connection c) throws SQLException, DataAccessException {
                DatabaseMetaData meta = c.getMetaData();
                meta.getTables(catalog, schemaPattern, tableNamePattern, types);
                meta.getColumns(catalog, schemaPattern, tableNamePattern, columnNamePattern);
                meta.getPrimaryKeys(catalog, schema, table);
                return null;
            }
        });

简单一点说,就是利用java.sql.DatabaseMetaData接口中定义的meta信息获取接口进行处理。

 

mysql/oracle实现

oracle实现(oracle.jdbc.driver.OracleDatabaseMetaData):

1. getTables

主要是通过构造对应的SQL进行查询,主要是关联了all_objects 和 all_tab_comments, all_synonyms

SELECT NULL AS table_cat,
o.owner AS table_schem,
o.object_name AS table_name,
o.object_type AS table_type,
c.comments AS remarks
FROM all_objects o, all_tab_comments c
WHERE o.owner LIKE #schema# ESCAPE '/'
AND o.object_name LIKE #table# ESCAPE '/'
AND o.object_type IN ('TABLE', 'SYNONYM', 'VIEW')
AND o.owner = c.owner (+)
AND o.object_name = c.table_name (+)
UNION
SELECT NULL AS table_cat,
s.owner AS table_schem,
s.synonym_name AS table_name,
'SYNONYM' AS table_table_type,
c.comments AS remarks
FROM all_synonyms s, all_objects o, all_tab_comments c
WHERE s.owner LIKE #schema# ESCAPE '/'
AND s.synonym_name LIKE #table# ESCAPE '/'
AND s.table_owner = o.owner
AND s.table_name = o.object_name
AND o.object_type IN ('TABLE', 'VIEW')
AND o.owner = c.owner (+)
AND o.object_name = c.table_name (+)
ORDER BY table_type, table_schem, table_name

注意一下#schema# , #table#的替换,可以使用%进行模糊匹配

 

2. getColumns

主要是通过构造对应的SQL进行查询,主要关联了all_tab_comments, all_synonyms, all_col_comments

SELECT NULL AS table_cat,
DECODE(s.table_owner, NULL, t.owner, s.table_owner) AS table_schem,
DECODE(s.synonym_name, NULL, t.table_name, s.synonym_name) AS table_name,
t.column_name AS column_name,
DECODE (t.data_type, 'CHAR', 1, 'VARCHAR2', 12, 'NUMBER', 3,
'LONG', -1, 'DATE', 93 , 'RAW', -3, 'LONG RAW', -4, 'BLOB', 2004, 'CLOB', 2005, 'BFILE', -13, 'FLOAT', 6, 'TIMESTAMP(6)',
93, 'TIMESTAMP(6) WITH TIME ZONE', -101, 'TIMESTAMP(6) WITH LOCAL TIME ZONE', -102, 'INTERVAL YEAR(2) TO MONTH', -103,
'INTERVAL DAY(2) TO SECOND(6)', -104, 'BINARY_FLOAT', 100, 'BINARY_DOUBLE', 101, 1111) AS data_type,
t.data_type AS type_name,
DECODE (t.data_precision, null, t.data_length, t.data_precision) AS column_size,
0 AS buffer_length,
t.data_scale AS decimal_digits,
10 AS num_prec_radix,
DECODE (t.nullable, 'N', 0, 1) AS nullable,
c.comments AS remarks,
t.data_default AS column_def,
0 AS sql_data_type,
0 AS sql_datetime_sub,
t.data_length AS char_octet_length,
t.column_id AS ordinal_position,
DECODE (t.nullable, 'N', 'NO', 'YES') AS is_nullable
FROM all_tab_columns t , all_col_comments c , all_synonyms s
WHERE (t.owner LIKE #schema# ESCAPE '/' OR
       (s.owner LIKE #schema# ESCAPE '/' AND t.owner = s.table_owner))
        AND (t.table_name LIKE #table# ESCAPE '/' OR
        s.synonym_name LIKE #table# ESCAPE '/')
        AND t.column_name LIKE #column# ESCAPE '/'
        AND t.owner = c.owner (+)  AND t.table_name = c.table_name (+)  AND t.column_name = c.column_name (+)
        AND s.table_name (+) = t.table_name  AND ((DECODE(s.owner, t.owner, 'OK','PUBLIC', 'OK',NULL, 'OK','NOT OK') = 'OK') OR (s.owner LIKE 'SRF' AND t.owner = s.table_owner))
        ORDER BY table_schem, table_name, ordinal_position

