`

高并发分布式系统中生成全局唯一Id汇总

    博客分类:
  • java
阅读更多

数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。
单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:
   1 不能有单点故障。
   2 以时间为序,或者ID里包含时间。这样一是可以少一个索引,二是冷热数据容易分离。
   3 可以控制ShardingId。比如某一个用户的文章要放在同一个分片内,这样查询效率高,修改也容易。
   4 不要太长,最好64bit。使用long比较好操作,如果是96bit,那就要各种移位相当的不方便,还有可能有些组件不能支持这么大的ID。

一 twitter 
twitter在把存储系统从MySQL迁移到Cassandra的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake。
1 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
2 10位的机器标识(10位的长度最多支持部署1024个节点) 
3 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号) 最高位是符号位,始终为0。
优点:高性能,低延迟;独立的应用;按时间有序。 缺点:需要独立的开发和部署。

原理


java 实现代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
public class IdWorker {
 
private final long workerId;
private final static long twepoch = 1288834974657L;
private long sequence = 0L;
private final static long workerIdBits = 4L;
public final static long maxWorkerId = -1L ^ -1L << workerIdBits;
private final static long sequenceBits = 10L;
private final static long workerIdShift = sequenceBits;
private final static long timestampLeftShift = sequenceBits + workerIdBits;
public final static long sequenceMask = -1L ^ -1L << sequenceBits;
private long lastTimestamp = -1L;
public IdWorker(final long workerId) {
super();
if (workerId > this.maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format(
"worker Id can't be greater than %d or less than 0",
this.maxWorkerId));
}
this.workerId = workerId;
}
public synchronized long nextId() {
long timestamp = this.timeGen();
if (this.lastTimestamp == timestamp) {
this.sequence = (this.sequence + 1) & this.sequenceMask;
if (this.sequence == 0) {
System.out.println("###########" + sequenceMask);
timestamp = this.tilNextMillis(this.lastTimestamp);
}
else {
this.sequence = 0;
}
if (timestamp < this.lastTimestamp) {
try {
throw new Exception(
String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds",
this.lastTimestamp - timestamp));
catch (Exception e) {
e.printStackTrace();
}
}
 
this.lastTimestamp = timestamp;
long nextId = ((timestamp - twepoch << timestampLeftShift))
| (this.workerId << this.workerIdShift) | (this.sequence);
System.out.println("timestamp:" + timestamp + ",timestampLeftShift:"
+ timestampLeftShift + ",nextId:" + nextId + ",workerId:"
+ workerId + ",sequence:" + sequence);
return nextId;
}
 
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}
 
private long timeGen() {
return System.currentTimeMillis();
}
 
 
public static void main(String[] args){
IdWorker worker2 = new IdWorker(2);
System.out.println(worker2.nextId());
}
 
}

2 来自Flicker的解决方案
因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。
Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)。一个生成64位ID方案具体就是这样的: 
先创建单独的数据库(eg:ticket),然后创建一个表:

1
2
3
4
5
6
CREATE TABLE Tickets64 (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(1) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
) ENGINE=MyISAM

  

当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

+-------------------+------+
| id | stub |
+-------------------+------+
| 72157623227190423 | a |
+-------------------+------+
在我们的应用端需要做下面这两个操作,在一个事务会话里提交:

1
2
REPLACE INTO Tickets64 (stub) VALUES ('a');
SELECT LAST_INSERT_ID();

这样我们就能拿到不断增长且不重复的ID了。 
到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,通过区分auto_increment的起始值和步长来生成奇偶数的ID。

1
2
3
4
5
6
7
TicketServer1:
auto-increment-increment = 2
auto-increment-offset = 1
 
TicketServer2:
auto-increment-increment = 2
auto-increment-offset = 2

最后,在客户端只需要通过轮询方式取ID就可以了。

充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。
缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。

