六 归并排序
算法思想是每次把待排序列分成两部分,分别对这两部分递归地用归并排序,完成后把这两个子部分合并成一个
序列。
归并排序借助一个全局性临时数组来方便对子序列的归并,该算法核心在于归并。
package algorithms;
import java.lang.reflect.Array;
/**
* @author yovn
*
*/
public class MergeSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@SuppressWarnings("unchecked")
@Override
public void sort(E[] array, int from, int len) {
if(len<=1)return;
E[] temporary=(E[])Array.newInstance(array[0].getClass(),len);
merge_sort(array,from,from+len-1,temporary);
}
private final void merge_sort(E[] array, int from, int to, E[] temporary) {
if(to<=from)
{
return;
}
int middle=(from+to)/2;
merge_sort(array,from,middle,temporary);
merge_sort(array,middle+1,to,temporary);
merge(array,from,to,middle,temporary);
}
private final void merge(E[] array, int from, int to, int middle, E[] temporary) {
int k=0,leftIndex=0,rightIndex=to-from;
System.arraycopy(array, from, temporary, 0, middle-from+1);
for(int i=0;i<to-middle;i++)
{
temporary[to-from-i]=array[middle+i+1];
}
while(k<to-from+1)
{
if(temporary[leftIndex].compareTo(temporary[rightIndex])<0)
{
array[k+from]=temporary[leftIndex++];
}
else
{
array[k+from]=temporary[rightIndex--];
}
k++;
}
}
}七 堆排序
堆是一种完全二叉树,一般使用数组来实现。
堆主要有两种核心操作,
1)从指定节点向上调整(shiftUp)
2)从指定节点向下调整(shiftDown)
建堆,以及删除堆定节点使用shiftDwon,而在插入节点时一般结合两种操作一起使用。
堆排序借助最大值堆来实现,第i次从堆顶移除最大值放到数组的倒数第i个位置,然后shiftDown到倒数第i+1个位置,一共执行N此调整,即完成排序。
显然,堆排序也是一种选择性的排序,每次选择第i大的元素。
package algorithms;
/**
* @author yovn
*
*/
public class HeapSorter<E extends Comparable<E>> extends Sorter<E> {
/* (non-Javadoc)
* @see algorithms.Sorter#sort(E[], int, int)
*/
@Override
public void sort(E[] array, int from, int len) {
build_heap(array,from,len);
for(int i=0;i<len;i++)
{
//swap max value to the (len-i)-th position
swap(array,from,from+len-1-i);
shift_down(array,from,len-1-i,0);//always shiftDown from 0
}
}
private final void build_heap(E[] array, int from, int len) {
int pos=(len-1)/2;//we start from (len-1)/2, because branch's node +1=leaf's node, and all leaf node is already a heap
for(int i=pos;i>=0;i--)
{
shift_down(array,from,len,i);
}
}
private final void shift_down(E[] array,int from, int len, int pos)
{
E tmp=array[from+pos];
int index=pos*2+1;//use left child
while(index<len)//until no child
{
if(index+1<len&&array[from+index].compareTo(array[from+index+1])<0)//right child is bigger
{
index+=1;//switch to right child
}
if(tmp.compareTo(array[from+index])<0)
{
array[from+pos]=array[from+index];
pos=index;
index=pos*2+1;
}
else
{
break;
}
}
array[from+pos]=tmp;
}
}
八 桶式排序
桶式排序不再是基于比较的了,它和基数排序同属于分配类的排序,这类排序的特点是事先要知道待排序列的一些特征。
桶式排序事先要知道待排序列在一个范围内,而且这个范围应该不是很大的。
比如知道待排序列在[0,M)内,那么可以分配M个桶,第I个桶记录I的出现情况,最后根据每个桶收到的位置信息把数据输出成有序的形式。
这里我们用两个临时性数组,一个用于记录位置信息,一个用于方便输出数据成有序方式,另外我们假设数据落在0到MAX,如果所给数据不是从0开始,你可以把每个数减去最小的数。
package algorithms;
/**
* @author yovn
*
*/
public class BucketSorter {
public void sort(int[] keys,int from,int len,int max)
{
int[] temp=new int[len];
int[] count=new int[max];
for(int i=0;i<len;i++)
{
count[keys[from+i]]++;
}
//calculate position info
for(int i=1;i<max;i++)
{
count[i]=count[i]+count[i-1];//this means how many number which is less or equals than i,thus it is also position + 1
}
System.arraycopy(keys, from, temp, 0, len);
for(int k=len-1;k>=0;k--)//from the ending to beginning can keep the stability
{
keys[--count[temp[k]]]=temp[k];// position +1 =count
}
}
/**
* @param args
*/
public static void main(String[] args) {
int[] a={1,4,8,3,2,9,5,0,7,6,9,10,9,13,14,15,11,12,17,16};
BucketSorter sorter=new BucketSorter();
