来源:http://blog.csdn.net/duzhi5368/archive/2008/04/22/2314232.aspx
http://www.blogjava.net/supercrsky/articles/202544.html Java 观察者模式的浅析
使用设计模式来提高程序库的重复利用性是大型程序项目开发必须的。但是在“四人帮”的设计模式概述中提到了23种标准设计模式,不但难以记住,而且有些设计模式更多的适用于应用程序开发,对游戏项目引擎设计并没有很多的利用价值。根据经验,精挑细选后,笃志在这里记录一些自认为有利用价值的设计模式,以便之后自己设计时使用。
一:观察者Observer
观察者的设计意图和作用是: 它将对象与对象之间创建一种依赖关系,当其中一个对象发生变化时,它会将这个变化通知给与其创建关系的对象中,实现自动化的通知更新。
游戏中观察者的适用环境有:
1:UI控件管理类。当我们的GUI控件都使用观察者模式后,那么用户的任何界面相关操作和改变都将会通知其关联对象-----我们的UI事件机。
2:动画管理器。很多时候我们在播放一个动画桢的时候,对其Frame有很大兴趣,此时我们设置一个FrameLister对象对其进行监视,获得我们关心的事件进行处理是必须的。
观察者伪代码:
// 被观察对象目标类Class Subject{ // 对本目标绑定一个观察者 Attach( Observer ); // 解除一个观察者的绑定 DeleteAttach( Observer ); // 本目标发生改变了,通知所有的观察者,但没有传递改动了什么 Notity() { For ( …遍历整个ObserverList …) { pObserver ->Update(); } } // 对观察者暴露的接口,让观察者可获得本类有什么变动GetState();}//-------------------------------------------------------------------------------------------------------// 观察者/监听者类Class Observer{ // 暴露给对象目标类的函数,当监听的对象发生了变动,则它会调用本函数通知观察者 Void Update () { pSubject ->GetState(); // 获取监听对象发生了什么变化 TODO:DisposeFun(); // 根据状态不同,给予不同的处理 }}
非程序语言描述:
A是B的好朋友,对B的行为非常关心。B要出门,此时A给了B一个警报器,告诉B说:“如果你有事,立刻按这个警报器告诉我。”。结果B在外面遇上了麻烦,按下警报器(Update()),B就知道A出了事,于是就调查一下B到底遇到了什么麻烦(GetState()),当知道B原来是因为被人打了,于是立刻进行处理DisposeFun(),派了一群手下帮B打架。
当然关心A的人可以不止一个,C,D可能也对A很关心,于是A这里保存一个所有关心它的人的链表,当遇到麻烦的时候,轮流给每个人一份通知。
二:单件模式Singleton
单件模式的设计意图和作用是: 保证一个类仅有一个实例,并且,仅提供一个访问它的全局访问点。
游戏中适用于单件模式的有:
1:所有的Manger。在大部分的流行引擎中都存在着它的影子,例如SoundManager, ParticeManager等。
2:大部分的工厂基类。这一点在大部分引擎中还是见不到的,实际上,我们的父类工厂采用唯一实例的话,我们子类进行扩展时也会有很大方便。
单件模式伪代码:
Class Singleton{ Static MySingleton; // 单件对象,全局唯一的。 Static Instance(){ return MySingleton;} // 对外暴露接口}
三:迭代器Iterator
迭代器设计意图和作用是: 提供一个方法,对一个组合聚合对象内各个元素进行访问,同时又不暴露该对象类的内部表示。
游戏中适用于迭代器模式的有: 因为STL的流行,这个设计已经广为人知了,我们对任何形式的资源通一管理时,不免会将其聚合起来,或者List,或者Vector,我们都需要一个对其进行访问的工具,迭代器无疑是一个利器。
迭代器伪代码:
