- 浏览: 454423 次
- 性别:
- 来自: 西安
文章分类
最新评论
-
进退取舍:
谢谢,这个用上了!!
Java 一个线程池的示例 -
pb_water:
感谢楼主,打算买楼主的书,支持一下,楼主功德无量
JavaScript内核系列第0版整理稿下载 -
lancezhcj:
有图会直观的多呢,再摸索摸索
有限自动机与建模 -
hsmsyy:
这里应该是原创了吧,楼主我觉得闭包的作用:实现面向对象。有待商 ...
JavaScript内核系列 第7章 闭包 -
wll52:
在应用退出之前,需要释放连接 con.disconnect() ...
使用smack与GTalk通信
HOC(High Order Calculator) 是一个解释型的程序语言,最初的版本由Brain Kernighan和Rob Pike在《The UNIX Programming Environment》[UNIX编程环境]一书中作为一个例子给出。本身由lex/yacc构造,结构十分清晰,作为一个教学语言,HOC支持函数,具有类C的语法,有简单的I/O,变量赋值,表达式计算,错误恢复等机制。
后来,Bell实验室又陆续开发出了一些改进的版本,使得HOC可以平坦的移植到各种Linux系统中,我在上学的时候阅读过[UNIX编程环境]这本书,并且对其中的HOC做了一些简单的改进,后来又找到了Bell实验室的一个版本,深入的学了一遍,由于这个发布版本出自Research UNIX系统,我又对源码做了一些修改,并将其移植到了Windows平台。
在第一次学习HOC解释器的时候,是在编译原理课程结束后,当时是想在linux下设计一个通用的数学计算引擎,然后将计算出的数据通过一个前端展示系统(最好平台无关)展示给最终用户。开始,准备用Delphi自己写一个,但是一直没有实现,这个项目就停止了。直到后来发现了一个优秀的绘图工具gnuplot(关于gnuplot的更多细节,请参看我的另一篇文章), 用它来做前端似乎再合适不过了,于是,我决定将原来的改进后的HOC移植到Windows下,然后进行一个简单的整合。
下面是用HOC语言写的一段代码:
代码很简单,先定义一个过程:plotSin(在HOC中有procedure,function之分,前者没有返回值,而后者有),这个过程定义了三个临时变量begin,end,step,其中PI是一个常量,其值为3.1415926, 然后是一个for循环,begin不断加step(0.1),直到不小于end,退出循环,同时每次迭代时,先计算sin(begin)的值,并打印此时的begin和sin(begin)值。最后,调用这个过程,执行计算并退出。
这个是程序生成的数据:
将数据交给gnuplot展示,gunplot可以轻易的从数据文件中读出数据,并以第一列为横坐标,第二类为纵坐标画出图形来,根据上边这个数据文件,gnuplot画出的图形结果如下:
如果需要绘制3-D的图形,事实上更为简单一些。如下面的代码所示:
代码很简单,就是两层循环,计算出sin(x)*cos(y)的值,打印出来,一次x迭代结束后,打印一个空行,这样gunplot可以识别次文件,并画出3-D的图形来。
使用gnuplot的3-D绘制命令,splot,可以得到下边的图形:
z = sin(x)*cos(y)
z = x * y
z = x^2 - y^2 (鞍面)
整个思路很清晰,没有什么难懂的地方,而这个HOC的原始版本就是在UNIX下用lex/yacc开发的,只要对正则表达式和BNF形式比较熟悉就可以很快的理解整个解释器的实现(建议直接去看源码)。如果不太熟悉,那么就接着往下看,我会详细解释这些工具的用法和一些形式语言的理论。
- 形式语言
在计算机科学中,形式语言 是用精确的数学定义或者机器可识别的公式定义的语言,形式语言跟自然语言很类似,包含两部分:语法 和语义 。形式语言的定义 为:
