`
7090
  • 浏览: 279560 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

(转)android proc 进程信息解析

阅读更多
原文:http://bigfirebird.iteye.com/blog/767380


如何查看ANDROID进程信息呢,可以先进入ADB SHELL,然后在PROC文件夹下,有很多对应进程ID号的子文件夹,进入对应的文件夹内,可以看到有以下信息,就可以查询到你的进程信息了。参数如下:


/proc//maps
查看进程的虚拟地址空间是如何使用的。
该文件有6列,分别为:
地址:库在进程里地址范围
权限:虚拟内存的权限,r=读,w=写,x=,s=共享,p=私有;
偏移量:库在进程里地址范围
设备:映像文件的主设备号和次设备号;
节点:映像文件的节点号;
路径: 映像文件的路径
每项都与一个vm_area_struct结构成员对应,
范例:
应用程序的正文段(权限为r-xp)从0x08048000到0x08049000,大小为4096;数据段从0x08049000到 0x0804a000,大小为1KB。该应用程序使用了两个库:lib和libc。Libc 的正文段从0x00391000到0x004b4000,大小为1164KB;数据段从0x004b5000到0x004b8000,大小为12KB.
Ld 的正文段从00378000到0038d000,大小为84KB;数据段从0x0038e000到0x0038f000,大小为4KB。该应用程序所使用 的库所占的虚拟空间的大小从0x4b8000到0x378000,大小为1280KB,其实真正大小为VmLib(1251KB);因为是按页分配,每页 大小为4KB。

[root@localhost ~]# cat /proc/7114/maps
08047000-080dc000 r-xp 00000000 03:06 884901 /bin/bash
080dc000-080e3000 rwxp 00094000 03:06 884901 /bin/bash
080e3000-08129000 rwxp 080e3000 00:00 0 [heap]
4d575000-4d58a000 r-xp 00000000 03:06 736549 /lib/ld-2.3.4.so
4d58a000-4d58b000 r-xp 00015000 03:06 736549 /lib/ld-2.3.4.so
4d58b000-4d58c000 rwxp 00016000 03:06 736549 /lib/ld-2.3.4.so
4d58e000-4d6b1000 r-xp 00000000 03:06 736550 /lib/tls/libc-2.3.4.so
4d6b1000-4d6b2000 r-xp 00123000 03:06 736550 /lib/tls/libc-2.3.4.so
4d6b2000-4d6b5000 rwxp 00124000 03:06 736550 /lib/tls/libc-2.3.4.so
4d6b5000-4d6b7000 rwxp 4d6b5000 00:00 0
4d6de000-4d6e0000 r-xp 00000000 03:06 736552 /lib/libdl-2.3.4.so
4d6e0000-4d6e2000 rwxp 00001000 03:06 736552 /lib/libdl-2.3.4.so
4d807000-4d80a000 r-xp 00000000 03:06 736567 /lib/libtermcap.so.2.0.8
4d80a000-4d80b000 rwxp 00002000 03:06 736567 /lib/libtermcap.so.2.0.8
b7bf2000-b7c1e000 r-xp 00000000 03:06 881337 /usr/lib/gconv/GB18030.so
b7c1e000-b7c20000 rwxp 0002b000 03:06 881337 /usr/lib/gconv/GB18030.so
b7c20000-b7c26000 r-xs 00000000 03:06 881502 /usr/lib/gconv/gconv-modules.cache
b7c26000-b7d2f000 r-xp 02197000 03:06 852489 /usr/lib/locale/locale-archive
b7d2f000-b7f2f000 r-xp 00000000 03:06 852489 /usr/lib/locale/locale-archive
b7f2f000-b7f38000 r-xp 00000000 03:06 734450 /lib/libnss_files-2.3.4.so
b7f38000-b7f3a000 rwxp 00008000 03:06 734450 /lib/libnss_files-2.3.4.so
b7f3a000-b7f3c000 rwxp b7f3a000 00:00 0
b7f51000-b7f52000 rwxp b7f51000 00:00 0
bfc3d000-bfc52000 rw-p bfc3d000 00:00 0 [stack]
ffffe000-fffff000 ---p 00000000 00:00 0 [vdso]
[root@localhost ~]#