// 迭代器基类Class Iterator{ Virtual First(); Virtual Next(); Virtual End(); Virtual CurrentItem(); // 返回当前Item信息}//-----------------------------------------------------------------------------------// 聚合体的基类Class ItemAggregate{ Virtual CreateIterator(); // 创建访问自身的一个迭代器}//-----------------------------------------------------------------------------------// 实例化的项目聚合体Class InstanceItemAggregate : public ItemAggregate{ CreateIterator(){ return new InstanceIterator(this); }}
四:访问者模式Visitor:
访问者设计意图和作用是: 当我们希望对一个结构对象添加一个功能时,我们能够在不影响结构的前提下,定义一个新的对其元素的操作。(实际上,我们只是把对该元素的操作分割给每个元素自身类中实现了而已)
游戏中适用于访问者模式的有: 任何一个比较静态的复杂结构类中都适合采用一份访问者。这里的“比较静态的复杂结构类”意思是,该结构类中元素繁多且种类复杂,且对应的操作较多,但类很少进行变化,我们就能够将,对这个结构类元素的操作独立出来,避免污染这些元素对象。
1:例如场景管理器中管理的场景节点,是非常繁多的,而且种类不一,例如有Ogre中的Root, Irrchit中就把摄象机,灯光,Mesh,公告版,声音都做为一种场景节点,每个节点类型是不同的,虽然大家都有共通的Paint(),Hide()等方法,但方法的实现形式是不同的,当我们外界调用时需要统一接口,那么我们很可能需要需要这样的代码
Hide( Object )
{ if (Object == Mesh) HideMesh(); if (Object == Light) HideLight(); … }
此时若我们需要增加一个Object新的类型对象,我们就不得不对该函数进行修正。而我们可以这样做,让Mesh,Light他们都继承于Object,他们都实现一个函数Hide(),那么就变成
Mesh::Hide( Visitor ) { Visitor.Hide (Mesh); }
Light::Hide(Visitor ){ Visitor.Hide (Light); }
我们在调用时只需要Object.Hide(Visitor){ return Visitor.Hide(Object); }
这样做的好处,我们免去了对重要函数的修正,Object.Hide(Visitor){}函数我们可以永久不变,但是坏处也是很明显的,因为将方法从对象集合结构中抽离出来,就意味着我们每增加一个元素,它必须继承于一个抽象的被访问者类,实现其全部函数,这个工作量很大。
所以,访问者是仅适合于一个装载不同对象的大容器,但同时又要求这个容器的元素节点不应当有大的变动时才使用。另外,废话一句,访问者破坏了OO思想的。
访问者伪代码:
// 访问者基类Class Visitor{ Virtual VisitElement( A ){ … }; // 访问的每个对象都要写这样一个方法 Virtual VisitElement( B ){ … };}// 访问者实例AClass VisitorA{ VisitElement( A ){ … }; // 实际的处理函数 VisitElement( B ){ … }; // 实际的处理函数}// 访问者实例BClass VisitorB{ VisitElement( A ){ … }; // 实际的处理函数 VisitElement( B ){ … }; // 实际的处理函数}// 被访问者基类Class Element{ Virtual Accept( Visitor ); // 接受访问者}// 被访问者实例AClass ElementA{ Accecpt( Visitor v ){ v-> VisitElement(this); }; // 调用注册到访问者中的处理函数}// 被访问者实例BClass ElementB{ Accecpt( Visitor v ){ v-> VisitElement(this); }; // 调用注册到访问者中的处理函数}
五:外观模式Facade
外观模式的设计意图和作用是: 将用户接触的表层和内部子集的实现分离开发。实际上,这个模式是个纸老虎,之后我们看伪代码立刻就会发现,这个模式实在用的太频繁了。
游戏中需要使用外观模式的地方是: 这个非常多了,举几个比较重要的。
1:实现平台无关性。跨平台跨库的函数调用。
2:同一个接口去读取不同的资源。
3:硬件自动识别处理系统。
外观模式伪代码
