`
cleverpig
  • 浏览: 151256 次
  • 性别: Icon_minigender_1
社区版块
存档分类
最新评论

BTree算法

阅读更多
BTree算法

作者:cleverpig

注释:由于BTree可用于j2me、DB等query场景中,而且原理易懂,自此就不做翻译了。

image


What's B-Tree

image
Sample B-Tree


Tree structures support various basic dynamic set operations including Search, Predecessor, Successor, Minimum, Maximum, Insert, and Delete in time proportional to the height of the tree. Ideally, a tree will be balanced and the height will be log n where n is the number of nodes in the tree. To ensure that the height of the tree is as small as possible and therefore provide the best running time, a balanced tree structure like a red-black tree, AVL tree, or b-tree must be used.

When working with large sets of data, it is often not possible or desirable to maintain the entire structure in primary storage (RAM). Instead, a relatively small portion of the data structure is maintained in primary storage, and additional data is read from secondary storage as needed. Unfortunately, a magnetic disk, the most common form of secondary storage, is significantly slower than random access memory (RAM). In fact, the system often spends more time retrieving data than actually processing data.

B-trees are balanced trees that are optimized for situations when part or all of the tree must be maintained in secondary storage such as a magnetic disk. Since disk accesses are expensive (time consuming) operations, a b-tree tries to minimize the number of disk accesses. For example, a b-tree with a height of 2 and a branching factor of 1001 can store over one billion keys but requires at most two disk accesses to search for any node.


image
Searching a B-Tree for Key 21
image
Inserting Key 33 into a B-Tree (w/ Split)


Java Binary Trees and Solutions

In Java, the key points in the recursion are exactly the same as in C or C++. In fact, I created the Java solutions by just copying the C solutions, and then making the syntactic changes. The recursion is the same, however the outer structure is slightly different.

In Java, we will have a BinaryTree object that contains a single root pointer. The root pointer points to an internal Node class that behaves just like the node struct in the C/C++ version. The Node class is private -- it is used only for internal storage inside the BinaryTree and is not exposed to clients. With this OOP structure, almost every operation has two methods: a one-line method on the BinaryTree that starts the computation, and a recursive method that works on the Node objects. For the lookup() operation, there is a BinaryTree.lookup() method that the client uses to start a lookup operation. Internal to the BinaryTree class, there is a private recursive lookup(Node) method that implements the recursion down the Node structure. This second, private recursive method is basically the same as the recursive C/C++ functions above -- it takes a Node argument and uses recursion to iterate over the pointer structure.

Java Binary Tree Structure

To get started, here are the basic definitions for the Java BinaryTree class, and the lookup() and insert() methods as examples...

// BinaryTree.java
public class BinaryTree {
  // Root node pointer. Will be null for an empty tree.
  private Node root;
  
  /*
   --Node--
   The binary tree is built using this nested node class.
   Each node stores one data element, and has left and right
   sub-tree pointer which may be null.
   The node is a "dumb" nested class -- we just use it for
   storage; it does not have any methods.
  */
  private static class Node {
    Node left;
    Node right;
    int data;
    Node(int newData) {
      left = null;
      right = null;
      data = newData;
    }
  }
  /**
   Creates an empty binary tree -- a null root pointer.
  */
  public void BinaryTree() {
    root = null;
  }
  
  /**
   Returns true if the given target is in the binary tree.
   Uses a recursive helper.
  */
  public boolean lookup(int data) {
    return(lookup(root, data));
  }
  
  /**
   Recursive lookup  -- given a node, recur
   down searching for the given data.
  */
  private boolean lookup(Node node, int data) {
    if (node==null) {
      return(false);
    }
    if (data==node.data) {
      return(true);
    }
    else if (data<node.data) {
      return(lookup(node.left, data));
    }
    else {
      return(lookup(node.right, data));
    }
  }
  
  /**
   Inserts the given data into the binary tree.
   Uses a recursive helper.
  */
  public void insert(int data) {
    root = insert(root, data);
  }
  