参数 解释
address: 0085d000-00872000 虚拟内存区域的起始和终止地址文件所占的地址空间
perms:rw-p 权限:r=read, w=write, x=execute, s=shared, p=private(copy on write)
offset: 00000000 虚拟内存区域在被映射文件中的偏移量
dev: 03:08 文件的主设备号和次设备号
inode: 设备的节点号,0表示没有节点与内存相对应
name: /lib/ld-2.3.4.so 被映射文件的文件名

各共享库的代码段,存放着二进制可执行的机器指令,是由kernel把该库ELF文件的代码段map到虚存空间;
各共享库的数据段,存放着程序执行所需的全局变量,是由kernel把ELF文件的数据段map到虚存空间;
用户代码段,存放着二进制形式的可执行的机器指令,是由kernel把ELF文件的代码段map到虚存空间;
用户数据段之上是代码段,存放着程序执行所需的全局变量,是由kernel把ELF文件的数据段map到虚存空间;
用户数据段之下是堆(heap),当且仅当malloc调用时存在,是由kernel把匿名内存map到虚存空间,堆则在程序中没有调用malloc的情况下不存在;
用户数据段之下是栈(stack),作为进程的临时数据区,是由kernel把匿名内存map到虚存空间,栈空间的增长方向是从高地址到低地址。

[root@localhost ~]# ldd /bin/bash
linux-gate.so.1 => (0xffffe000)
libtermcap.so.2 => /lib/libtermcap.so.2 (0x4d807000)
libdl.so.2 => /lib/libdl.so.2 (0x4d6de000)
libc.so.6 => /lib/tls/libc.so.6 (0x4d58e000)
/lib/ld-linux.so.2 (0x4d575000)
[root@localhost ~]#

这个所谓的"linux-gate.so.1"的内容就是内核映射的代码,系统中其实并不存在这样一个链接 库文件,它的名字是由ldd自己起的,了0xffffe400这里的一段代码,这里就是内核为我们映射的系统调用入口代码。Mapped是该应用程序的虚 拟空间的大小,这里的值比用top 或ps都大了4KB,就是最后0xffffe400-0xffffffff的代码;shared 给出共享的虚拟空间部分。

2 /proc//stat
包含了所有CPU活跃的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。

[root@localhost ~]# cat /proc/6873/stat
6873 (a.out) R 6723 6873 6723 34819 6873 8388608 77 0 0 0 41958 31 0 0 25 0 3 0 5882654 1409024 56 4294967295 134512640 134513720 3215579040 0 2097798 0 0 0 0 0 0 0 17 0 0 0 [root@localhost ~]#


