`

网页去重

阅读更多

搜索引擎判断复制网页一般都基于这么一个思想:为每个网页计算出一组信息指纹(Fingerprint) ,若两个网页有一定数量相同的信息指纹,则认为这两个网页的内容重叠性很高,也就是说两个网页是内容复制的。

很多搜索引擎判断内容复制的方法都不太一样,主要是以下两点的不同:

1、计算信息指纹(Fingerprint) 的算法;
2、判断信息指纹的相似程度的参数。

在描述具体的算法前,先说清楚两点:
1、什么是信息指纹? 信息指纹就是把网页里面正文信息,提取一定的信息,可以是关键字、词、句子或者段落及其在网页里面的权重等,对它进行加密,如MD5加密,从而形成的一个字符串。信息指纹如同人的指纹,只要内容不相同,信息指纹就不一样。
2、算法提取的信息不是针对整张网页,而是把网站里面共同的部分如导航条、logo、版权等信息(这些称之为网页的“噪音”)过滤掉后剩下的文本。

分段签名算法

这种算法是按照一定的规则把网页切成N段,对每一段进行签名,形成每一段的信息指纹。如果这N个信息指纹里面有M个相同时(m是系统定义的阙值),则认为两者是复制网页。

这种算法对于小规模的判断复制网页是很好的一种算法,但是对于像google这样海量的搜索引擎来说,算法的复杂度相当高。

基于关键词的复制网页算法

像google这类搜索引擎,他在抓取网页的时候都会记下以下网页信息:

1、网页中出现的关键词(中文分词技术)以及每个关键词的权重(关键词密度);
2、提取meta descrīption或者每个网页的512个字节的有效文字。
关于第2点,baidu和google有所不同,google是提取你的meta descrīption,如果没有查询关键字相关的512个字节,而百度是直接提取后者。这一点大家使用过的都有所体会。

在以下算法描述中,我们约定几个信息指纹变量:

Pi表示第i个网页;
该网页权重最高的N个关键词构成集合Ti={t1,t2,...tn},其对应的权重为Wi={w1,w2,...wi}
摘要信息用Des(Pi)表示,前n个关键词拼成的字符串用Con(Ti)表示,对这n个关键词排序后形成的字符串用Sort(Ti)表示。

以上信息指纹都用MD5函数进行加密。

基于关键词的复制网页算法有以下5种:
1、MD5(Des(Pi))=MD5(Des(Pj)) ,就是说摘要信息完全一样,i和j两个网页就认为是复制网页;
2、MD5(Con(Ti))=MD5(Con(Tj)) ,两个网页前n个关键词及其权重的排序一样,就认为是复制网页;
3、MD5(Sort(Ti))=MD5(Sort(Tj)) ,两个网页前n个关键词一样,权重可以不一样,也认为是复制网页。
4、MD5(Con(Ti))=MD5(Con(Tj))并且Wi-Wj的平方除以Wi和Wj的平方之和小于某个阙值a ,则认为两者是复制网页。
5、MD5(Sort(Ti))=MD5(Sort(Tj))并且Wi-Wj的平方除以Wi和Wj的平方之和小于某个阙值a ,则认为两者是复制网页。

关于第4和第5的那个阙值a,主要是因为前一个判断条件下,还是会有很多网页被误伤,搜索引擎开发根据权重的分布比例进行调节,防止误伤。

这 个是北大天网搜索引擎的去重算法(可以参考:《搜索引擎--原理、技术与系统》一书),以上5种算法运行的时候,算法的效果取决于N,就是关键词数目的选 取。当然啦,选的数量越多,判断就会越精确,但是谁知而来的计算速度也会减慢下来。所以必须考虑一个计算速度和去重准确率的平衡。据天网试验结果,10个 左右关键词最恰当。


网页去重的算法

1. I-Match

2. Shingliing

3. SimHashing( locality sensitive hash)

4. Random Projection

5. SpotSig

6. combined

I-Match算法
I-Match算法有一个基本的假设说:不经常出现的词和经常出现的词不会影响文档的语义,所以这些词是可以去掉的。
算法的基本思想是:将文档中有语义的单词用hash的办法表示成一个数字,数字的相似性既能表达文档的相似性
算法的框架是:
1. 获取文档(或者是主体内容)
2. 将文档分解成token流,移除格式化的标签
3. 使用term的阈值(idf),保留有意义的tokens
4. 插入tokens到升序排列的排序树中
5. 对每一个token,相加得到一个hash值,知道文档结束为止
6. 将元组(doc_id,SHA hash) 插入到某一词典中,如果词典有冲突,这两个文档相似。

