`
mintelong
  • 浏览: 396259 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

数据结构--堆排序

    博客分类:
  • java
阅读更多
堆排序 
1、 堆排序定义
     n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
     (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤  )

     若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
     根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
     根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
  注意:
     ①堆中任一子树亦是堆。
     ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。

3、堆排序特点
     堆排序(HeapSort)是一树形选择排序。
     堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。

4、堆排序与直接插入排序的区别
     直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
     堆排序可通过树形结构保存部分比较结果,可减少比较次数。

5、堆排序
    堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。

(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
    ……
直到无序区只有一个元素为止。

(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
  注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。

(3)堆排序的算法:
 
void HeapSort(SeqIAst R)
   { //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
    int i;
    BuildHeap(R); //将R[1-n]建成初始堆
    for(i=n;i>1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。
      R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换
     Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质
     } //endfor
   } //HeapSort
(4) BuildHeap和Heapify函数的实现
 因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
① Heapify函数思想方法
 每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
"筛选法"调整堆
  R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。因此,有人将此方法称为"筛选法"。
    具体的算法【参见教材】

②BuildHeap的实现
  要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
  显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。这样,我们只需依次将以序号为 ,  -1,…,1的结点作为根的子树都调整为堆即可。
     具体算法【参见教材】。

5、大根堆排序实例
     对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见【动画演示】。

6、 算法分析
     堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
     堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。
     由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
     堆排序是就地排序,辅助空间为O(1),
     它是不稳定的排序方法。

算法程序

void buildheap(int n,int[])
//堆排序——建立堆
{
 int i,tmp,j;
 for(i=1;i<n;i++)
 {
  j=i/2;
  while((i!=0)&&(a[j]<a[i]))
  {
   tmp=a[i];
   a[i]=a[j];
   a[j]=tmp;
   i=j;
   j=i/2;
  }
 }

}
void rebuildheap(int n,int [])
//重建堆
{
 int x=a[0];
 int i=0;
 int j=2*i+1;
 while(j<n)
 {
  if((a[j]<a[j+1])&&(j<n-1))  
   j=j+1;
   if(x<a[j])
   {
    a[i]=a[j];
    i=j;
    j=2*i+1;
   }
   else
    j=n+1;
 }
 a[i]=x; 
}
void heapsort(int n,int[])
//堆排序
{
 int k,x;
 buildheap(n,a);
 for(k=n-1;k>=1;k--)
 {
  x=a[0];
  a[0]=a[k];
  a[k]=x;
  rebuildheap(k,a);
 }
 cout<<"k"<<k<<endl;
}
分享到:
评论

相关推荐

    数据结构---堆排序

    比较详细地讲述了堆排序的思路和代码实现,适合初学者

    数据结构--排序--思维导图.pdf

    "数据结构--排序--思维导图" 数据结构中排序是指将一组无序的记录序列按照一定的规则排列成有序的序列,排序的目的是为了提高数据的存储和检索效率。排序算法的稳定性是指在排序过程中,如果待排序表中有两个元素Ri...

    数据结构-优先队列-堆排序

    如题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

    《数据结构-堆排序》

    《数据结构》严蔚敏版 堆排序

    数据结构-排序PPT课件.pptx

    本资源是关于数据结构中排序算法的PPT课件,全文共118页,详细介绍了排序的概念、内部排序和外部排序、内部排序方法的分类、插入排序、快速排序、堆排序、归并排序、基数排序等内容。 1. 排序的概念:排序是计算机...

    VC++-----------堆排序

    堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”这一概念。在计算机科学中,堆通常被理解为一个完全二叉树,其中每个父节点的值都大于或等于(最大堆)或小于或等于(最小堆)其子节点的值。堆排序分为...

    数据结构课程设计 实验报告——堆排序

    ### 数据结构课程设计实验报告——堆排序 #### 一、堆排序概述 堆排序是一种基于树形选择的排序算法,其核心在于利用完全二叉树的性质进行元素的选择与排序。在排序过程中,将待排序的数据集合视为一颗完全二叉树...

    数据结构-排序算法的实现(代码+报告)

    - **定义**:堆排序是一种利用堆这种数据结构所设计的一种排序算法。 - **时间复杂度**:堆排序的平均时间复杂度为O(n log n)。 - **稳定性**:堆排序不是稳定的排序算法。 - **堆的概念**:堆是一种特殊的完全...