每个参数意思为:
参数 解释
pid=6873 进程(包括轻量级进程,即线程)号
comm=a.out 应用程序或命令的名字
task_state=R 任务的状态,R:runnign, S:sleeping (TASK_INTERRUPTIBLE), D:disk sleep (TASK_UNINTERRUPTIBLE), T: stopped, T:tracing stop,Z:zombie, X:dead
ppid=6723 父进程ID
pgid=6873 线程组号
sid=6723 c该任务所在的会话组ID
tty_nr=34819(pts/3) 该任务的tty终端的设备号,INT(34817/256)=主设备号,(34817-主设备号)=次设备号
tty_pgrp=6873 终端的进程组号,当前运行在该任务所在终端的前台任务(包括shell 应用程序)的PID。
task->flags=8388608 进程标志位,查看该任务的特性
min_flt=77 该任务不需要从硬盘拷数据而发生的缺页(次缺页)的次数
cmin_flt=0 累计的该任务的所有的waited-for进程曾经发生的次缺页的次数目
maj_flt=0 该任务需要从硬盘拷数据而发生的缺页(主缺页)的次数
cmaj_flt=0 累计的该任务的所有的waited-for进程曾经发生的主缺页的次数目
utime=1587 该任务在用户态运行的时间,单位为jiffies
stime=1 该任务在核心态运行的时间,单位为jiffies
cutime=0 累计的该任务的所有的waited-for进程曾经在用户态运行的时间,单位为jiffies
cstime=0 累计的该任务的所有的waited-for进程曾经在核心态运行的时间,单位为jiffies
priority=25 任务的动态优先级
nice=0 任务的静态优先级
num_threads=3 该任务所在的线程组里线程的个数
it_realvalue=0 由于计时间隔导致的下一个 SIGALRM 发送进程的时延,以 jiffy 为单位.
start_time=5882654 该任务启动的时间,单位为jiffies
vsize=1409024(page) 该任务的虚拟地址空间大小
rss=56(page) 该任务当前驻留物理地址空间的大小
Number of pages the process has in real memory,minu 3 for administrative purpose.
这些页可能用于代码,数据和栈。
rlim=4294967295(bytes) 该任务能驻留物理地址空间的最大值
start_code=134512640 该任务在虚拟地址空间的代码段的起始地址
end_code=134513720 该任务在虚拟地址空间的代码段的结束地址
start_stack=3215579040 该任务在虚拟地址空间的栈的结束地址
kstkesp=0 esp(32 位堆栈指针) 的当前值, 与在进程的内核堆栈页得到的一致.
kstkeip=2097798 指向将要执行的指令的指针, EIP(32 位指令指针)的当前值.
pendingsig=0 待处理信号的位图,记录发送给进程的普通信号
block_sig=0 阻塞信号的位图
sigign=0 忽略的信号的位图
sigcatch=082985 被俘获的信号的位图
wchan=0 如果该进程是睡眠状态,该值给出调度的调用点
nswap 被swapped的页数,当前没用
cnswap 所有子进程被swapped的页数的和,当前没用
exit_signal=17 该进程结束时,向父进程所发送的信号
task_cpu(task)=0 运行在哪个CPU上
task_rt_priority=0 实时进程的相对优先级别
task_policy=0 进程的调度策略,0=非实时进程,1=FIFO实时进程;2=RR实时进程

3 /proc//status
包含了所有CPU活跃的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。

[root@localhost ~]# cat /proc/self/status
Name: cat
State: R (running)
SleepAVG: 88%
Tgid: 5783
Pid: 5783
PPid: 5742
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 256
Groups: 0 1 2 3 4 6 10
VmSize: 6588 kB
VmLck: 0 kB
VmRSS: 400 kB
VmData: 144 kB
VmStk: 2040 kB
VmExe: 14 kB
VmLib: 1250 kB
StaBrk: 0804e000 kB
Brk: 088df000 kB
StaStk: bfe03270 kB
ExecLim: 0804c000
Threads: 1
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000000000000
SigCgt: 0000000000000000
CapInh: 0000000000000000
CapPrm: 00000000fffffeff
CapEff: 00000000fffffeff


输出解释
参数 解释
Name 应用程序或命令的名字
State 任务的状态,运行/睡眠/僵死/
SleepAVG 任务的平均等待时间(以nanosecond为单位),交互式任务因为休眠次数多、时间长,它们的 sleep_avg 也会相应地更大一些,所以计算出来的优先级也会相应高一些。
Tgid 线程组号
Pid 任务ID
Ppid 父进程ID
TracerPid 接收跟踪该进程信息的进程的ID号
Uid Uid euid suid fsuid
Gid Gid egid sgid fsgid
FDSize 文件描述符的最大个数,file->fds
Groups
VmSize(KB) 任务虚拟地址空间的大小 (total_vm-reserved_vm),其中total_vm为进程的地址空间的大小,reserved_vm:进程在预留或特殊的内存间的物理页
VmLck(KB) 任务已经锁住的物理内存的大小。锁住的物理内存不能交换到硬盘 (locked_vm)
VmRSS(KB) 应用程序正在使用的物理内存的大小,就是用ps命令的参数rss的值 (rss)
VmData(KB) 程序数据段的大小(所占虚拟内存的大小),存放初始化了的数据; (total_vm-shared_vm-stack_vm)
VmStk(KB) 任务在用户态的栈的大小 (stack_vm)
VmExe(KB) 程序所拥有的可执行虚拟内存的大小,代码段,不包括任务使用的库 (end_code-start_code)
VmLib(KB) 被映像到任务的虚拟内存空间的库的大小 (exec_lib)
VmPTE 该进程的所有页表的大小,单位:kb
Threads 共享使用该信号描述符的任务的个数,在POSIX多线程序应用程序中,线程组中的所有线程使用同一个信号描述符。
SigQ 待处理信号的个数
SigPnd 屏蔽位,存储了该线程的待处理信号
ShdPnd 屏蔽位,存储了该线程组的待处理信号
SigBlk 存放被阻塞的信号
SigIgn 存放被忽略的信号
SigCgt 存放被俘获到的信号
CapInh Inheritable,能被当前进程执行的程序的继承的能力
CapPrm Permitted,进程能够使用的能力,可以包含CapEff中没有的能力,这些能力是被进程自己临时放弃的,CapEff是CapPrm的一个子集,进程放弃没有必要的能力有利于提高安全性
CapEff Effective,进程的有效能力