三 UUID

UUID生成的是length=32的16进制格式的字符串,如果回退为byte数组共16个byte元素,即UUID是一个128bit长的数字,
一般用16进制表示。
算法的核心思想是结合机器的网卡、当地时间、一个随即数来生成UUID。
从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义上)3240年不重复
优点:
(1)本地生成ID,不需要进行远程调用,时延低
(2)扩展性好,基本可以认为没有性能上限
缺点:
(1)无法保证趋势递增
(2)uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)
四 基于redis的分布式ID生成器
首先,要知道redis的EVAL,EVALSHA命令:
原理

利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。 
生成的ID是64位的:

使用41 bit来存放时间,精确到毫秒,可以使用41年。
使用12 bit来存放逻辑分片ID,最大分片ID是4095
使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID
比如GTM时间 Fri Mar 13 10:00:00 CST 2015 ,它的距1970年的毫秒数是 1426212000000,假定分片ID是53,自增长序列是4,则生成的ID是:

5981966696448054276 = 1426212000000 << 22 + 53 << 10 + 41
redis提供了TIME命令,可以取得redis服务器上的秒数和微秒数。因些lua脚本返回的是一个四元组。

second, microSecond, partition, seq
客户端要自己处理,生成最终ID。

((second * 1000 + microSecond / 1000) << (12 + 10)) + (shardId << 10) + seq;
五 MongoDB文档(Document)全局唯一ID

为了考虑分布式,“_id”要求不同的机器都能用全局唯一的同种方法方便的生成它。因此不能使用自增主键(需要多台服务器进行同步,既费时又费力),
因此选用了生成ObjectId对象的方法。

ObjectId使用12字节的存储空间,其生成方式如下:

|0|1|2|3|4|5|6 |7|8|9|10|11|

|时间戳 |机器ID|PID|计数器 |

前四个字节时间戳是从标准纪元开始的时间戳,单位为秒,有如下特性:

 1 时间戳与后边5个字节一块,保证秒级别的唯一性;
 2 保证插入顺序大致按时间排序;
 3 隐含了文档创建时间;
 4 时间戳的实际值并不重要,不需要对服务器之间的时间进行同步(因为加上机器ID和进程ID已保证此值唯一,唯一性是ObjectId的最终诉求)。

机器ID是服务器主机标识,通常是机器主机名的散列值。

同一台机器上可以运行多个mongod实例,因此也需要加入进程标识符PID。

前9个字节保证了同一秒钟不同机器不同进程产生的ObjectId的唯一性。后三个字节是一个自动增加的计数器(一个mongod进程需要一个全局的计数器),保证同一秒的ObjectId是唯一的。同一秒钟最多允许每个进程拥有(256^3 = 16777216)个不同的ObjectId。

总结一下:时间戳保证秒级唯一,机器ID保证设计时考虑分布式,避免时钟同步,PID保证同一台服务器运行多个mongod实例时的唯一性,最后的计数器保证同一秒内的唯一性(选用几个字节既要考虑存储的经济性,也要考虑并发性能的上限)。

"_id"既可以在服务器端生成也可以在客户端生成,在客户端生成可以降低服务器端的压力。

 

 

 

分享到:
评论

相关推荐

    分布式架构系统生成全局唯一序列号的一些思路对比分析

    在分布式架构系统中,生成全局唯一序列号是至关重要的任务,它涉及到数据一致性、系统扩展性和性能优化等多个方面。本文将对比分析几种常见的生成全局唯一序列号的策略,以供IT从业者参考。 1. **雪花算法...

    全局唯一ID生成

    全局唯一ID(Global Unique Identifier,简称GUID)在IT系统中扮演着至关重要的角色,尤其是在分布式环境中。当系统需要为每条记录分配一个独一无二的身份标识时,全局唯一ID生成技术就显得尤为重要。本话题将深入...

    分布式架构系统生成全局唯一序列号的一些思路对比分析.docx

    分布式架构中的全局唯一序列号生成是一个关键问题,特别是在大规模并发的场景下,保证序列号的唯一性和高效生成是系统设计的重要考量。本文档主要对比分析了几种常见的解决方案,并结合携程的实践经验进行了深入探讨...

    java 分布式 代码生成器 唯一ID

    在Java分布式环境中,生成唯一的ID(唯一标识符)是一个至关重要的任务,特别是在高并发和大数据量的场景下。这样的需求通常出现在数据库主键、订单号、用户唯一标识等业务场景中。下面我们将深入探讨Java分布式代码...

