新找了份Java的工作,结果去公司第一件事情是学习普元的EOS,说是要用这个东西开发,于是找文档就开看。
第三天结束了,看了三天的文档,看的迷迷糊糊的,大概晓得写程序的流程,懂那么些些EOS运行的机制。但是,不看文档还是写不出个Hello World来。
我并没有刻意去记开发流程里面的一些属性设置,一直都是看文档,有个大概印象,再去仔细写写程序。网上关于EOS的文章除了Primeton自己的文档、教程之外,少之又少,即使有也是05年的文章。多是争论EOS这个东东好还是不好,关于开发经验的文章,几乎是没有。
EOS提倡的面向构件于我看来就是面向组件,和Delphi的开发差不多。在编辑器里面拖几个框框用线连接起,组成业务逻辑、展现逻辑等等。然后每个框框设置属性,然后浏览器运行……
我不喜欢这种开发方式,大概是我从来对这样的图形拖拉方式很反感,何况又是国产货,我更加不信任。第一印象如此。然后真正看了文档,觉得文档写的还是很不错,流程以及运行原理都写的详细并且有不少的例子。虽然有一些错别字但还是不影响阅读的。可是对EOS的看法仍然没有大的改观。
展现逻辑、业务逻辑、页面逻辑、数据逻辑、运算逻辑、工作流逻辑,六个部分用XML总线的方式进行通信,从客户端提交请求,经过各个逻辑层的处理最终通过JSP页面呈现出来。业务逻辑、展现逻辑等等可以用图形流程化的方式进行描述,同时各层提供了不少的方便的构件(目前还没有找到各个构件的文档,连每个构件是干什么的都不知道)如果EOS自己带的东西不适应需求,可以扩展,在运算逻辑层写自己的Java代码。EOS主要是让业务流程清晰直观化,然后每层的耦合度都降低,可以适应快速的开发以及适应业务需求的变化。
上面就是我目前对EOS的理解,好像也还是清晰可靠,但是,我总是觉得差些什么,这已经算不上第一印象了,不知道是不是因为我对EOS本身提供的工具构件不熟悉的缘故。
接下来要做的东西还很多,我不了解的细节也很多,争取在下周一之前把EOS的原理都搞懂,然后可以开发一些小的东东出来吧。
公司没有人带,自己学,痛苦啊!!
分享到:
相关推荐
该代码使用scikit-learn的乳腺癌数据集,完成分类模型训练与评估全流程。主要功能包括:数据标准化、三类模型(逻辑回归、随机森林、SVM)的训练、模型性能评估(分类报告、混淆矩阵、ROC曲线)、随机森林特征重要性分析及学习曲线可视化。通过`train_test_split`划分数据集,`StandardScaler`标准化特征,循环遍历模型进行统一训练和评估。关键实现细节包含:利用`classification_report`输出精确度/召回率等指标,绘制混淆矩阵和ROC曲线量化模型效果,随机森林的特征重要性通过柱状图展示,学习曲线分析模型随训练样本变化的拟合趋势。最终将原始数据和预测结果保存为CSV文件,便于后续分析,并通过matplotlib进行多维度可视化比较。代码结构清晰,实现了数据处理、模型训练、评估与可视化的整合,适用于乳腺癌分类任务的多模型对比分析。
内容概要:本文作为PyTorch的入门指南,首先介绍了PyTorch相较于TensorFlow的优势——动态计算图、自动微分和丰富API。接着讲解了环境搭建、PyTorch核心组件如张量(Tensor)、autograd模块以及神经网络的定义方式(如nn.Module),并且给出了详细的神经网络训练流程,包括前向传播、计算损失值、进行反向传播以计算梯度,最终调整权重参数。此外还简要提及了一些拓展资源以便进一步探索这个深度学习工具。 适用人群:初次接触深度学习技术的新学者和技术爱好者,有一定程序基础并希望通过PyTorch深入理解机器学习算法实现的人。 使用场景及目标:该文档有助于建立使用者对于深度学习及其具体实践有更加直观的理解,在完成本教程之后,读者应当能够在个人设备上正确部署Python环境,并依据指示独立创建自己的简易深度学习项目。 其他说明:文中所提及的所有示例均可被完整重现,同时官方提供的资料链接也可以方便有兴趣的人士对感兴趣之处继续挖掘,这不仅加深了对PyTorch本身的熟悉程度,也为未来的研究或者工程项目打下了良好的理论基础和实践经验。