- 正则表达式和BNF
1940年代,Warren McCulloch与Walter Pitts将神经系统中的神经元描述成小而简单的自动控制元。在1950年代,数学家斯蒂芬·科尔·克莱尼利用称之为正则集合 的数学符号来描述此模型。正则表达式又称为模式(pattern),用来描述一系列符合某个句法 规则的串,正则表达式的表达能力十分强大,特别在对串的描述上。通过一系列的数学符号的引入,使得一个很简洁的表达式可以匹配一个很复杂的串,这正是使用正则表达式的目的。正则表达式有很多的现,C,JAVA,JavaScript等语言都支持正则表达式,perl语言对正则表达式的支持更是到达了一个空前的高度。
在对一些有某些特征的串进行描述的时候,通常会觉得特别难,在使用状态机的理论后,可以得到一定的简化,在数学上可以证明,状态机的表达能力跟正则表达式的表达能力是相等的,也就是说,一切能用状态机表示出来的语言用正则语言也是可以描述的。
下面说两个简单的例子,我们在表达“浮点数”这个概念时,用自然语言可以做如下描述:“由若干个数字开头,然后是一个点号(.),然后又是若干个数字”。将这种不确定的语言如何翻译成机器能识别的语言呢?幸好,科学家发明了正则表达式,比如这个例子中,我们可以使用:[0-9]+\.[0-9]{1,} 来表示(当然,这个版本可能有bug,暂时不考虑)。又比如,在很多计算机程序设计语言中,变量命的规则为“以下划线或者字母开头,由数字,下划线,字母组成,长度不超过某个限制(比如64个字符)”,用正则表达式可以做出下面的描述:[_a-zA-Z][_a-zA-Z0-9]{,63}.
BNF,说起BNF就更牛了,BNF是一种上下文无关文法 (context-free),基本上所有的计算机语言都是使用上下文无关文法描述的,在表达能力上,上下文无关文法要比有限自动机 和正则文法 强大,先看看一个上下文无关文法的简单例子:
语言G1,有以下规则:
A -> B
B -> #
语言L(G1)可以描述这样一个语言:L(G1) = {0n
# 1n
| n >=
0}。
上下文无关文法的形式定义是这样:
1) V是一个有穷集合,称为变元集
2) Σ是一个与V不相交的有穷集合,称为终结符集
3) R是一个有穷规则集,每条规则由一个变元(非终结符)和一个由变元和终结符组成的串组成
4) S ∈ V是起始变元
如在文法G1中,V={A, B}, Σ = {0, 1, #}, S = A, R为:
A
-> 0A1
A -> B
B -> #
这部分基本上是纯理论,看懂了下边的很好理解,看不懂的也没有关系,在下边的实践中慢慢的理解,最终会理解的。
- lex/yacc
这两个工具太有名了,而且功能非常之强大,在UNIX下已经牛了几十年了,很多工具和语言的解释器都是用它们来做的。一般来说,lex生成关于记号的规则,生成yacc需要用到的tokens,yacc定义文法以及语义,而语义的解释一般由外部的C来完成,UNIX下,C是原生的,而且这些工具可以无缝连接,所以在*nix下做一个语言的解释器是很容易的。当然,如果你在windows平台,照样可以完成这些动作,只是稍微有点麻烦。lex/yacc已经被已经到了windows平台,而且有很多个版本,GNU Bison已经很好的工作在win32平台了。还有一个集成开发环境,叫Parser Generator,不过这个是面向学生和教育工作者的,其他的人需要购买一个License.
lex中,用正则表达式定义一些记号,如数字,字符串,关键字等的定义可以放在这个里,主要是做词法分析。lex将输入的文件按字符读入,然后匹配定义好的规则,如果发现是数字则返回数字,等等。返回的结果交给yacc(语法分析)做进一步处理。
yacc,使用BNF描述一些语法规则,它将lex返回来的记号与自己的规则相匹配,发现匹配后,执行一定的语义解释,翻译!