算法有一个缺点是稳定性差。如果文档的某个词改变了,最终的hash值就会发生显著的变化。对空文档,算法是无效的。
有一个解决办法是,用随机化的方法,参考Lexicon randomization for near-duplicate detection with I-Match。具体细节这里就不提了

Shingling算法
Shingling算法说,I-Match以词为单位做hash显然是不准确的,因为它忽略了文档之间书顺序。另,一个Shingle为连续的若干个单词的串。
Shingling算法有个很少神奇的数学背景。如果一个shingle的长度为k,那么长度为n的文档就有n-k+1个shingle,每一个 shingle可以用MD5或者其他算法表示成一个fingerprint,而两个文档的相似性Jacard相似性来表示,Jarcard公式是指两个集 合的相似性=集合之交/集合之并。为了估计两个文档的相似性,有时候n-k+1个fingerprint还是太大了,所以取m个fingerprint函 数,对每一个函数fi,都可以计算出n-k+1个fingerprint,取其中的最小的fingerprint,成为i-minvalue. 那么一个文档机会有m个i-minvalue。数学上,Broder大师说:

              平均来讲,两个文档中相同的唯一single的比率和两个文档中相同的i-minvalue的比率是一样的

Shingling的算法框架是:
1. 获取文档(或者是主体内容)
2. 将文档分解成n-k+1个shingle,取m个fingerprint函数,对每一个fingerpint函数计算i-minvalue值
3. 将m个i-minvalue值组合成更少m’个surpersingle
4.计算两个文档相同的surpergingle的个数a。
5. 如果a大于某一个值b(say:2),那么两个文档Jarcard 相似

一般的参数设置为:m=84,m’=6,b=2

SimHash 算法

locality sensitive hash算法博大精深。基本思想是,如果两个东西相似,我可以用一个hash函数把他们投影到相近的空间中LSH。用到near duplication detection上,算法框架是:
1. 将文档转换为特征的集合,每一个特征有一个权重
2. 利用LSH函数把特征向量转换为f位的fingerprint,如:64
3. 查找fingerprint的海明距离

haha,看,多么简单和明朗,这里的几个问题及时寻找正确的LSH

Random Projection算法
shingling关注了文档顺序,但是忽略了文档单词出现的频率,random projection说我要讨论文档的频率。

Random Projection也是很有意思的一种算法,它是一种随机算法。简单描述为:
1. 将每一个token映射到b位的空间。每一个维度是由{-1,1}组成。对所有页面投影函数是一样的
2. 每一个页面的b维度向量,是所有token的投影的简单加和
3. 最后把b维向量中的正数表示为1,负数和0都写成0
4. 比较两个page的b维向量一致的个数

Charikar最牛的地方是,证明,两个b位变量一致的位数的比率就是文档向量的consine相似性。这里的数学基础还是很有意思的,如果感兴趣,可以参考M.S. Charikar. Similarity Estimation Techniques for Rounding Algorithm(May 2002)

SpotSig算法

ref:SpotSigs:Robust and Efficient Near Duplicate Detection in Large Web Collection
SpotSig是个比较有意思的算法,它说,我为什么要关注所有的单词啊,我要关注的单词是有语义的词,哪些是有语义的词呢?哦,想 the a this an 的等虚词后面的就是我要关注的东西罗。Spot就是指这些虚词的后面的词串。然后呢,每一个文档我都有很多很多Spot了,现在一个文档就是一个Spot 的集合,两个文档是相似程度就是集合的Jaccard相似度。算法虽然简单,但是我想重点是两个比较有借鉴意义的工程上的性能考虑。

        1. Optimal Partition

        Sim(A,B) = | A B交集| / | A B 并集| <= min(A,B)/max(A,B) <= |A|/|B| say: |A|<|B|

好了,这是一个很好的枝剪条件,如果文档spot vector的个数比小于某个值(当然是,小 / 大),就可以完全不用求交,并了。Optimal Partition就是说,好啊,我把每一个文档的spot vector的长度都投影到相应的从小到大的bucket中,保证|d1|/|d2| >=r if |d1| < |d2| . 且不存在这样的反例。另一个保证是这个bucket是满足条件的最小的。有了这个partition,我们最多只用关心相邻的三个bucket了