此高校心理教育辅导系统功能分析主要分为管理员功能模块、教师功能模块和学生功能模块三大模块,下面详细介绍这三大模块的主要功能: (1)管理员:管理员登陆后可对系统进行全面管理,管理员主要功能模块包括个人中心、学生管理、教师管理、辅导预约管理、学生信息管理、测评结果分析管理、心理健康学习管理、试题管理、留言板管理、试卷管理、系统管理以及考试管理,管理员实现了对系统信息的查看、添加、修改和删除的功能。管理员用例图如图3-1所示。(2)学生:学生进入本高校心理教育辅导系统前台可查看系统信息,包括首页、心理健康信息、试卷列表、公告通知以及留言反馈等,注册登录后主要功能模块包括个人中心、辅导预约管理以及考试管理。(3)教师:教师学生登录后主要实现的功能模块包括个人中心、辅导预约管理、学生信息管理、测试结果分析管理、心理健康学习管理、试卷管理、试题管理、留言板管理、考试管理。Spring Boot是一个简化程序设置的拥有开箱即用的框架,它主要的优点是根据程序员不同的设置而生成不同的代码配置文件,这样开发人员就不用每个项目都配置相同的文件,从而减低了开发人员对于传统配置文件的时间,提高了开发效率。它内
网络文化互动中的虚拟现实技术应用
自驾游中如何预防迷路情况
实现多人聊天的客户端小程序
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
漫画中的文化元素挖掘
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
,,Qt源程序~界面设计例程(XML文件读取+滚动区域放置控件+保存多sheetExcel文件) IDE版本: Qt creator 4.8.0 Qt 5.12.0 代码特点: 1.能读取xml格式文件,并通过其配置界面; 2.能在滚动区域内放置多种控件,界面大小不够会出现滚动条来扩展界面; 3.能通过xml配置文件初始化联动的单选框,输入框和表格; 4.通过程序动态新建单选框,输入框和表格; 5.将表格保存为Excel文件,每个表格就是一个sheet。 视频不够清晰,请上B站看: 【Qt例程:界面设计项目(XML文件读取+滚动区域放置控件+保存Excel文件)- ,Qt源程序; XML文件读取; 滚动区域放置控件; 保存多sheet Excel文件; Qt Creator 4.8.0; Qt 5.12.0; 动态创建控件; 界面设计例程。,Qt程序进阶:XML文件读取与处理,滚动区域控件布局,多sheet Excel文件保存功能
,,FPGA 以太网 UPD IP 协议实现 fpga 千兆以FPGA 以太网 UPD IP 协议实现 fpga 千兆以FPGA 以太网 UPD IP 协议实现, fpga 千兆以太网接口控制器,FPGA UDP IP协议实现 在FPGA上实现UDP通信,Verilog HDL描述语言实现,数据链路层,网络层,传输层有纯逻辑实现。 接口为GMII接口,与外部phy对接。 实验器件为s6,因此编译环境用的是ISE14.7。 vivado轻松无压力,随意移植。 ,FPGA; 以太网; UPD; IP协议; 千兆以太网接口控制器; Verilog HDL描述语言; 数据链路层; 网络层; 传输层; 接口为GMII接口; 编译环境为ISE14.7。,基于FPGA的千兆以太网UDP IP协议实现与优化
eclipse-inst-jre-win64.rar