范例 1
可以看出该应用程序的正文段(1KB)很小,说明代码很少,是依靠库(1251KB)来执行。栈(138KB)适中,说明没有太多许多嵌套函数或 特别多的临时变量。VmLck为0说明进程没有锁住任何页。VmRSS表示当前进程使用的物理内存为2956KB。当进程开始使用已经申请的但还没有用的 内存时,VmRSS的值开始增大,但是VmSize保持不变。
[root@localhost 1]# cat /proc/4668/status
Name: gam_server
State: S (sleeping)
SleepAVG: 88%
Tgid: 31999
Pid: 31999
PPid: 1
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 256
Groups: 0 1 2 3 4 6 10
VmSize: 2136 kB
VmLck: 0 kB
VmRSS: 920 kB
VmData: 148 kB
VmStk: 88 kB
VmExe: 44 kB
VmLib: 1820 kB
VmPTE: 20 kB
Threads: 1
SigQ: 1/2047
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000000001006
SigCgt: 0000000210000800
CapInh: 0000000000000000
CapPrm: 00000000fffffeff
CapEff: 00000000fffffeff
[root@localhost 31999]#

4 /proc//statm
包含了所有CPU活跃的信息,该文件中的所有值都是从系统启动开始累计到当前时刻。

[root@localhost ~]# cat /proc/self/statm
654 57 44 0 0 334 0


输出解释
CPU 以及CPU0。。。的每行的每个参数意思(以第一行为例)为:
参数 解释 /proc//status
Size (pages) 任务虚拟地址空间的大小 VmSize/4
Resident(pages) 应用程序正在使用的物理内存的大小 VmRSS/4
Shared(pages) 共享页数 0
Trs(pages) 程序所拥有的可执行虚拟内存的大小 VmExe/4
Lrs(pages) 被映像到任务的虚拟内存空间的库的大小 VmLib/4
Drs(pages) 程序数据段和用户态的栈的大小 (VmData+ VmStk )4
dt(pages) 0
4
分享到:
评论

相关推荐

    Android获取cpu,内存,磁盘使用率信息

    同时,Android还提供了`/proc/stat`系统文件,开发者可以通过读取该文件解析出CPU使用率,但这通常需要更高的权限。 内存使用率的获取相对复杂,因为Android提供了多种方式来查看内存状态。`ActivityManager....

    解决getRunningAppProcesses只得到本应用的进程的问题(2)

    另一个文件`IOUtils.java`可能包含了输入输出相关的辅助方法,这些方法可能用于读取系统文件,如`/proc`目录下的进程信息文件,因为当`ActivityManager` API无法满足需求时,开发者通常会转而直接读取系统文件来获取...

    c++获取cpu使用率(包含系统和单进程)

    在Linux中,可以通过`/proc/<pid>/stat`文件获取进程信息,其中包含进程的用户态时间(user_time)和内核态时间(kernel_time)。同样,我们需要记录两次读取的时间差来计算使用率。 ```cpp #include #include ...

    JNI系统进程列表查询

    你可以读取`/proc/[pid]/stat`文件获取进程状态,包括PID、父进程ID、进程状态等信息。 在Java层,你需要创建一个包含`native`方法的类,比如`ProcessUtil`,定义一个方法如`getProcessList()`: ```java public ...