// 用户使用的接口类Class Interface{ // 暴露出来的函数接口函数,有且仅有一个,但内部实现是调用了两个类 Void InterfaceFun() { // 根据某种条件,底层自主的选择使用A或B的方法。用户无须关心底层实现 If ( XXX ) { ActualA->Fun(); } Else { ActualB->Fun(); } }; }// 实际的实现,不暴露给用户知道Class ActualA{ Void Fun();}// 实际的实现,不暴露给用户知道Class ActualB{ Void Fun();}
怎么样,纸老虎吧,看起来很高深摸测的命名而已。
六:抽象工厂模式AbstractFactory
抽象工厂的设计意图和作用是: 封装出一个接口,这个接口负责创建一系列互相关联的对象,但用户在使用接口时不需要指定对象所在的具体的类。从中文命名也很容易明白它是进行批量生产的一个生产工厂的作用。
游戏中使用抽象工厂的地方有: 基本上任何有批量的同类形式的子件地方就会有工厂的存在。(补充一句:下面代码中的ConcreteFactory1实例工厂就是工厂,而抽象工厂仅仅是工厂的一个抽象层而已。)
1:例如,在音频方面,一个音频的抽象工厂派生出不同的工厂,有音乐工厂,音效工厂。音效工厂中又有一个创建3D音效节点的方法,一个创建普通音效节点的方法。最终用户只需要SoundFactory->Create3DNode( pFileName );就可以创建一个节点了。
2:场景对象。
3:渲染对象。
4:等等……
工厂与单件,管理器Manager关系一定是非常紧密的。
抽象工厂伪代码:
class AbstractProductA {}; // 抽象的产品A基类 class AbstractProductB {}; //抽象的产品B基类// 抽象工厂基类 class AbstractFactory{public: virtual AbstractProductA* CreateProductA() = 0 ;// 创建ProductA virtual AbstractProductB* CreateProductB() = 0 ;// 创建ProductB} ;class ProductA1 : public AbstractProductA {}; // 产品A的实例1 class ProductA2 : public AbstractProductA {}; // 产品A的实例2class ProductB1 : public AbstractProductB {}; // 产品B的实例1 class ProductB2 : public AbstractProductB {}; // 产品B的实例2// 实例工厂1 class ConcreteFactory1 : public AbstractFactory{ virtual AbstractProductA* CreateProductA() { return new ProductA1() ; } virtual AbstractProductB* CreateProductB() { return new ProductB1() ; } static ConcreteFactory1* Instance() { } // 实例工厂尽量使用单件模式} ;// 实例工厂2 class ConcreteFactory2 : public AbstractFactory{ virtual AbstractProductA* CreateProductA() { return new ProductA2() ; } virtual AbstractProductB* CreateProductB() { return new ProductB2() ; } static ConcreteFactory2* Instance() {} // 实例工厂尽量使用单件模式} ;}
客户端代码:
Void main(){ AbstractFactory *pFactory1 = ConcreteFactory1::Instance() ; AbstractProductA *pProductA1 = pFactory1->CreateProductA() ; AbstractProductB *pProductB1 = pFactory1->CreateProductB() ; AbstractFactory *pFactory2 = ConcreteFactory2::Instance() ; AbstractProductA *pProductA2 = pFactory2->CreateProductA() ; AbstractProductB *pProductB2 = pFactory2->CreateProductB() ;}
分享到:
相关推荐