- C语言的函数指针
C语言中,函数是可以作为一个指针,这个指针指向函数的内存空间,如果这些指针放在一个数组中,你甚至可以通过指针的移动如*pc++来调用下一个函数(当然,这种方式本身是不推荐的)。
定义一个函数指针
:
double (*func)(double);
表示,当以了一个函数指针*func,这个函数接受一个double类型的参数,并返回一个double型的数。比如,在HOC中,有一个函数名与具体函数之间的映射表,代码如下
init.c line42
static struct { /* Built-ins */ char *name; double (*func)(double); } builtins[] = { "sin", sin, "cos", cos, "tan", tan, "atan", atan, "asin", Asin, /* checks range */ "acos", Acos, /* checks range */ "sinh", Sinh, /* checks range */ "cosh", Cosh, /* checks range */ "tanh", tanh, "log", Log, /* checks range */ "log10", Log10, /* checks range */ "exp", Exp, /* checks range */ "sqrt", Sqrt, /* checks range */ "gamma", Gamma, /* checks range */ "int", integer, "abs", fabs, "erf", erf, "erfc", erfc, 0, 0 };
再比如,HOC的符号表 (编译器内部的一个常用的数据结构,用于存储编译过程中的二元组)Symbol结构:
hoc.h line4
typedef struct Symbol { /* symbol table entry */ char *name; long type; union { double val; /* VAR */ double (*ptr)(double); /* BLTIN */ Inst *defn; /* FUNCTION, PROCEDURE */ char *str; /* STRING */ } u; struct Symbol *next; /* to link to another */ } Symbol;
其中内部的匿名union中,有一个字段double (*ptr)(double)就是一个函数指针,名字为ptr,用于表示内建的函数表,也就是刚才提到的builtins数组。
好了,理论就先说到这里,下面开始从头开始构造HOC语言,我会先设计一个简单的框架,我们逐步扩展这个框架,并在最后实现这个语言解释器。好了,可以开始了……
- 一个简单的计算器
hoc.l
%{ #include "y.tab.h" extern YYSTYPE yylval; extern int lineno; %} %% [ \t]+ {;}//空白字符,如空格,table等 [0-9]+|[0-9]*\.[0-9]+ {//浮点数 sscanf(yytext,"%lf",&yylval.val); return NUMBER; } \n {//换行 lineno++; return '\n'; } . {//其他任意字符 return yytext[0]; } %%
hoc.l很简单,读到空白字符,如空格,table等键则忽略不计,接着读下一个字符,读到换行,就将lineno变量加一,读到浮点数,则将内容读入yylval,并返回NUMBER标记。
hoc.y
%{ #include <stdio.h> #include <stdlib.h> char *progname;//记录程序名,为了显示错误 int lineno = 1;//行号,用于显示错误 %} %union{ double val; } %token <val> NUMBER %type <val> expr %left '+' '-' %left '*' '/' %left UNARYMINUS//left 意思为这些操作符的结合方式是从左到右,而有些操作符如平方,与此相反 %% list : | list '\n' | list expr '\n' {printf("\t%.8g\n",$2);}//打印结果 ; expr : NUMBER {$$ = $1;} | '-' expr %prec UNARYMINUS {$$ = -$2;}//负数 | expr '+' expr {$$ = $1 + $3;} | expr '-' expr {$$ = $1 - $3;} | expr '*' expr {$$ = $1 * $3;} | expr '/' expr {$$ = $1 / $3;} | '(' expr ')' {$$ = $2;} ; %% //上边的$$表示根规则(变元)的值,$1,$2,$i 等表示,第i个子表达式(终结符或者变元) int main(int argc,char **argv) { progname = argv[0];//记录程序的名字 yyparse(); } yywrap() { return 1; } yyerror(char *s) { warning(s,(char *)0); } warning(char *s,char *t) { fprintf(stderr,"%s : %s",progname,s); if(t) fprintf(stderr," %s",t); fprintf(stderr," near line %d\n",lineno); }
