这两篇文章发表于去年的4月。在第二部分结束的时候,我说:
“矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而 作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点 与变换坐标系,具有异曲同工的效果。线性代数里最有趣的奥妙,就蕴含在其中。理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉。
这个留在下一篇再写吧。
因为有别的事情要做,下一篇可能要过几天再写了。 ”
然而这一拖就是一年半。一年半以来,这两篇粗糙放肆的文章被到处转载,以至于在Google的搜索提示中,我的名字跟“矩阵”是一对关联词汇。这对于学生时代数学一直很差的我来说,实在是令人惶恐的事情。数学是何等辉煌精致的学问!代表着人类智慧的最高成就,是人与上帝对话的语言。而我实在连数学的门都还没进去,不要说谈什么理解,就是稍微难一些的题目我也很少能解开。我有什么资格去谈矩阵这样重要的一个数学概念呢?更何况,我的想法直观是直观,未见的是正确的啊,会不会误人子弟呢?因此,算了吧,到此为止吧,我这么想。
是时不时收到的来信逐渐改变了我的想法。
一年半以来,我收到过不下一百封直接的来信,要求我把后面的部分写出来。这些来信大部分是国内的网友和学生,也有少数来自正在国外深造的朋友,大部分是鼓励,有的是诚挚的请求,也有少数严厉斥责我不守承诺。不管是何种态度,这都表明他们对我这一点点小小的思考成果的鼓励,特别是对于我这种思维的视角和尝试的鼓励。他们在信中让我知道,尽管我的数学水平不高,但是我这种从普通人(而不是数学家)视角出发,强调对数学概念和规则的直觉理解的思路,对于很多人是有益的。也许这条路子在数学中绝非正道,也不会走得很远,但是无论如何,在一定的阶段,对一部分人来说,较之目前数学教材普遍采用的思路,这种方式可能更容易理解一些。既然是可能对一部分人有帮助的事情,那么我就不应该心存太多杂念,应该不断思考和总结下去。
所以,下面就是你们来信要求我写出来的东西。
首先来总结一下前面两部分的一些主要结论:
1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。
2. 有一种空间叫线性空间,线性空间是容纳向量对象运动的。
3. 运动是瞬时的,因此也被称为变换。
4. 矩阵是线性空间中运动(变换)的描述。
5. 矩阵与向量相乘,就是实施运动(变换)的过程。
6. 同一个变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值相同。
下面让我们把视力集中到一点以改变我们以往看待矩阵的方式。我们知道,线性空间里的基本对象是向量,而向量是这么表示的:
[a1, a2, a3, ..., an]
矩阵呢?矩阵是这么表示的:
a11, a12, a13, ..., a1n
a21, a22, a23, ..., a2n
...
an1, an2, an3, ..., ann
不用太聪明,我们就能看出来,矩阵是一组向量组成的。特别的,n维线性空间里的方阵是由n个n维向量组成的。我们在这里只讨论这个n阶的、非奇异的方阵,因为理解它就是理解矩阵的关键,它才是一般情况,而其他矩阵都是意外,都是不得不对付的讨厌状况,大可以放在一边。这里多一句嘴,学习东西要抓住主流,不要纠缠于旁支末节。很可惜我们的教材课本大多数都是把主线埋没在细节中的,搞得大家还没明白怎么回事就先被灌晕了。比如数学分析,明明最要紧的观念是说,一个对象可以表达为无穷多个合理选择的对象的线性和,这个概念是贯穿始终的,也是数学分析的精华。但是课本里自始至终不讲这句话,反正就是让你做吉米多维奇,掌握一大堆解偏题的技巧,记住各种特殊情况,两类间断点,怪异的可微和可积条件(谁还记得柯西条件、迪里赫莱条件...?),最后考试一过,一切忘光光。要我说,还不如反复强调这一个事情,把它深深刻在脑子里,别的东西忘了就忘了,真碰到问题了,再查数学手册嘛,何必因小失大呢?