sorter.sort(a,0,a.length,20);//actually is 18, but 20 will also work
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+",");
}
}
}
九 基数排序
基数排序可以说是扩展了的桶式排序,比如当待排序列在一个很大的范围内,比如0到999999内,那么用桶式排序是很浪费空间的。而基数排序把每个排序码拆成由d个排序码,比如任何一个6位数(不满六位前面补0)拆成6个排序码,分别是个位的,十位的,百位的。。。。
排序时,分6次完成,每次按第i个排序码来排。
一般有两种方式:
1) 高位优先(MSD): 从高位到低位依次对序列排序
2)低位优先(LSD): 从低位到高位依次对序列排序
计算机一般采用低位优先法(人类一般使用高位优先),但是采用低位优先时要确保排序算法的稳定性。
基数排序借助桶式排序,每次按第N位排序时,采用桶式排序。对于如何安排每次落入同一个桶中的数据有两种安排方法:
1)顺序存储:每次使用桶式排序,放入r个桶中,,相同时增加计数。
2)链式存储:每个桶通过一个静态队列来跟踪。
package algorithms;
import java.util.Arrays;
/**
* @author yovn
*
*/
public class RadixSorter {
public static boolean USE_LINK=true;
/**
*
* @param keys
* @param from
* @param len
* @param radix key's radix
* @param d how many sub keys should one key divide to
*/
public void sort(int[] keys,int from ,int len,int radix, int d)
{
if(USE_LINK)
{
link_radix_sort(keys,from,len,radix,d);
}
else
{
array_radix_sort(keys,from,len,radix,d);
}
}
private final void array_radix_sort(int[] keys, int from, int len, int radix,
int d)
{
int[] temporary=new int[len];
int[] count=new int[radix];
int R=1;
for(int i=0;i<d;i++)
{
System.arraycopy(keys, from, temporary, 0, len);
Arrays.fill(count, 0);
for(int k=0;k<len;k++)
{
int subkey=(temporary[k]/R)%radix;
count[subkey]++;
}
for(int j=1;j<radix;j++)
{
count[j]=count[j]+count[j-1];
}
for(int m=len-1;m>=0;m--)
{
int subkey=(temporary[m]/R)%radix;
--count[subkey];
keys[from+count[subkey]]=temporary[m];
}
R*=radix;
}
}
private static class LinkQueue
{
int head=-1;
int tail=-1;
}
private final void link_radix_sort(int[] keys, int from, int len, int radix, int d) {
int[] nexts=new int[len];
LinkQueue[] queues=new LinkQueue[radix];
for(int i=0;i<radix;i++)
{
queues[i]=new LinkQueue();
}
for(int i=0;i<len-1;i++)
{
nexts[i]=i+1;
}
nexts[len-1]=-1;
int first=0;
for(int i=0;i<d;i++)
{
link_radix_sort_distribute(keys,from,len,radix,i,nexts,queues,first);
first=link_radix_sort_collect(keys,from,len,radix,i,nexts,queues);
}
int[] tmps=new int[len];
int k=0;
while(first!=-1)
{
tmps[k++]=keys[from+first];
first=nexts[first];
}
System.arraycopy(tmps, 0, keys, from, len);
}
private final void link_radix_sort_distribute(int[] keys, int from, int len,
int radix, int d, int[] nexts, LinkQueue[] queues,int first) {
for(int i=0;i<radix;i++)queues[i].head=queues[i].tail=-1;
while(first!=-1)
{
int val=keys[from+first];
for(int j=0;j<d;j++)val/=radix;
val=val%radix;
if(queues[val].head==-1)
{
queues[val].head=first;
}
else
{
nexts[queues[val].tail]=first;
}
queues[val].tail=first;
first=nexts[first];
}
}
private int link_radix_sort_collect(int[] keys, int from, int len,
int radix, int d, int[] nexts, LinkQueue[] queues) {
int first=0;
int last=0;
int fromQueue=0;
for(;(fromQueue<radix-1)&&(queues[fromQueue].head==-1);fromQueue++);
first=queues[fromQueue].head;
last=queues[fromQueue].tail;
while(fromQueue<radix-1&&queues[fromQueue].head!=-1)
{
fromQueue+=1;
for(;(fromQueue<radix-1)&&(queues[fromQueue].head==-1);fromQueue++);
nexts[last]=queues[fromQueue].head;
last=queues[fromQueue].tail;
}
if(last!=-1)nexts[last]=-1;
return first;
}
/**
* @param args
*/
public static void main(String[] args) {
int[] a={1,4,8,3,2,9,5,0,7,6,9,10,9,135,14,15,11,222222222,1111111111,12,17,45,16};
USE_LINK=true;
RadixSorter sorter=new RadixSorter();
sorter.sort(a,0,a.length,10,10);
for(int i=0;i<a.length;i++)
{
System.out.print(a[i]+",");
}
}
}
分享到:
相关推荐
冒泡排序:应用Java和Python实现冒泡排序算法 冒泡排序:应用Java和Python实现冒泡排序算法 冒泡排序:应用Java和Python实现冒泡排序算法 冒泡排序:应用Java和Python实现冒泡排序算法 冒泡排序:应用Java和Python...