hoc.y中间的%%与%%之间的一段就是计算器的BNF的描述,这样一个简洁的描述和一些简单的语义规则($$ = $1 + $3等)即可完成一个桌面计算器的形式描述。其他的几个函数,是yacc要求实现的,做一些错误处理等操作。
如果你工作在*nix系统,可以使用下面的makefile来自动编译整个程序,需要注意的是,你需要一个lex和一个yacc,当然,C的编译器和目标文件的连接器也是必须的。
makefile
hoc: y.tab.o lex.yy.o gcc y.tab.o lex.yy.o -o hoc y.tab.o:y.tab.c gcc -c y.tab.c y.tab.c:hoc.y yacc -d hoc.y lex.yy.o:lex.yy.c gcc -c lex.yy.c lex.yy.c:hoc.l lex hoc.l clean: rm -f y.tab.[cho] rm -f lex.yy.[cho]
编译通过后,你即可使用在shell中测试一些简单的表达式求值:
$./hoc
这个版本的hoc可以处理一些比较简单的表达式,如(1+3)*(5-2),(-12)*6/2等,可以计算出结果,并打印出来。如果有不认识的文法如a++,3^2
= ?或者除0错误4/0等,你会得到一个错误信息,并且hoc会退出(这正是YACC默认的行为)。
- 支持变量
下一个版本,我们给hoc加入变量声明的机制,变量可以是a-z中的任意个字母,如可以定义:a = 2,b = -4等形式的量,变量可以跟数字一样做+/-/*/等操作。我们可以简单的加入一个数组来维护这些变量,对于第一个版本来说,改动并不大:
hoc.l
[a-z]{ yylval.index = yytext[0] - 'a'; return VAR; }
对hoc.l来说,我们可以添加这样一个简单的规则,将读到的变量的ASCII值放入一个全局变量(在lex和yacc中共享)中,并返回记号VAR,yac会对这个记号做处理。
hoc.y
double mem[26]; ... ... %union{ double val; int index; } expr: ... ... | VAR {$$ = mem[$1];} | VAR '=' expr {$$ = mem[$1] = $3;} ... ...
对于hoc.y改动也不是很大,增加了一个用于存储变量的值的数组mem,这个数组的大小跟英文中的字母数目一样,从规则expr的改动可以看出,当你在给一个变量赋值后,可以通过变量名来引用这个变量的值,比如,你先设置一个变量x = 5,在接下来的某个地方使用x,你会得到一个输出5,当然,这两个语句之间要确保x没有被修改过。
- 错误恢复
当你的程序在执行过程中,你可能不太希望一出错马上就退出,可能想要让系统从错误中恢复过来,继续下边的语句,这虽然不一定是必须的,但是,在这里可能是有用的。
#include <setjmp.h> jmp_buf begin; int main(int argc,char **argv) { int fpecatch(); progname = argv[0]; setjmp(begin); signal(SIGFPE,fpecatch);//注册回调函数,当发生FPE时,调用fpecatch() yyparse();//调用分析程序 } fpecatch()//Floating point exception { warning("floating point exception",(char *)0); } yyerror(char *s) { warning(s,(char *)0); longjmp(begin,0);//跳转回begin初始化的地方 }
现在main中初始化一个jmp_buf型的变量begin,然后设置信号setjmp(begin),然后调用yyparse(),当错误发生时,如除零错误,yacc会调用yyerror()来处理,这时,在yyerror内部,可以调用一个系统调用longjmp(begin, 0),即可恢复到begin被初始化的地方,即main函数中,yyparse()之前的位置。
关于C语言中,这个jmp_buf, setjmp(jmp_buf b)和longjmp(jmp_buf buf, int code)的具体使用,可以参考别的C语言手册。
- 与C整合,调用外部的C函数
lex/yacc真正强大之处在于他们和C语言的结合能力上。它们可以自由的使用外部的C语言定义好的函数。事实上,由于lex/yacc只是一种中间结果,它们最终还是要生成C代码的,所以使用外部的C语言是没有任何问题的。我们现在可以给hoc添加幂函数的处理,对幂函数的实现我们可以使用外部的C语言的math库。
hoc.y
... ... extern double POW(double ,double); ... ... %right '^'//幂函数的操作符是自右到左结合的 ... ... expr : ... ... | expr '^' expr {$$ = POW($1,$3);}//调用外部的POW函数 ... ...