注意一下#schema# , #table# , #column#的替换,可以使用%进行模糊匹配

3. getPrimaryKeys

主要是通过构造对应的SQL进行查询,主要关联了 all_cons_columns, all_constraints

SELECT NULL AS table_cat,
c.owner AS table_schem,
c.table_name,
c.column_name,
c.position AS key_seq,
c.constraint_name AS pk_name
FROM all_cons_columns c, all_constraints k
WHERE k.constraint_type = 'P'
  AND k.table_name = #table#  AND k.owner like #schema# escape '/'
  AND k.constraint_name = c.constraint_name
  AND k.table_name = c.table_name
  AND k.owner = c.owner
  ORDER BY column_name

注意一下#schema# , #table# 的替换,可以使用%进行模糊匹配

mysql实现:

有两种获取meta信息的方式

  1. 使用sql语法查询对应的INFORMATION_SCHEMA信息
    SELECT TABLE_SCHEMA AS TABLE_CAT, 
    NULL AS TABLE_SCHEM, TABLE_NAME, 
    CASE WHEN TABLE_TYPE='BASE TABLE' THEN 'TABLE' WHEN TABLE_TYPE='TEMPORARY' THEN 'LOCAL_TEMPORARY' ELSE TABLE_TYPE END AS TABLE_TYPE, 
    TABLE_COMMENT AS REMARKS 
    FROM INFORMATION_SCHEMA.TABLES WHERE 
    TABLE_SCHEMA LIKE #schema# AND TABLE_NAME LIKE #table# AND TABLE_TYPE IN ('BASE TABLE','VIEW','TEMPORARY') 
    ORDER BY TABLE_TYPE, TABLE_SCHEMA, TABLE_NAME
  2. 使用show命令查询对应的meta信息
    SHOW TABLES from retl like 'columns';
    show full columns from columns from retl like 'text%' ;

具体的getTables,getColumns,getPrimaryKeys的实现就不一一贴了,有兴趣的可以自己去看看

优化方案

目前我们新老系统分别使用了ddlutilsschemacrawler两种tablemeta分析方案,最终都是基于DatabaseMetaData进行数据获取。

  • ddlutils:版本1.0(比较早的版本,目前最新为1.3)
  • schemacrawler:版本8.7

两者在实现上没有本质的区别,只不过在schemacrawler在meta信息的获取上可自定义性更强,比如你只关注table,不关注columns,primarykeys,foreignkey等,都可以通过SchemaCrawlerOptions进行指定

 

schemaCrawler例子:

Connection connection = dataSource.getConnection();
DatabaseMetaData databaseMetaData = connection.getMetaData();
String nameSpace = dataMedia.getNamespace();
String name = dataMedia.getName();
if (databaseMetaData.storesUpperCaseIdentifiers()) {// 识别大小写
	nameSpace = nameSpace.toUpperCase();
	name = name.toUpperCase();
}
if (databaseMetaData.storesLowerCaseIdentifiers()) {
	nameSpace = nameSpace.toLowerCase();
	name = name.toLowerCase();
}

final SchemaCrawlerOptions options = new SchemaCrawlerOptions();
options.setSchemaInfoLevel(SchemaInfoLevel.standard());
options.setSchemaInclusionRule(new InclusionRule(nameSpace, InclusionRule.NONE));
options.setTableInclusionRule(new InclusionRule(nameSpace + "." + name, InclusionRule.NONE));
Database database = SchemaCrawlerUtility.getDatabase(connection, options);