  /**
   Recursive insert -- given a node pointer, recur down and
   insert the given data into the tree. Returns the new
   node pointer (the standard way to communicate
   a changed pointer back to the caller).
  */
  private Node insert(Node node, int data) {
    if (node==null) {
      node = new Node(data);
    }
    else {
      if (data <= node.data) {
        node.left = insert(node.left, data);
      }
      else {
        node.right = insert(node.right, data);
      }
    }
    return(node); // in any case, return the new pointer to the caller
  }


OOP Style vs. Recursive Style

From the client point of view, the BinaryTree class demonstrates good OOP style -- it encapsulates the binary tree state, and the client sends messages like lookup() and insert() to operate on that state. Internally, the Node class and the recursive methods do not demonstrate OOP style. The recursive methods like insert(Node) and lookup (Node, int) basically look like recursive functions in any language. In particular, they do not operate against a "receiver" in any special way. Instead, the recursive methods operate on the arguments that are passed in which is the classical way to write recursion. My sense is that the OOP style and the recursive style do not be combined nicely for binary trees, so I have left them separate. Merging the two styles would be especially awkward for the "empty" tree (null) case, since you can't send a message to the null pointer. It's possible to get around that by having a special object to represent the null tree, but that seems like a distraction to me. I prefer to keep the recursive methods simple, and use different examples to teach OOP.

Java Solutions

Here are the Java solutions to the 14 binary tree problems. Most of the solutions use two methods:a one-line OOP method that starts the computation, and a recursive method that does the real operation. Make an attempt to solve each problem before looking at the solution -- it's the best way to learn.

1. Build123() Solution (Java)

/**
Build 123 using three pointer variables.
*/
public void build123a() {
  root = new Node(2);
  Node lChild = new Node(1);
  Node rChild = new Node(3);
  root.left = lChild;
  root.right= rChild;
}
/**
Build 123 using only one pointer variable.
*/
public void build123b() {
  root = new Node(2);
  root.left = new Node(1);
  root.right = new Node(3);
}
  
/**
Build 123 by calling insert() three times.
Note that the '2' must be inserted first.
*/
public void build123c() {
  root = null;
  root = insert(root, 2);
  root = insert(root, 1);
  root = insert(root, 3);
}

2. size() Solution (Java)

/**
Returns the number of nodes in the tree.
Uses a recursive helper that recurs
down the tree and counts the nodes.
*/
public int size() {
  return(size(root));
}
private int size(Node node) {
  if (node == null) return(0);
  else {
    return(size(node.left) + 1 + size(node.right));
  }
}

3. maxDepth() Solution (Java)

/**
Returns the max root-to-leaf depth of the tree.
Uses a recursive helper that recurs down to find
the max depth.
*/
public int maxDepth() {
  return(maxDepth(root));
}
private int maxDepth(Node node) {
  if (node==null) {
    return(0);
  }
  else {
    int lDepth = maxDepth(node.left);
    int rDepth = maxDepth(node.right);
    // use the larger + 1
    return(Math.max(lDepth, rDepth) + 1);
  }
}

4. minValue() Solution (Java)

/**
Returns the min value in a non-empty binary search tree.
Uses a helper method that iterates to the left to find
the min value.
*/
public int minValue() {
return( minValue(root) );
}
  
/**
Finds the min value in a non-empty binary search tree.
*/
private int minValue(Node node) {
  Node current = node;
  while (current.left != null) {
    current = current.left;
  }
  return(current.data);
}

5. printTree() Solution (Java)

/**
Prints the node values in the "inorder" order.
Uses a recursive helper to do the traversal.
*/
public void printTree() {
printTree(root);
System.out.println();
}
private void printTree(Node node) {
if (node == null) return;
// left, node itself, right
printTree(node.left);
System.out.print(node.data + "  ");
printTree(node.right);
}

6. printPostorder() Solution (Java)