    Android的cpu硬盘内存网络设置系统信息硬件信息.pdf

    对于内存信息的展示,可以解析/proc/meminfo文件内容,提取关键字段如MemTotal(总内存)和MemFree(空闲内存)。同时,Android提供了`ActivityManager`的`getMemoryInfo()`方法,它能获取到更详细的内存统计信息,...

    android bugreport 分析

    **BINDERFAILEDTRANSACTIONLOG**与**BINDERTRANSACTIONLOG**:通过读取`/proc/binder/failed_transaction_log`和`/proc/binder/transaction_log`文件,记录了Binder框架中的事务信息,Binder是Android系统中进程间...

    cpp-pmdump是一个简单的工具可在Linux或Android上提供进程内存获取

    它通过读取 `/proc/<pid>/maps` 文件来获取进程内存的相关信息,这些信息包括但不限于内存映射区域、权限、偏移量以及内存块的大小等。对于开发者来说,这个工具是进行内存调试和性能分析的得力助手。 **工具原理**...

    Android下各语言加callStack示例

    Android提供了一个名为`backtrace`的函数,可以用来获取当前进程的调用堆栈。然后,通过`backtrace_symbols`函数将地址转换为符号信息。不过,这通常只显示库函数和地址,不包含源文件和行号。为了得到更详细的调用...

    Android 读取信息实例.doc

    通过执行系统命令和解析返回结果,可以获取到诸如操作系统版本、硬件信息等数据,并在用户界面中展示。此外,良好的界面设计和事件处理机制确保了用户友好的交互体验。在实际开发中,开发者还需要考虑权限管理、异常...

    android-cpu-net-ram.rar_android_android 界面_android Ram_cpu_cpu

    - 开发者可以使用`android.os.Process`类的静态方法获取特定进程或所有进程的CPU使用率。 - 对于更复杂的CPU监控,可以使用第三方库,如`cpuusage`或`android-cpu-usage`,它们封装了获取和解析CPU数据的过程。 3...

    获取android手机内存

    - 不是所有Android版本都公开了`MemoryInfo.totalMem`字段,对于较旧的系统版本,可能需要其他方式(如解析`/proc/meminfo`文件)来获取总内存。 - 获取内存信息可能需要`READ_PHONE_STATE`权限,在Android 6.0及...

    Android 根文件系统启动过程

    这些文件系统对于系统运行至关重要,例如`/dev`包含设备节点,`/proc`提供内核状态信息,`/sys`提供硬件设备信息。 在完成基本文件系统结构后,`/init`会解析`/init.rc`文件,这是一个配置文件,包含了启动服务和...

    Android ndk下获取系统使用时间

    如果你想获取更详细的系统运行时间,比如CPU的使用时间,Android提供了`/proc/stat`文件,其中包含了关于CPU的各种统计信息。你可以读取这个文件并解析它的内容来获取CPU的用户时间(usertime)和系统时间...

    android启动源代码分析(init.c)

    Android启动源代码分析是一个深入探讨Android系统启动机制的重要途径,本文将重点分析Android启动过程中的关键源代码文件init.c,该文件位于system/core/init目录下,主要负责启动和管理系统进程,以及解析init.rc...

    Android底层源码分析_Binder

    Binder是Android系统中实现进程间通信(IPC)的核心机制之一。其设计模式基于客户端-服务器(Client-Server)架构,其中提供服务的一方称为Server进程,请求服务的一方称为Client进程。 **服务组件与客户端组件**:...

    安卓Android源码——MonitorPhone.rar

    通过解析系统文件,如/proc/meminfo,可以获取更详细的内存统计信息。 4. **CPU监控**:访问/proc/stat系统文件可以获取CPU使用率。源码中可能有定时任务定期读取该文件,计算各个CPU核心的使用情况。 5. **权限...

    Android内核驱动——内存管理

    - `/proc/<进程pid>/oom_adj`允许直接设置特定进程的`oom_adj`值。 这些配置项的存在,使得LowMemoryKiller不仅能够作为系统内置的安全网,还可以根据不同的应用场景进行个性化调整,增强了Android系统的内存管理...

    Android 开机启动模式源码分析

    - init进程读取`/proc/cmdline`中的命令行参数,并进行解析。 - 根据命令行参数判断是否为正常启动模式,并设置相应的环境变量。 - 若为正常启动,则继续执行后续启动流程;若为低电量启动,则展示低电量界面。 ...

Global site tag (gtag.js) - Google Analytics