以下是RC滤波、LC滤波、CRC滤波、CLC滤波、DLC滤波、LCL滤波的概述: RC滤波 原理:利用电阻(R)和电容(C)对不同频率信号的阻抗变化来实现滤波。低频信号下,电容充电和放电较慢,对信号形成阻碍;高频信号下,电容能够快速充放电,对信号的阻碍较小。 类型: 低通RC滤波器:允许低频信号通过,抑制高频信号。当信号频率升高时,电容器充放电速度加快,使得高频信号在电阻两端产生压降,从而降低输出信号的幅度。 高通RC滤波器:允许高频信号通过,抑制低频信号。在低频时,电容器相当于开路,电路的大部分信号都会被电阻所吸收;在高频时,电容器相当于短路,输入信号能较完整地传到输出端。 优点:电路简单,成本低廉,易于设计和实现。 缺点:滤波效果相对较弱,对高频噪声的抑制能力有限。 应用:常用于简单的信号处理、去噪、音频系统中的低通和高通滤波等。 LC滤波 原理:基于电感(L)和电容(C)元件对频率的响应差异。电感对高频信号呈现高阻抗(近似短路),对低频信号呈现低阻抗(近似开路);电容则相反,对低频信号呈现高阻抗(近似开路),对高频信号呈现低阻抗(近似短路)。 类型: 低通滤波器:允许低频信号通过
校园服务系统 免费JAVA毕业设计 2024成品源码+论文+录屏+启动教程 启动教程:https://www.bilibili.com/video/BV1jKDjYrEz1 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
**快速进阶:西门子PLC编程高手养成记** 这个标题涵盖了您提供的文字中的关键信息,包括“西门子PLC编程”、“高手养成”等元素,同时也保持了简洁明了的风格。,如何短时间内成为西门子PLC编程高手 看这里:码垛搬运模型 【功能块】码垛搬运功能块 【品牌】西门子 【PLC】1200 【编程软件】博图v16 【编程语言】scl 【特色】以设定的上限和下限为范围,生成随机数。 可以用作模拟量仿真,方便调试程序; 学习用SCL语言编程; 作为数据源演示给领导或客户看; 可无限复制使用。 【说明】:程序不要把时间用来造轮子,这里有的你拿走,保留精力用来创造优质的功能快让你在工作中事半功倍factory Io和博途软件进行联合仿真,码垛搬运层数可以自定义设置,最大层数3,有报警显示功能,位置监视,复位,停止功能。 程序通俗易懂,规范模块化,可以随意增加新功能。 物品有,Factory IO仿真模型+博途v16安装包+博途码垛程序+HMI程序+factory IO安装包2.50版本。 ,关键词
,电机控制器,IGBT结温估算(算法+模型)国际大厂机密算法,多年实际应用,准确度良好…… 能够同时对IGBT内部6个三极管和6个二极管温度进行估计,并输出其中最热的管子对应温度。 可用于温度保护,降额,提高产品性能。 simulink模型除仿真外亦可生成代码…… 提供直流、交流两个仿真模型 提供底层算法模型库(开源,带数据 ) 提供说明文档
"COMSOL模拟:双层多孔介质中油类物质地下渗透扩散现象的时空演变研究",comsol模拟油往地下渗透现象,考虑两层多孔介质,结果显示出油随着时间逐渐向下扩散。 ,comsol模拟;油渗透;两层多孔介质;时间扩散;结果展示,COMSOL模拟两层多孔介质中油渗透扩散现象。
4b076399e3f709dc8990bd0e12720254.part7
基于深度学习的钢轨病害检测算法研究.pdf
西门子Smart200PLC与多台台达变频器实现Modbus轮询通讯:读写参数、控制启停、设置频率及电流监控实用指南,西门子smart200plc与4台台达变频器modbus轮询通讯 VFD-EL小型矢量变频器 1,读写变频器的内部参数 2,控制变频器启停,读频率电流 3,设置变频器输出频率 4,有彩色接线图,和参数设置说明, 有详细注释,简单易懂,可以学习可用项目, ,西门子Smart200PLC; Modbus轮询通讯; 变频器控制; 读写参数; 输出频率设置; 彩色接线图; 参数设置说明; 简单易懂注释。,西门子PLC与台达变频器Modbus轮询通讯项目指南
EI复现:碳减排背景下综合能源服务商合作策略的纳什谈判理论与自适应交替方向乘子法求解,EI复现: 《考虑碳减排的综合能源服务商合作运行优化策略》 纯手工复现,主要通过纳什谈判理论进行博弈,并采用自适应交替方向乘子法进行分布式求解 ,核心关键词:EI复现; 碳减排; 综合能源服务商; 合作运行优化策略; 纳什谈判理论; 博弈; 自适应交替方向乘子法; 分布式求解,EI复现:纳什谈判理论下的碳减排能源服务商合作运行优化策略
"扬子YD9850A耐压仪的LabVIEW通讯源码解析与应用",扬子YD9850A耐压仪labVIEW通讯源码 ,扬子YD9850A; 耐压仪; labVIEW通讯; 源码,扬子YD9850A耐压仪LabVIEW通讯源码