    Springboot2.X基于可靠消息rabbitmq最终一致性分布式事务+分布式全局唯一ID生成器

     d、分布式全局ID生成器,ID生成非绝对递增有序,是趋向有序,这一点如果能接受,可以直接copy使用 2、事务回滚机制说明  a、每个消费端的事务处理都由本地事务负责  b、基于下单队列消费端临时表,查询红包、...

    分布式ID生成策略_snowflake算法

    分布式ID生成策略是现代互联网应用中的重要组成部分,尤其是在大数据时代,每个数据实体通常都需要一个唯一标识符(ID)来区分其身份。Snowflake算法是由Twitter开源的一种高效且可扩展的分布式ID生成方案,广泛应用...

    Springboot唯一编号整合,vesta全局唯一id生成器

    在现代的分布式系统中,确保每个实体的唯一标识是非常重要的,这通常涉及到全局唯一ID(Global Unique Identifier,简称GUID)的生成。SpringBoot作为一个轻量级的Java开发框架,广泛应用于微服务架构,而Vesta ID ...

    分布式系统中唯一ID的生成方法共3页.pdf.zip

    总之,分布式系统中唯一ID的生成是一个涉及多方面因素的问题,包括系统的并发处理能力、可用性、扩展性和ID的格式要求等。理解并掌握这些方法有助于我们在设计和优化分布式系统时做出正确的决策,以保证系统的稳定性...

    生成数字的全局唯一Id.zip

    在IT行业中,生成全局唯一的ID(Identifier)是一个常见的需求,特别是在分布式系统中,数据库记录、消息队列等都需要这样的标识符。"生成数字的全局唯一Id.zip" 提供了一个Java实现,利用雪花算法来生成Long类型的...

    java 获取分布式唯一ID.雪花ID

    在Java开发中,生成分布式唯一ID是常见的需求,特别是在大数据量和高并发的场景下,保证每个记录的ID独特性至关重要。雪花ID(Snowflake ID)是一种被广泛采用的解决方案,由Twitter开源,其设计目标就是生成全局...

    细聊分布式ID生成方法.pdf

    在分布式系统中,全局唯一标识符(Global Unique Identifier, GUID)的生成是一项基础而重要的技术。这些标识符被广泛应用于消息传递、订单处理和帖子识别等场景。本文将深入探讨分布式环境下ID生成的各种策略和技术...

    分步式主键发生器,适合分布式应用的id唯一性

    分布式主键发生器是解决大型分布式系统中生成全局唯一ID的关键技术。在现代互联网应用中,数据量往往庞大,单个数据库或服务器无法承载所有的业务需求,因此采用分布式架构成为必然选择。在这种环境下,如何保证各个...

    cpp-idgen是一个可以生成全局唯一自增id的分布式的高可用服务

    cpp-idgen是一个专门为生成全局唯一且自增ID设计的分布式高可用服务,它在C++编程语言环境下实现,适用于各种需要大量唯一标识的系统。在现代互联网应用中,尤其是在大型分布式系统中,对唯一ID的需求尤为突出,cpp-...

    分布式架构系统生成全局唯一序列号的一个思路

    分布式架构下,唯一序列号生成是我们在设计一个系统,尤其是数据库使用分库分表的时候常常会遇见的问题。当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。在携程账号数据库迁移MySQL...

    分布式系统ID生成器解决方案.docx

    分布式系统中的ID生成是一个至关重要的任务,特别是在大型的复杂分布式环境中,如美团点评的金融、支付、餐饮等产品。随着数据量的不断增长,数据库的分库分表策略需要一个全局唯一的ID来标识每条记录,传统的数据库...

    全局唯一id生成器vesta.rar

    Vesta是一款广泛应用于分布式系统中的全局唯一ID(Global Unique ID,GUID)生成器。在分布式环境中,为了确保每个实体的标识都是唯一的,全局唯一ID生成器扮演着至关重要的角色。Vesta的设计目标是高效、可扩展且...

Global site tag (gtag.js) - Google Analytics