Schema[] schemas = database.getSchemas();

for(Schema schema : schemas) {
    for (Table table: Schema.getTables()) {
        Column[] columns = table.getColumns();
    }





}

 

分析本质,主要还是调用DatabaseMediaData进行操作

  MetadataResultSet results = null;
  results = new MetadataResultSet(getMetaData()
	.getTables(unquotedName(catalogName),
			   unquotedName(schemaName),
			   tableNamePattern,
			   TableType.toStrings(tableTypes)));// 调用getTables方法

  while (results.next())
  {
	// "TABLE_CAT", "TABLE_SCHEM"
	final String tableName = quotedName(results.getString("TABLE_NAME"));
	final TableType tableType = results.getEnum("TABLE_TYPE",TableType.unknown);
	final String remarks = results.getString("REMARKS");

	final MutableSchema schema = lookupSchema(catalogName, schemaName);
	.....
	
	if (tableInclusionRule.include(table.getFullName()))
	{
	  table.setType(tableType);
	  table.setRemarks(remarks);

	  schema.addTable(table);
	}
  }

 

通过代码分析,可以看到获取meta信息的方式,总共有3次SQL查询. 

  1. 先获取匹配的表 getTables
  2. 对应的所有字段 getColumns
  3. 获取字段的主键信息 getPrimaryKeys

因此总结一下优化方案:

  • 因为我们是精确的table匹配,所以第一次的匹配表查询SQL可以避免。如果需要优化需要copy schemacrawl的部分代码进行优化。(少一次SQL查询,不过会给代码带来一定的维护成本)
  • oracle driver中针对同义词表的查询,在整个查询过程中都会去关联all_synonyms表,影响查询性能。(不过后续otter4.0上线后,可以支持非同名表的查询,以后可以逐步废弃同义词表的使用,从而优化meta信息的查询)
  • oracle/mysql driver在查询所有字段上都支持批量查询多个表,即意味着我们可以一次性查询相同schema下的所有同步表的信息。 (调整有一定的成本,需要完全自己解析ResultSet的结果对象,支持将Result解析为多个 Table)

最后

本文可能对他人借鉴意义并不是非常大,只为自己做一下记录,项目第一个版本上线后再来做一下对应的优化方案。优化无止境,fighting!!!!!

  • 大小: 11 KB
分享到:
评论
1 楼 sillydog825 2011-12-21  
谢谢,对我很有帮助!

相关推荐

    C#编程 数据库操作应用 Database(源码)(源码)

    C#编程 数据库操作应用 Database(源码)(源码)C#编程 数据库操作应用 Database(源码)(源码)C#编程 数据库操作应用 Database(源码)(源码)C#编程 数据库操作应用 Database(源码)(源码)C#编程 数据库操作应用 Database...

    Android多线程操作sqlite(Sqlite解决database locked问题)

    它是一个轻量级的数据库系统,支持多种数据库操作,如创建、查询、更新和删除数据。然而,在多线程环境中,由于并发访问数据库,可能会遇到“database locked”(数据库被锁定)的问题。本文将深入探讨如何在Android...

    AccessDatabaseEngine (2016,2010)

    安装AccessDatabaseEngine时,需要注意以下几点: - 安装前确保操作系统与安装程序版本匹配。 - 如果系统中已经安装了早期版本,建议先卸载,以避免版本冲突。 - 安装过程中,选择适合的应用范围,如“所有用户”或...

    C# Database操作类

    方便的数据库操作类! 可利用数据库存储过程,方便快捷地实现数据库操作。该类封装完美

    Office 2007 Access Database Engine

    在实际开发中,为了确保程序的兼容性和稳定性,需要注意以下几点: 1. **版本匹配**:确保使用的Access Database Engine版本与Access数据库文件的版本相匹配。 2. **64位与32位**:根据你的应用程序和操作系统是32位...

    AccessDatabaseEngine 2007

    AccessDatabaseEngine 2007是微软发布的一款重要的数据库引擎,主要用于支持对Access数据库(.mdb和.accdb格式)的读写操作。这个组件在多种场景下都扮演着关键角色,比如在没有完整安装Microsoft Office的情况下,...