本话题主要探讨六种内部排序算法:直接插入排序、希尔排序、冒泡排序、快速排序、选择排序以及堆排序。这六种排序算法各有优劣,适用于不同的场景,接下来我们将逐一进行详细阐述。 1. **直接插入排序**: 直接...
除了冒泡排序,代码还展示了其他两种经典的排序算法:选择排序和插入排序。 选择排序的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。...
Java排序算法实现主要涉及到两种经典的算法:冒泡排序和选择排序。这两种算法都是基于比较的排序方法,适用于小规模或教学目的的数据排序。 **冒泡排序(Bubble Sort)** 是一种简单直观的排序算法,其核心思想是...
// 实现快速排序逻辑 } } ``` 在`bubbleSort`方法中,我们可以使用两个嵌套的for循环来完成冒泡排序的过程;在`quickSort`方法中,我们需要实现分区操作,并根据返回的分割点进行递归调用。 通过这样的实现,...
本文将详细探讨十种经典的排序算法在C++中的实现,分别是冒泡排序、桶排序、计数排序、堆排序、插入排序、合并排序、快速排序、基数排序、选择排序和希尔排序。 1. **冒泡排序**:冒泡排序是最简单的排序算法之一,...
本资源介绍了六种常用的排序算法:选择排序、直接插入排序、冒泡排序、希尔排序、快速排序和堆排序。下面对每种算法进行详细介绍: 选择排序 选择排序是一种简单的排序算法。其思想是:在要排序的一组数中,选出...
这七种算法分别是:冒泡排序、选择排序、直接插入排序、希尔排序、堆排序、归并排序和快速排序。 1. **冒泡排序**: 冒泡排序是最基础的排序算法之一,通过重复遍历待排序序列,比较相邻元素并交换位置来实现排序...
实现以下常用的内部排序算法并进行性能比较:"直接插入排序"," 折半插入排序"," 2—路插入排序"," 表插入排序"," 希尔排序"," 起泡排序"," 快速排序"," 简单选择排序"," 树形选择排序"," 堆排序"," 归并排序"," 链式...
java可运行排序算法:①插入排序、②冒泡排序、③选择排序、④学生学号按照成绩高低排序的一个简单实例。在java工程项目的源文件src中建立Array包,可运行这四个.java文件,便于对java中的排序算法及数组结构进一步...
这里我们汇总了七种常见的排序算法:Shell排序、归并排序、选择排序、快速排序、堆排序、冒泡排序和插入排序。每种算法都有其独特的特点和适用场景,下面将逐一详细介绍。 1. **Shell排序**:由Donald Shell提出,...
在本文中,我们将深入探讨四种经典的排序算法:插入排序、选择排序、基数排序和冒泡排序,以及它们在C++语言中的实现。 **插入排序(Insertion Sort)** 插入排序是一种简单直观的排序算法,它的工作原理类似于我们...
各种排序算法的实现函数:包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序、基数排序。 查找最大最小值函数 findMinMax:在给定数组中查找最大值和最小值。 计算平均值...
* 冒泡排序: * 每次在无序队列里将相邻两个数一次进行比较, * 将小数调到前面,逐次比较,直至将最大的数移到 * 最后。将剩下的N-1个数继续比较,将次大数移至 * 倒数第二位。
八种排序算法原理及Java实现是排序算法中的一种,包括冒泡排序、快速排序、直接插入排序、希尔排序、选择排序、归并排序和基数排序等。 冒泡排序是八种排序算法中的一种,属于交换排序。冒泡排序的基本思想是重复...
排序算法汇总P: 冒泡排序快速排序直接选择排序插入排序希尔排序 堆排序........
在提供的文件中,我们可以看到有四种经典的排序算法的Java实现:插入排序、冒泡排序、选择排序以及希尔排序。 **插入排序**: 插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据...
堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和...
本文将探讨如何使用这两种语言实现几种基本的排序算法:冒泡排序、选择排序,以及两种全比较排序(并行和串行)。 首先,让我们了解一下排序算法。排序是计算机科学中最基础的操作之一,它涉及到将一组数据按照特定...
本篇文章将详细讨论几种常见的排序算法:选择排序、冒泡排序、插入排序、合并排序以及快速排序,分析它们的算法原理、时间效率,并通过经验分析验证理论分析的准确性。 **1. 选择排序(Selection Sort)** 选择排序...