math.c
#include <stdio.h> #include <math.h> double POW(double x,double y)//当然,也可以在内部调用math.pow,但是这里要说明的是使用外部的C代码 { return pow(x,y); }
我们可以进行一些简单的测试,现在我们可以把第二个版本的hoc的完整代码给出来:
lex.l
%{ #include "y.tab.h" extern YYSTYPE yylval; extern int lineno; %} %% [ \t]+ {;} [0-9]+|[0-9]*\.[0-9]+ { sscanf(yytext,"%lf",&yylval.val); return NUMBER; } [a-z] { yylval.index = yytext[0] - 'a'; return VAR; } \n {lineno++;return '\n';} . {return yytext[0];} %%
lex.y
%{ #include <stdio.h> #include <stdlib.h> char *progname; int lineno = 1; double mem[26]; extern double POW(double ,double); %} %union{ double val; int index; } %token <val> NUMBER %token <index> VAR %type <val> expr %right '=' %left '+' '-' %left '*' '/' %left UNARYMINUS %right '^' %% list : | list '\n' | list expr '\n' {printf("\t%.8g\n",$2);} | list error '\n' {yyerrok;} ; expr : NUMBER | VAR {$$ = mem[$1];} | VAR '=' expr {$$ = mem[$1] = $3;} | '-' expr %prec UNARYMINUS {$$ = -$2;} | expr '+' expr {$$ = $1 + $3;} | expr '-' expr {$$ = $1 - $3;} | expr '*' expr {$$ = $1 * $3;} | expr '/' expr {if($3 == 0.0) yyerror("devide zero error\n"); $$ = $1 / $3;} | expr '^' expr {$$ = POW($1,$3);} | '(' expr ')' {$$ = $2;} ; %% #include <signal.h> #include <setjmp.h> jmp_buf begin; int main(int argc,char **argv) { int fpecatch(); progname = argv[0]; setjmp(begin); signal(SIGFPE,fpecatch); yyparse(); } fpecatch()//Floating point exception { warning("floating point exception",(char *)0); } yyerror(char *s) { warning(s,(char *)0); longjmp(begin,0); } yywrap() { return 1; } warning(char *s,char *t) { fprintf(stderr,"%s : %s",progname,s); if(t) fprintf(stderr," %s",t); fprintf(stderr," near line %d\n",lineno); }
math.c
#include <stdio.h> #include <math.h> double POW(double x,double y) { return pow(x,y); }
makefile
hoc: y.tab.o lex.yy.o maths.o gcc y.tab.o lex.yy.o maths.o -o hoc -lm y.tab.o:y.tab.c gcc -c y.tab.c y.tab.c:hoc.y yacc -d hoc.y lex.yy.o:lex.yy.c gcc -c lex.yy.c lex.yy.c:hoc.l lex hoc.l maths.o:maths.c gcc -c maths.c clean: rm -f y.tab.[cho] rm -f lex.yy.[cho] rm -f maths.o
make成功以后,就可以测试一下,对变量的支持,和错误的恢复,以及对幂函数的支持。现在离我们的目标还有多远呢?我觉得已经比较接近了,但是,我们现在还需要支持更多的外部函数,如计算正弦余弦函数,计算对数函数,开方,幂函数等等。还有,像很多个数学引擎一样,我们应该考虑内建一些常量,如PI,E等。当然,除了我们第二个版本的半成品,再没有一个语言的变量会规定为一个字母,因此,我们需要对这些方面进行一些改造。
这一次就先写这些,我对高版本的HOC再做一些注释,然后再写一些解释很分析出来。
相关推荐
自己写的模拟adhoc网络脚本,用于分析各路由协议的网络性能,供大家参考.....