    LabVIEW Database Connectivity Toolkit

    LabVIEW Database Connectivity Toolkit是一款专为2012版LabVIEW设计的数据连接工具,它允许用户通过图形化编程环境与各种类型的数据库进行交互,从而实现数据的读取、写入、更新和删除等操作。这款工具包极大地简化...

    Database4.zip

    数据库工具Database4,各种数据库连接方便; 数据库工具Database4,各种数据库连接方便; 数据库工具Database4,各种数据库连接方便; 数据库工具Database4,各种数据库连接方便; 数据库工具Database4,各种数据库连接...

    Database Navigator(Androidstudio)

    以下是关于Database Navigator的一些关键知识点: 1. **SQLite数据库**:SQLite是Android系统内置的关系型数据库管理系统,用于存储应用程序的数据。它轻量级、易于使用且无需单独的服务器进程,适合移动设备的资源...

    AccessDatabaseEngine.exe

    标题中的"AccessDatabaseEngine.exe"是指微软公司提供的一个数据库引擎,用于与Access数据库进行交互。在Windows操作系统中,这个程序通常用于处理以.MDB或.ACE为扩展名的Access数据库文件。当用户尝试连接到Access...

    Labview 2018 Database Connectivity Toolkit (32bits)

    9. **应用示例**:为了帮助用户快速上手,Labview 2018 Database Connectivity Toolkit通常会包含一些示例VI,展示如何连接数据库、执行查询以及处理结果集等基本操作,为初学者提供指导。 10. **兼容性**:尽管此...

    DataBase 5.0_database:5_数据库、文件_

    在"DataBase 5.0_database:5_数据库、文件_"这个主题中,我们将深入探讨数据库的基本概念、数据库管理系统(DBMS)以及如何对文本表格数据进行操作。 数据库是一种有组织地存储和检索数据的系统,它可以视为一个...

    AccessDatabaseEngine 32位+64位

    安装AccessDatabaseEngine时,用户需要注意以下几点: 1. 选择正确的版本:根据你的操作系统是32位还是64位来选择合适的安装文件。 2. 兼容性问题:确保安装的版本与你的Office版本相匹配,避免可能出现的兼容性问题...

    FUNDAMENTALS OF Database Systems 第7版

    database systems and database applications. Our presentation stresses the funda- mentals of database modeling and design, the languages and models provided by the database management systems, and ...

    解决office2007安装AccessDatabaseEngine_X64冲突的方法

    - **7-Zip**:这是一款免费的文件压缩和解压软件,用于打开和提取MSI安装包的内容。你可以从提供的链接(http://dl.pconline.com.cn/html_2/1/74/id=307&pn=0.html)下载并安装7-Zip。 - **ORCA**:这是微软提供的...

    好用数据库工具Database4

    1. 数据浏览与编辑:Database4提供直观的数据查看器,用户可以方便地浏览、编辑数据库中的数据,包括增删改查等基本操作,同时还支持数据过滤、排序、分组等功能,极大地提升了数据处理的效率。 2. SQL编辑器:内置...

    AccessDatabaseEngine2010_X86

    标题“AccessDatabaseEngine2010_X86”所指的是微软的一个重要组件,它用于处理与Access数据库相关的数据操作,特别是在使用OLEDB技术进行Excel和Word的数据导入导出时。这个组件是Microsoft Access Database Engine...

    AccessDatabaseEngine 2007.zip

    AccessDatabaseEngine 2007 是微软发布的一款用于处理和访问Microsoft Access数据库的组件,它主要包含Access Database Engine (ACE)。这个组件是OleDb驱动程序的一种,允许开发者通过编程接口(如OLE DB或ODBC)...

    AccessDatabaseEngine2016_X64

    标题“AccessDatabaseEngine2016_X64”指的是Microsoft Access Database Engine 2016 64位版本,这是一个重要的数据库组件,主要用于处理和操作Access格式的数据库,包括.mdb和.accdb文件。该组件提供了对数据的访问...

Global site tag (gtag.js) - Google Analytics