言归正传。如果一组向量是彼此线性无关的话,那么它们就可以成为度量这个线性空间的一组基,从而事实上成为一个坐标系体系,其中每一个向量都躺在一根坐标轴上,并且成为那根坐标轴上的基本度量单位(长度1)。
现在到了关键的一步。看上去矩阵就是由一组向量组成的,而且如果矩阵非奇异的话(我说了,只考虑这种情况),那么组成这个矩阵的那一组向量也就是线性无关的了,也就可以成为度量线性空间的一个坐标系。结论:矩阵描述了一个坐标系。
“慢着!”,你嚷嚷起来了,“你这个骗子!你不是说过,矩阵就是运动吗?怎么这会矩阵又是坐标系了?”
嗯,所以我说到了关键的一步。我并没有骗人,之所以矩阵又是运动,又是坐标系,那是因为——
“运动等价于坐标系变换”。
对不起,这话其实不准确,我只是想让你印象深刻。准确的说法是:
“对象的变换等价于坐标系的变换”。
或者:
“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换。”
说白了就是:
“运动是相对的。”
让我们想想,达成同一个变换的结果,比如把点(1, 1)变到点(2, 3)去,你可以有两种做法。第一,坐标系不动,点动,把(1, 1)点挪到(2, 3)去。第二,点不动,变坐标系,让x轴的度量(单位向量)变成原来的1/2,让y轴的度量(单位向量)变成原先的1/3,这样点还是那个点,可是点的坐标就变成(2, 3)了。方式不同,结果一样。
从第一个方式来看,那就是我在《理解矩阵》1/2中说的,把矩阵看成是运动描述,矩阵与向量相乘就是使向量(点)运动的过程。在这个方式下,
Ma = b
的意思是:
“向量a经过矩阵M所描述的变换,变成了向量b。”
而从第二个方式来看,矩阵M描述了一个坐标系,姑且也称之为M。那么:
Ma = b
的意思是:
“有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系I的度量下,这个向量的度量结果是b。”
这里的I是指单位矩阵,就是主对角线是1,其他为零的矩阵。
而这两个方式本质上是等价的。
我希望你务必理解这一点,因为这是本篇的关键。
正因为是关键,所以我得再解释一下。
在M为坐标系的意义下,如果把M放在一个向量a的前面,形成Ma的样式,我们可以认为这是对向量a的一个环境声明。它相当于是说:
“注意了!这里有一个向量,它在坐标系M中度量,得到的度量结果可以表达为a。可是它在别的坐标系里度量的话,就会得到不同的结果。为了明确,我把M放在前面,让你明白,这是该向量在坐标系M中度量的结果。”
那么我们再看孤零零的向量b:
b
多看几遍,你没看出来吗?它其实不是b,它是:
Ib
也就是说:“在单位坐标系,也就是我们通常说的直角坐标系I中,有一个向量,度量的结果是b。”
而 Ma = Ib的意思就是说:
“在M坐标系里量出来的向量a,跟在I坐标系里量出来的向量b,其实根本就是一个向量啊!”
这哪里是什么乘法计算,根本就是身份识别嘛。
从这个意义上我们重新理解一下向量。向量这个东西客观存在,但是要把它表示出来,就要把它放在一个坐标系中去度量它,然后把度量的结果(向量在各个坐标轴上的投影值)按一定顺序列在一起,就成了我们平时所见的向量表示形式。你选择的坐标系(基)不同,得出来的向量的表示就不同。向量还是那个向量,选择的坐标系不同,其表示方式就不同。因此,按道理来说,每写出一个向量的表示,都应该声明一下这个表示是在哪个坐标系中度量出来的。表示的方式,就是 Ma,也就是说,有一个向量,在M矩阵表示的坐标系中度量出来的结果为a。我们平时说一个向量是[2 3 5 7]T,隐含着是说,这个向量在 I 坐标系中的度量结果是[2 3 5 7]T,因此,这个形式反而是一种简化了的特殊情况。
注意到,M矩阵表示出来的那个坐标系,由一组基组成,而那组基也是由向量组成的,同样存在这组向量是在哪个坐标系下度量而成的问题。也就是说,表述一个矩阵的一般方法,也应该要指明其所处的基准坐标系。所谓M,其实是 IM,也就是说,M中那组基的度量是在 I 坐标系中得出的。从这个视角来看,M×N也不是什么矩阵乘法了,而是声明了一个在M坐标系中量出的另一个坐标系N,其中M本身是在I坐标系中度量出来的。
回过头来说变换的问题。我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象”我们找到了,就是那个向量。但是坐标系的变换呢?我怎么没看见?