/**
Prints the node values in the "postorder" order.
Uses a recursive helper to do the traversal.
*/
public void printPostorder() {
printPostorder(root);
System.out.println();
}
public void printPostorder(Node node) {
  if (node == null) return;
  // first recur on both subtrees
  printPostorder(node.left);
  printPostorder(node.right);
  // then deal with the node
System.out.print(node.data + "  ");
}

7. hasPathSum() Solution (Java)

/**
Given a tree and a sum, returns true if there is a path from the root
down to a leaf, such that adding up all the values along the path
equals the given sum.
Strategy: subtract the node value from the sum when recurring down,
and check to see if the sum is 0 when you run out of tree.
*/
public boolean hasPathSum(int sum) {
return( hasPathSum(root, sum) );
}
boolean hasPathSum(Node node, int sum) {
  // return true if we run out of tree and sum==0
  if (node == null) {
    return(sum == 0);
  }
  else {
  // otherwise check both subtrees
    int subSum = sum - node.data;
    return(hasPathSum(node.left, subSum) || hasPathSum(node.right, subSum));
  }
}

8. printPaths() Solution (Java)

/**
Given a binary tree, prints out all of its root-to-leaf
paths, one per line. Uses a recursive helper to do the work.
*/
public void printPaths() {
  int[] path = new int[1000];
  printPaths(root, path, 0);
}
/**
Recursive printPaths helper -- given a node, and an array containing
the path from the root node up to but not including this node,
prints out all the root-leaf paths.
*/
private void printPaths(Node node, int[] path, int pathLen) {
  if (node==null) return;
  // append this node to the path array
  path[pathLen] = node.data;
  pathLen++;
  // it's a leaf, so print the path that led to here
  if (node.left==null && node.right==null) {
    printArray(path, pathLen);
  }
  else {
  // otherwise try both subtrees
    printPaths(node.left, path, pathLen);
    printPaths(node.right, path, pathLen);
  }
}
/**
Utility that prints ints from an array on one line.
*/
private void printArray(int[] ints, int len) {
  int i;
  for (i=0; i<len; i++) {
   System.out.print(ints[i] + " ");
  }
  System.out.println();
}


9. mirror() Solution (Java)


/**
Changes the tree into its mirror image.
So the tree...
       4
      / \
     2   5
    / \
   1   3
is changed to...
       4
      / \
     5   2
        / \
       3   1
Uses a recursive helper that recurs over the tree,
swapping the left/right pointers.
*/
public void mirror() {
  mirror(root);
}
private void mirror(Node node) {
  if (node != null) {
    // do the sub-trees
    mirror(node.left);
    mirror(node.right);
    // swap the left/right pointers
    Node temp = node.left;
    node.left = node.right;
    node.right = temp;
  }
}

  
10. doubleTree() Solution (Java)


/**
Changes the tree by inserting a duplicate node
on each nodes's .left.
  
  
So the tree...
    2
   / \
  1   3
Is changed to...
       2
      / \
     2   3
    /   /
   1   3
  /
1
Uses a recursive helper to recur over the tree
and insert the duplicates.
*/
public void doubleTree() {
doubleTree(root);
}
private void doubleTree(Node node) {
  Node oldLeft;
  if (node == null) return;
  // do the subtrees
  doubleTree(node.left);
  doubleTree(node.right);
  // duplicate this node to its left
  oldLeft = node.left;
  node.left = new Node(node.data);
  node.left.left = oldLeft;
}

  
11. sameTree() Solution (Java)


/*
Compares the receiver to another tree to
see if they are structurally identical.
*/
public boolean sameTree(BinaryTree other) {
return( sameTree(root, other.root) );
}
/**
Recursive helper -- recurs down two trees in parallel,
checking to see if they are identical.
*/
boolean sameTree(Node a, Node b) {
  // 1. both empty -> true
  if (a==null && b==null) return(true);
  // 2. both non-empty -> compare them
  else if (a!=null && b!=null) {
    return(
      a.data == b.data &&
      sameTree(a.left, b.left) &&
      sameTree(a.right, b.right)
    );
  }
  // 3. one empty, one not -> false
  else return(false);
}