【Linux环境下Ad hoc网络的实现及性能分析】 Ad hoc网络是一种无需基础设施的自组织和自管理的无线网络,其中每个节点既是终端也是路由器。在Linux操作系统下实现Ad hoc网络,可以利用其开源特性以及丰富的开发工具...
移动AdHoc网络MAC协议性能分析及改进
这个过程中,脚本会执行一系列配置操作,包括设置接口模式、SSID、频道、密码等,同时还会配置iptables规则,以实现NAT(网络地址转换),确保内部网络能够访问外部网络。 #### 步骤三:停止Ad-Hoc网络 若需停止Ad...
基于ARM的嵌入式AdHoc网络平台的实现(内核编译,无线网卡驱动移植,交叉编译aodv模块)
NS2(Network Simulator 2)是一个常用的网络仿真工具,它支持TCL脚本编写,可以用于模拟ad-Hoc和MANET。 **NS2** NS2是一款开源的网络模拟器,主要用于研究和分析各种网络协议,包括ad-Hoc和MANET。它提供了丰富...
UoBWinAODV是由英国布里斯托大学开发的一个开源AODV路由协议实现,它允许用户在Windows平台上进行ad hoc网络和路由协议的研究与实验。 在使用UoBWinAODV-0.1时,你需要首先安装这个软件,然后配置网络参数,包括...
openwrt 下自动配置ad-hoc网络的脚本程序,通过修改/etc/config下的uci配置文件实现
linux启用无线网卡的ad-hoc模式共享网络的脚本
### Android平台上Ad-Hoc通信模式的研究与实现 #### 背景与意义 随着无线宽带接入技术和移动终端技术的快速发展,人们对于随时随地便捷地获取互联网信息和服务的需求日益增强,这推动了移动互联网的兴起和发展。...
1. **网络架构**:构建基于Ad Hoc网络的RFID系统时,可以通过设置多个读写器节点形成一个覆盖区域,这些节点之间可以互相通信,构成一个多跳路由的网络。 2. **定位算法**:利用Ad Hoc网络的多跳特性,结合RFID标签...
### Ad hoc网络安全性分析 #### 一、Ad hoc网络概述 Ad hoc网络是一种无基础设施的自组织网络,其中节点能够动态地建立一个临时的网络连接,而无需预先存在的网络基础设施支持。这种网络类型通常用于军事通信、...
在Linux系统中基于Netfilter功能框架的AODV协议设计与实现方法是当前Ad-Hoc网络研究的主要方向之一。Netfilter是Linux系统中的一个网络过滤框架,提供了一个灵活的接口,用于过滤和修改网络数据包。基于Netfilter...
wireless-3node.tcl 无线Ad hoc网络的NS-2模拟脚本 命令格式:$ ns wireless-3node.tcl statistic.sh throughput.sh throughput.awk FTP业务平均吞吐量统计脚本 命令格式:$ sh statistic.sh | sh throughput.sh cbr...
通过构建一个合适的矩阵方程,可以更直接地分析和计算系统状态的概率分布和期望值。 概率分布是研究随机过程中,系统在任意时刻处于各个可能状态的概率。期望值则是描述某一随机变量平均而言可能取值的数学期望。在...
在无线通信领域,Ad Hoc网络是一种自组织的、对等式网络,其中各个设备(节点)无需固定的基础设施即可直接相互通信。本资源提供了一套使用ns-2.28进行Ad Hoc网络仿真的代码,这为研究和理解无线网络特性提供了宝贵...
AdHoc网络协议关键技术分析是指在无线传感器网络中,为了实现数据的采集、处理、融合和传输应用,需要研究和分析的关键技术。这些技术包括MAC协议、路由协议等。MAC协议是AdHoc网络中的一个重要组件,负责报文在无线...
### 在嵌入式Linux环境下搭建Adhoc网络 #### 摘要 随着嵌入式Linux技术的广泛应用,具有无线接入功能的嵌入式系统成为未来发展的趋势之一。本篇文章聚焦于如何在嵌入式Linux环境下搭建Adhoc网络,并选取了支持IEEE...