请看:
Ma = Ib
我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a在I中一量,就得到b了。
我建议你此时此刻拿起纸笔,画画图,求得对这件事情的理解。比如,你画一个坐标系,x轴上的衡量单位是2,y轴上的衡量单位是3,在这样一个坐标系里,坐标为(1,1)的那一点,实际上就是笛卡尔坐标系里的点(2, 3)。而让它原形毕露的办法,就是把原来那个坐标系:
2 0
0 3
的x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3,这样一来坐标系就变成单位坐标系I了。保持点不变,那个向量现在就变成了(2, 3)了。
怎么能够让“x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3”呢?就是让原坐标系:
2 0
0 3
被矩阵:
1/2 0
0 1/3
左乘。而这个矩阵就是原矩阵的逆矩阵。
下面我们得出一个重要的结论:
“对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。”
再一次的,矩阵的乘法变成了运动的施加。只不过,被施加运动的不再是向量,而是另一个坐标系。
如果你觉得你还搞得清楚,请再想一下刚才已经提到的结论,矩阵MxN,一方面表明坐标系N在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。
在这里,我实际上已经回答了一般人在学习线性代数是最困惑的一个问题,那就是为什么矩阵的乘法要规定成这样。简单地说,是因为:
1. 从变换的观点看,对坐标系N施加M变换,就是把组成坐标系N的每一个向量施加M变换。
2. 从坐标系的观点看,在M坐标系中表现为N的另一个坐标系,这也归结为,对N坐标系基的每一个向量,把它在I坐标系中的坐标找出来,然后汇成一个新的矩阵。
3. 至于矩阵乘以向量为什么要那样规定,那是因为一个在M中度量为a的向量,如果想要恢复在I中的真像,就必须分别与M中的每一个向量进行內积运算。我把这个结论的推导留给感兴趣的朋友吧。应该说,其实到了这一步,已经很容易了。
综合以上1/2/3,矩阵的乘法就得那么规定,一切有根有据,绝不是哪个神经病胡思乱想出来的。
我已经无法说得更多了。矩阵又是坐标系,又是变换。到底是坐标系,还是变换,已经说不清楚了,运动与实体在这里统一了,物质与意识的界限已经消失了,一切归于无法言说,无法定义了。道可道,非常道,名可名,非常名。矩阵是在是不可道之道,不可名之名的东西。到了这个时候,我们不得不承认,我们伟大的线性代数课本上说的矩阵定义,是无比正确的:
“矩阵就是由m行n列数放在一起组成的数学对象。”
好了,这基本上就是我想说的全部了。还留下一个行列式的问题。矩阵M的行列式实际上是组成M的各个向量按照平行四边形法则搭成一个n维立方体的体积。对于这一点,我只能感叹于其精妙,却无法揭开其中奥秘了。也许我掌握的数学工具不够,我希望有人能够给我们大家讲解其中的道理了。
我不知道是否讲得足够清楚了,反正这一部分需要您花些功夫去推敲。
此外,请大家不必等待这个系列的后续部分。以我的工作情况而言,近期内很难保证继续投入脑力到这个领域中,尽管我仍然对此兴致浓厚。不过如果还有(四)的话,可能是一些站在应用层面的考虑,比如对计算机图形学相关算法的理解。但是我不承诺这些讨论近期内会出现了。
本文转自CSDN孟岩的博客:http://blog.csdn.net/myan/archive/2007/11/03/1865397.aspx
分享到:
相关推荐
### 新理解矩阵:深入探索矩阵的本质与应用 #### 一、矩阵的概念与起源 矩阵作为线性代数的核心概念之一,其本质与作用一直是学习者关注的重点。文章《新理解矩阵1》通过深入浅出的方式解释了矩阵的概念,并探讨了...
「Matlab矩阵知识详解」 Matlab是国际上最优秀的科技应用软件,赋予学习者一个...它提供了强大的矩阵操作和可视化功能,能够帮助学习者更好地理解矩阵的结构和运算,并且在机器学习方面提供了许多有价值的资源和函数。
在数值计算领域,解线性方程组是一个基础且重要的任务。当遇到特定类型的矩阵,如三对角矩阵和循环三对角矩阵时,可以采用更高效的方法来...对于涉及此类矩阵的线性系统,理解并掌握这些算法对于提高计算性能至关重要。
为了更好地理解矩阵,我们需要从其基本概念出发,深入探讨其背后的原理。 **矩阵**由一系列按照行和列排列的数字构成,这种结构允许我们在处理大量数据时采用一种更有效的方法。在数学上,矩阵可以被视为向量的一种...