内容概要:本文档详细介绍了一个基于Transformer和BiLSTM双向长短期记忆神经网络结合贝叶斯优化(BO)进行时间序列预测的项目。该项目主要解决传统方法在处理复杂非线性关系、多变量依赖和大规模数据时存在的局限性,提升预测精度和计算效率。项目通过MATLAB实现完整的程序、GUI设计和详细的代码说明,涵盖数据预处理、模型设计与训练、超参数调优、评估与应用等各个环节。同时探讨了项目的挑战和未来改进方向,为深度学习技术在时间序列预测中的应用提供了实用价值。 适合人群:对时间序列预测感兴趣的研究人员和技术人员,尤其是具有一定深度学习基础并且希望深入了解和实践Transformer、BiLSTM及相关优化技术的专业人士。 使用场景及目标:①为金融、能源、气象等多个领域的实际问题提供时间序列预测解决方案,包括股市预测、电力负载预估等;②提高预测模型的泛化能力和准确性;③优化模型的超参数选取,从而提高训练速度和效率。 其他说明:文中特别强调了数据处理的重要性,如去除噪声、特征选择等问题,并介绍了贝叶斯优化技术的应用,使得模型能够在较少尝试下找到最优配置。同时展示了如何通过图形化界面展示训练过程和评估结果,确保用户体验友好。此外,文档还包括了防止过拟合、提高模型性能的各种技巧,如正则化、早期停止、Dropout等措施。总体而言,本项目致力于提供一套完善的深度学习解决方案,促进跨学科应用和发展。
励志图书中的时间管理、目标设定与自我提升
当前资源包含初中高级闯关习题
亲子自驾游趣味活动推荐
内容概要:本文介绍了BERT(Bidirectional Encoder Representations from Transformers),它是一种新型的语言表示模型,通过利用掩码语言模型(MLM)和下一句预测任务(NSP),实现了从无标注文本中预训练深层双向表示模型的方法。这种双向注意力机制允许模型在同一层联合调节左右语境,极大地提升了下游自然语言处理任务的性能。与单向语言模型如ELMo、GPT不同,BERT能直接捕捉句子内部复杂的依存关系,在多项NLP基准测试中刷新了记录,显著优于以前的最佳表现。 适合人群:从事自然语言处理研究的技术人员以及对该领域有兴趣的研究学者和开发者。 使用场景及目标:适用于需要高级别自然语言理解和推理能力的任务,特别是涉及问答系统、机器翻译和情感分析等任务的研发团队和技术部门。通过采用BERT可以快速提高相关应用场景中的精度。 其他说明:BERT不仅展示了双向建模相对于传统单向方法的优势,还强调了充分预训练对于改善小型数据集上模型表现的关键作用。此外,文中还详细比较了与其他几种现有先进模型的特点,并提供了具体的实验设置和技术细节供进一步探究。
漫画作品与网络文化互动
# 基于SpringBoot的“体育购物商城”的设计与实现(源码+数据库+文档+PPT) - 开发语言:Java - 数据库:MySQL - 技术:SpringBoot - 工具:IDEA/Ecilpse、Navicat、Maven (1)系统管理员主要对个人中心、用户管理、商品分类管理、体育用品管理、系统管理、订单管理等功能进行管理。 (2)用户进入系统可以对首页、体育用品、活动公告、在线客服、购物车、个人中心等功能进行操作。
,,三菱fx5u plc CCD检测fb程序 此程序已经实际设备上批量应用,机器人配合CCD视觉检测,每个工位循环拿照。 用的FB写法,程序成熟可靠,借鉴价值高,程序注释详细,用的三菱fx5u系列plc。 是新手入门级三菱fx5u电气爱好从业人员借鉴和参考经典案列。 ,核心关键词:三菱fx5u PLC; CCD检测; FB程序; 机器人配合; 视觉检测; 循环拍照; 程序成熟可靠; 注释详细; 新手入门级参考案列。,三菱FX5U PLC CCD视觉检测FB程序:成熟可靠,循环拍照应用案例