    2. Inverted Index Pruning

    说,两个文档,如果能相似,起码有一个公共的spot。逆向索引说的就是把spot做为index,包含它的所有文档作为其value。

有了这两个工具,计算复杂度可以明显下降,因为它不会计算不能是duplication的文档。

转自:http://blog.sina.com.cn/s/blog_48299b340100jsfg.html

分享到:
评论

相关推荐

    基于新闻网页主题要素的网页去重方法研究

    ### 基于新闻网页主题要素的网页去重方法研究 #### 概述 随着互联网技术的迅猛发展,网络信息量急剧增长,其中新闻类网页是互联网上信息的重要组成部分之一。由于新闻信息的时效性和重要性,很多新闻事件会被多家...

    网页去重:搜索引擎重复网页发现技术分析

    网页去重是搜索引擎技术中的重要环节,旨在消除网络上的重复内容,提高搜索质量和效率。本文主要探讨了搜索引擎如何发现和处理重复网页,包括技术分析、基本处理流程和现有方法的分类。 首先,介绍中提到了四种类型...

    基于特征句抽取的网页去重研究

    ### 基于特征句抽取的网页去重研究:一项深度探索 #### 摘要与背景 在信息爆炸的时代背景下,互联网成为人们获取信息的主要渠道。然而,互联网上信息的重复性问题日益严重,这不仅增加了搜索引擎的负担,降低了...

    论文研究-基于词语权重的改进DSC中文网页去重算法 .pdf

    标题《论文研究-基于词语权重的改进DSC中文网页去重算法.pdf》表明本文主要研究的对象是中文网页去重领域中的算法改进。具体来说,作者屠辉和刘刚在已有的DSC(Dynamic Self-Clustering)网页去重算法基础上,引入了...

    大规模网页快速去重算法

    综上所述,哈尔滨工业大学信息检索研究室提出的大规模网页快速去重算法,通过创新的特征码技术与B-Tree索引策略,成功解决了传统聚类方法在处理大规模网页去重问题上的局限,展现了卓越的处理能力和精确度,对优化...

    网页去重策略(基于特征向量的算法)

    【网页去重策略】是指在搜索引擎或其他数据抓取系统中,为了避免下载和处理重复的网页内容,采取的一种技术手段。这种策略通常分为两步:同源网页去重和内容去重。 1. **同源网页去重**: 同源网页去重主要通过...

    基于特征码的网页去重算法研究

    ### 基于特征码的网页去重算法研究 #### 数据挖掘与搜索引擎理论框架 本文主要探讨了数据挖掘和搜索引擎的理论框架,并针对如何去除内容重复的冗余网页进行了深入研究。数据挖掘作为一门跨学科的技术领域,其目的...

    布隆过滤器在网页去重中的应用

    布隆过滤器在网页去重中的应用 , 海量数据处理中的一个绝好应用

    网页去重-算法篇1

    网页去重是互联网数据处理中的一个重要任务,目的是识别并消除重复或近似的网页内容。本文主要探讨了六种用于网页去重的算法:I-Match、Shingling、SimHashing(局部敏感哈希)、Random Projection以及SpotSig和...

    网页去重的改进算法

    网页去重是互联网信息处理的关键技术,主要目的是消除大量网页中的重复内容,提高信息检索的效率和准确性。传统的网页去重算法可能无法有效处理复杂的网页相似性问题,因此需要不断改进和优化。本文提出的"网页去重...

    基于Python的Simhash网页去重方法源代码+使用说明

    使用指南 按 CTRL + P 打开命令行面板,输入 "terminal: Create New Terminal" 打开一个命令行终端. 在命令行里输入 cd 1_算法示例 并按 ENTER 进入"算法示例"目录。 在命令行里输入 python solution.py 按 ENTER ...

    一种基于文本抽取的网页正文去重算法

    为了有效地实现网页正文去重,本研究设计了一个网页去重系统,其主要结构包括以下几个关键步骤: 1. **预处理阶段**:提取网页正文信息,屏蔽掉网页标题、导航栏等非正文内容。 2. **特征码生成**:根据提取出的...

    去除重复网页的改进方法

    因此,开发一种高效、准确的网页去重算法显得尤为重要。 #### 特征码方法介绍及其缺陷 ##### 相同网页的定义 相同网页通常指的是那些在内容上基本一致的网页。在实际应用中,考虑到不同网站在转载时可能对原始...

    读书笔记《自己动手写网络爬虫》,自己敲的代码。主要记录了网络爬虫的基本实现,网页去重的算法,网页指纹算法,文本信息挖掘.zip

    其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始...

Global site tag (gtag.js) - Google Analytics