特征值和特征向量是理解矩阵性质的重要工具。对于一个矩阵A,如果存在非零向量v使得Av=λv,那么λ就是A的特征值,v是对应的特征向量。特征值和特征向量可以用来研究矩阵的稳定性、对称性和相似性。 三、谱理论 谱...
深入理解矩阵革命完全版.pdf 矩阵革命完全版.pdf是深入理解矩阵线性代数课程的教学资源。本文档通过详细的解释和示例,帮助读者深入理解矩阵的概念和应用。 概述 矩阵是线性代数的核心概念,但是在许多工科院系的...
通过阅读《三维旋转矩阵》这份讲稿,读者不仅可以深入理解三维旋转矩阵的理论,还能学习到如何在实际项目中有效地应用这些知识,解决三维空间中的旋转问题。无论是编程还是科学研究,熟练掌握旋转矩阵都将对你的工作...
matlab三维矩阵三维矩阵缓存乘法加法求逆。 理解三维矩阵的维数:在三维矩阵中,矩阵元素的数量与其维数有关。因此,在构造三维矩阵时,您需要确保所有维数相同,并且该矩阵中的元素数量也正确。 理解索引:在三维...
本主题聚焦于"三维画图,大规模的画球",并通过"三维矩阵"这一工具来实现。我们将深入探讨如何使用三维矩阵进行大规模球体的绘制,以及如何通过不同颜色来区分不同的球体。 三维画图是利用计算机图形软件生成具有...
矩阵是线性代数中的一个核心概念,其应用广泛而深远,不仅仅是工科生,对于任何学习数学模型的学生而言,矩阵都是一个绕不开的话题。...因此,深入理解矩阵和行列式不仅是数学上的挑战,也是对思维能力的一次提升。
在探讨二阶和三阶矩阵逆矩阵的记忆口诀...通过理解这些数学概念,我们可以建立起对二阶和三阶矩阵及其逆矩阵求解的记忆口诀和方法。在学习和应用中,不断地实践和验证这些方法,我们可以更加得心应手地处理相关问题。
8. **Jordan标准型**:每个复数矩阵都可以通过相似变换化为Jordan标准型,这对于理解和计算矩阵幂、指数矩阵等有重要作用。 9. **线性空间与线性映射**:矩阵可以看作线性映射的代表,研究线性空间的结构、子空间、...
### 求三对角矩阵的转置矩阵 #### 知识点概述 本文将详细介绍如何求解一个三对角矩阵的转置矩阵,并通过一个具体的C语言程序来...此外,通过编写C语言程序实现了这一过程,有助于更好地理解三对角矩阵的特性和应用。
在MATLAB编程环境中,处理三维矩阵是常见的任务,特别是在图像处理、信号分析或者多维数据操作等场景。本文将深入探讨如何从三维矩阵中提取出任意二维的数据,并将其保存到新的二维矩阵中,同时讨论如何灵活地变换...
《理解矩阵》一书试图通过深入浅出的方式帮助读者掌握这一核心概念。 首先,我们要理解矩阵。矩阵是由数字构成的矩形阵列,它以中括号包围,用以表示一组列或行向量。矩阵乘法是线性代数的核心运算之一,看似古怪,...
"直观地理解矩阵"这个压缩包文件,显然旨在帮助我们通过简单易懂的方式掌握这一关键概念。矩阵理论是线性代数的核心,它在图像处理、数据分析、机器学习、物理学和工程学等领域都有广泛应用。 矩阵的基本构成元素是...
深入理解矩阵革命 矩阵革命是一个革命性的概念,它彻底颠覆了我们对矩阵的理解和应用。矩阵不再是一个抽象的数学概念,而是一个实实在在的工具,能够帮助我们解决实际问题。本文将深入探讨矩阵的概念、性质和应用,...