全覆盖与随机碰撞路径规划——AGV避障技术在扫地机器人移动仿真中的应用与对比,AGV全覆盖移动避障路径规划 扫地机器人路径规划 第一类算法 全覆盖智能算法 %% 基于深度优先搜索算法的路径规划—扫地机器人移动仿真 % 返回深度优先搜索实现全覆盖的运行次数 % 将栅格模型的每一个栅格看成一个点 % 实际中栅格模型是连续的,在计算机处理时看作离散的 % 将栅格模型抽象为标识矩阵,矩阵对应位置的标记表示栅格对应位置的状态 第二对比算法 %% 随机碰撞的路径规划—扫地机器人移动仿真 % 返回深度优先搜索实现全覆盖的运行次数 % 将栅格模型的每一个栅格看成一个点 % 实际中栅格模型是连续的,在计算机处理时看作离散的 % 将栅格模型抽象为标识矩阵,矩阵对应位置的标记表示栅格对应位置的状态 ,核心关键词: AGV全覆盖移动避障; 扫地机器人路径规划; 全覆盖智能算法; 深度优先搜索算法; 栅格模型; 标识矩阵。,基于全覆盖智能算法的AGV避障路径规划
"基于Matlab仿真的15kW三相离网逆变器在不对称负载下的正负序控制策略研究及其实验验证",15kW三相离网逆变器在不对称负载下的正负序控制matlab仿真 【1】卖家的研究方向,可提供简单,提供参考文献。 【2】不对称控制包括: 正序分量处理+负序分量处理+正序控制环+负序控制环; 【3】正序控制路与负序控制路都采用dq轴上的电容电压外环+电感电流内环控制; 【4】直流电压Vdc=700V,总功率15kW,LC滤波,阻性负载; 【5】轻重负载切+不对称负载投切均可稳定运行,具体波形如图所示; ,1. 15kW三相离网逆变器; 2. 不对称负载下的正负序控制; 3. MATLAB仿真; 4. 正负序分量处理; 5. 环路控制; 6. dq轴控制; 7. LC滤波; 8. 阻性负载; 9. 轻重负载切换; 10. 不对称负载投切稳定运行。,15kW三相离网逆变器的不对称负载控制Matlab仿真研究
电影数据分析及可视化系统 免费Python毕业设计 2024成品源码+论文+录屏+启动教程 启动教程:https://www.bilibili.com/video/BV1jKDjYrEz1 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
"COMSOL光学模型解析:点光源与平面波穿越透镜的动态演变过程",COMSOL光学模型演示:点光源和平面波穿过透镜动态过程 ,COMSOL光学模型;点光源;平面波;透镜;动态过程,COMSOL透镜中光波动态传播模型演示
"基于CEEMD-GWO-SVM算法的时间序列预测:风电、光伏、负荷预测通用解决方案",基于CEEMD+GWO+SVM的时间序列预测,风电,光伏,负荷预测,替数据就可以使用。 ,CEEMD; GWO; SVM; 时间序列预测; 风电; 光伏; 负荷预测; 替换数据,基于CEEMD-GWO-SVM算法的能源时间序列预测模型
基于85三菱组态王PLC的药片装瓶自动控制系统的设计与实现,85三菱组态王基于PLC的药片装瓶自动控制系统 ,基于该内容,核心关键词可以是:85三菱组态王;PLC;药片装瓶;自动控制系统。这些关键词用分号分隔的结果为:85三菱组态王; PLC; 药片装瓶; 自动控制系统。,基于PLC的85三菱组态王药片装瓶自动控制系统
《CARSIM与Simulink联合仿真:实现变道及复杂路径规划的MPC轨迹跟踪算法》,carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 可选simulink版本和c++版本算法(价格一样,如需要2个版本多加30元) 可以适用于弯道道路,弯道车道保持,弯道变道 carsim内规划轨迹可视化 Carsim2020.0 Matlab2017b (可安装包) ,汽车仿真联合;变道与轨迹规划;MPC轨迹跟踪算法;路径规划算法;Carsim2020.0版使用。,"Carsim与Simulink联合仿真:变道与轨迹跟踪算法实现"
在tf.Keras中使用Scikit-Learn优化模型
基于EEMD-PCA-LSTM的优化模型:特征处理与预测效果提升的新方法,EEMD-PCA-LSTM(集合经验模态分解-主成分分析-长短期记忆网络) 将输入特征进行EEMD分解后,通过KPCA判定分解分解累计贡献率,将大于98%的作为新的输入特征同预测序列导入到LSTM进行预测。 与LSTM、EEMD-LSTM进行对比,预测效果获得提升。 该模型可提升度高。 ,EEMD; PCA; LSTM; 特征处理; 预测效果提升; 模型可提升度高,EEMD-PCA-LSTM混合模型:预测效果提升显著的可提升模型
shopping_basket.xlsx