  
12. countTrees() Solution (Java)


/**
For the key values 1...numKeys, how many structurally unique
binary search trees are possible that store those keys?
Strategy: consider that each value could be the root.
Recursively find the size of the left and right subtrees.
*/
public static int countTrees(int numKeys) {
  if (numKeys <=1) {
    return(1);
  }
  else {
    // there will be one value at the root, with whatever remains
    // on the left and right each forming their own subtrees.
    // Iterate through all the values that could be the root...
    int sum = 0;
    int left, right, root;
    for (root=1; root<=numKeys; root++) {
      left = countTrees(root-1);
      right = countTrees(numKeys - root);
      // number of possible trees with this root == left*right
      sum += left*right;
    }
    return(sum);
  }
}

  
13. isBST1() Solution (Java)


/**
Tests if a tree meets the conditions to be a
binary search tree (BST).
*/
public boolean isBST() {
  return(isBST(root));
}
/**
Recursive helper -- checks if a tree is a BST
using minValue() and maxValue() (not efficient).
*/
private boolean isBST(Node node) {
  if (node==null) return(true);
  // do the subtrees contain values that do not
  // agree with the node?
  if (node.left!=null && maxValue(node.left) > node.data) return(false);
  if (node.right!=null && minValue(node.right) <= node.data) return(false);
  // check that the subtrees themselves are ok
  return( isBST(node.left) && isBST(node.right) );
}

  
14. isBST2() Solution (Java)


/**
Tests if a tree meets the conditions to be a
binary search tree (BST). Uses the efficient
recursive helper.
*/
public boolean isBST2() {
return( isBST2(root, Integer.MIN_VALUE, Integer.MAX_VALUE) );
}
/**
  Efficient BST helper -- Given a node, and min and max values,
  recurs down the tree to verify that it is a BST, and that all
  its nodes are within the min..max range. Works in O(n) time --
  visits each node only once.
*/
private boolean isBST2(Node node, int min, int max) {
  if (node==null) {
    return(true);
  }
  else {
   // left should be in range  min...node.data
    boolean leftOk = isBST2(node.left, min, node.data);
    // if the left is not ok, bail out
    if (!leftOk) return(false);
    // right should be in range node.data+1..max
    boolean rightOk = isBST2(node.right, node.data+1, max);
    return(rightOk);
  }
}
  
  
分享到:
评论

相关推荐

    Btree&哈夫曼树.pptx

    **B树** B树是一种自平衡的树数据结构,它能够保持数据排序,适用于大量数据存储,尤其是在外部存储系统如数据库管理系统中。B树的主要特点是: 1. **节点最多含有m颗子树**:这意味着B树可以有多个分支,而不仅仅...

    二叉排序树的构建

    }* BTREE; BTREE Sort_tree(int k[],int n); void Insert(BTREE & t,int item); void INORDER(BTREE &t); int main(){ int i=0,numOfInt;BTREE t; scanf("%d",&numOfInt;); int *k=(int*)malloc(numOfInt*...

    二叉树树的基本操作(初始化、遍历、求深度等等)

    二叉树是一种特殊的树结构,每个节点最多只有两个子节点,通常分为左子节点和右子节点。在计算机科学中,二叉树被广泛应用在数据结构和算法中,如搜索、排序、图形表示等。本篇文章将深入探讨二叉树的基本操作,包括...

    btree索引.txt

    ### BTree索引详解 #### 一、BTree索引概念 BTree(平衡树)索引是数据库中一种常见的索引类型,特别是在关系型数据库系统中被广泛使用。它是一种自平衡的树数据结构,能够保持数据有序,并且允许进行高效的插入、...

    BTree入门讲解

    **BTree入门详解** BTree(B树),全称为平衡多路查找树,是一种自平衡的树数据结构,常用于数据库和文件系统中。它的设计目的是为了高效地存储和检索大量数据,尤其适用于磁盘等慢速存储介质,因为BTree能够减少...

    BTree数据结构课程设计C++版

    **BTree数据结构详解** BTree(B-Tree,或称B树)是一种自平衡的树数据结构,常用于数据库和文件系统中。它能够保持数据排序,允许对数据进行快速查找、添加和删除操作。BTree的主要特性是每个节点可以有多个子节点...

    btree_btree数据结构_数据结构_二叉树btree_

    二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。...