    数据结构--排序 很细致

    数据结构中的排序是计算机科学中一个基础且重要的概念,它涉及到如何有效地组织和处理大量数据。排序算法的主要目标是将一组无序的数据元素按照特定的标准(通常是升序或降序)排列成一个有序序列。本篇文章主要介绍...

    堆排序 数据结构 C语言

    堆排序是一种基于比较的排序算法,它利用了二叉堆(通常为最大堆)的数据结构来完成排序过程。堆排序可以分为两个阶段:构建最大堆与交换堆顶元素并重新调整堆。 - **构建最大堆**:初始时将待排序数组构建成一个...

    湖南大学-数据结构-期末试题【2016-2019】.zip

    - 排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等,试题可能会要求分析时间复杂度和实现排序算法。 - 查找算法有顺序查找、二分查找、哈希查找等,可能会结合具体场景设计问题。 6. **...

    数据结构排序 堆排序

    数据结构排序 堆排序 堆排序是一种常用的排序算法,它使用大堆进行排序。下面是堆排序的详细知识点说明: 堆排序定义 堆排序是一种比较排序算法,它使用大堆(max heap)来对数组进行排序。堆排序的时间复杂度为O...

    数据结构--内部排序

    本文将深入探讨标题"数据结构--内部排序"中涉及的几种主要排序算法,并对描述中提及的插入排序、Shell排序、冒泡排序、快速排序、简单选择排序以及堆排序进行详细解析。 1. 插入排序:插入排序是一种简单的排序算法...

    数据结构-排序问题(C++)

    - **堆排序**:利用堆这种数据结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素。 - **希尔排序**:也称为缩小增量排序,是插入排序的一种更高效的改进版本。希尔排序是非稳定的排序算法。 ###...

    数据结构—堆排序

    堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”这一概念。在数据结构中,堆通常被理解为一个完全二叉树,它满足堆的性质:父节点的值要么大于或等于其子节点(大顶堆),要么小于或等于其子节点(小...

    最快的排序算法 谁才是最强的排序算法:快速排序-归并排序-堆排序,排序算法数据结构

    在数据结构中,排序算法是最基本也是最重要的一部分。各种排序算法的性能和选择直接影响着数据处理的效率和准确性。本文将对快速排序、归并排序、堆排序等常见排序算法进行比较和分析,探讨它们的优缺点和适用场景。...

    堆与堆排序10堆排序-堆与堆排序10-从堆的定义可以看出,堆实质是满足如下性质的完全二叉树:二叉树中任一非叶子结点均小于(

    堆排序----堆与堆排序10-从堆的定义可以看出,堆实质是满足如下性质的完全二叉树:二叉树中任一非叶子结点均小于(大于)它的孩子结点

    数据结构--九种排序算法 --排序001.cpp

    此文件为数据结构中的九种排序算法,包含一些排序方法的过程,其九种排序包括:直接插入排序,折半插入排序,希尔排序,冒泡排序,快速排序,选择排序,堆排序,归并排序,基数排序!

    堆排序算法(严蔚敏数据结构)

    严蔚敏教授的《数据结构》一书是学习数据结构的经典教材,其中对堆排序有详细的介绍和伪码描述。 1. 堆的定义与性质: - 完全二叉树:在堆中,数据元素按照完全二叉树的形式存储,也就是说除了最后一层外,每一层...

    数据结构-3期(KC002) 堆排序算法.docx

    堆排序是一种基于比较的排序算法,它利用了数据结构中的“堆”这一概念。在计算机科学中,堆通常被理解为一种特殊的完全二叉树,其中每个父节点的键值都大于或等于(最大堆)或小于或等于(最小堆)其子节点的键值。...

Global site tag (gtag.js) - Google Analytics