    java版本 BTREE源码

    Java版本的Btree源码提供了在Java环境中实现B树的功能,这对于数据存储、数据库索引以及排序操作等场景具有重要意义。在这里,我们将深入探讨B树的基本概念,其在Java中的实现细节,以及如何利用这个源码来理解和...

    开源的btree的源码

    google开源的btree的源码,希望多看看这个源码。

    btree c++ vc

    **标题:“btree c++ vc”** 在计算机科学中,B树(B-tree)是一种自平衡的树数据结构,常用于数据库和文件系统中。它能够保持数据排序,并允许对数据进行快速查找、添加和删除操作。B树的特性使得它们在磁盘等慢速...

    Oracle-Btree索引.pptx

    Oracle-Btree索引,索引的ppt

    演示BTree的操作

    在IT领域,B树(BTree)是一种自平衡的树数据结构,广泛应用于数据库和文件系统中,以高效地支持顺序访问、查找、插入和删除等操作。B树的主要特点是保持数据平衡,使得每个节点拥有的子节点数量在一个范围内,通常...

    btree:纯 golang btree

    这是纯 golang btree 库。 它是写 btree 的副本。 go get github.com/datastream/btree 应用程序接口 NewRecord(key, value []byte) 创造记录 NewBtree() 创建一个 btree LEAFSIZE = 1 &lt;&lt; 5 NODESIZE = ...

    btree_Vc.zip_ btree_Vc_B树_btree_btree_Vc

    在"btree_Vc.zip"这个压缩包中,包含了"Btree_Vc"项目的一个实例,它使用VC++(Visual C++)这一C++开发环境来实现B树算法。这个项目的核心在于理解和运用B树的基本原理,包括如何构建B树,以及如何执行插入和删除...

    B树的C++源代码及测试代码

    BTree h&quot; struct tree data { char tid[37]; char tname[63]; unsigned int aid; unsigned int id; }; class CMyDataTypeForBtree : public CDataTypeForBtree { public: virtual ...

    各种java程序的实现源码

    【标题】"各种java程序的实现源码"揭示了这个压缩包主要包含的是用Java语言编写的程序源代码。Java是一种广泛使用的面向对象的编程语言,以其“一次编写,到处运行”的特性闻名,适用于跨平台应用开发。...

    索引类型FULLTEXT,HASH,BTREE,RTREE,索引优化1

    本文将围绕MySQL数据库中常见的三种索引类型——FULLTEXT、HASH和BTREE——进行深入探讨,并简要提及RTREE索引。我们会分析它们的原理、存储结构、优缺点以及如何在实际应用中进行选择和优化。 首先,我们来看BTREE...

    code_基于BTree的图书管理系统_

    《基于BTree的图书管理系统详解》 在信息技术领域,数据管理是至关重要的,尤其是在图书管理系统中,高效的数据存储和检索方案对于提升系统性能至关重要。本文将深入探讨一个以BTree为基础实现的图书管理系统,该...

    btree_db.zip_btree_database_isam_索引

    **BTREE数据库与ISAM索引** 在数据库领域,索引是提高数据查询效率的关键工具。本主题将深入探讨使用BTREE(B树)索引方法实现的ISAM(Indexed Sequential Access Method)数据库系统,以及如何用C语言来构建这样的...

    BTree的c++源码

    B树(B-tree)是一种自平衡的树数据结构,它能够保持数据排序并优化磁盘或其他外部存储的查找效率。这种数据结构最初由R.Bayer和E.McCreight在1970年提出,主要设计用于管理大而动态的数据库和文件系统。...

Global site tag (gtag.js) - Google Analytics