源码解读--(1)hbase客户端源代码 | http://aperise.iteye.com/blog/2372350 |
源码解读--(2)hbase-examples BufferedMutator Example | http://aperise.iteye.com/blog/2372505 |
源码解读--(3)hbase-examples MultiThreadedClientExample | http://aperise.iteye.com/blog/2372534 |
1.摒弃HTable,直接创建HTable里的BufferedMutator对象操作hbase客户端完全可行
在前面的hbase客户端源代码分析中,我们客户端的创建方式如下:
//默认connection实现是org.apache.hadoop.hbase.client.ConnectionManager.HConnectionImplementation Connection connection = ConnectionFactory.createConnection(configuration); //默认table实现是org.apache.hadoop.hbase.client.HTable Table table = connection.getTable(TableName.valueOf("tableName"));
- 默认我们拿到了connection的实现org.apache.hadoop.hbase.client.ConnectionManager.HConnectionImplementation,里面我们需要注意的是通过setupRegistry()类设置了与zookeeper交互的重要类org.apache.hadoop.hbase.client.ZookeeperRegistry类,后续与zookeeper交互都由此类完成
- 然后通过connection拿到了table的实现org.apache.hadoop.hbase.client.HTable
- 最后发现org.apache.hadoop.hbase.client.HTable归根结底持有的就是BufferedMutatorImpl类型的属性mutator,所有后续的操作都是基于mutator操作
那么其实我们操作hbase客户端,完全可以摒弃HTable对象,直接构建BufferedMutator,然后操作hbase,正如所料,在hbase的源码模块hbase-examples里也正好提到了这种使用方法,使用的关键代码如下:
Configuration configuration = HBaseConfiguration.create(); configuration.set("hbase.zookeeper.property.clientPort", "2181"); configuration.set("hbase.client.write.buffer", "2097152"); configuration.set("hbase.zookeeper.quorum","192.168.199.31,192.168.199.32,192.168.199.33,192.168.199.34,192.168.199.35"); BufferedMutatorParams params = new BufferedMutatorParams(TableName.valueOf("tableName")); //3177不是我杜撰的,是2*hbase.client.write.buffer/put.heapSize()计算出来的 int bestBathPutSize = 3177; //这里利用jdk1.7里的新特性try(必须实现java.io.Closeable的对象){}catch (Exception e) {} //相当于调用了finally功能,调用(必须实现java.io.Closeable的对象)的close()方法,也即会调用conn.close(),mutator.close() try( //默认connection实现是org.apache.hadoop.hbase.client.ConnectionManager.HConnectionImplementation Connection conn = ConnectionFactory.createConnection(configuration); //默认mutator实现是org.apache.hadoop.hbase.client.BufferedMutatorImpl BufferedMutator mutator = conn.getBufferedMutator(params); ){ List<Put> putLists = new ArrayList<Put>(); for(int count=0;count<100000;count++){ Put put = new Put(rowkey.getBytes()); put.addImmutable("columnFamily1".getBytes(), "columnName1".getBytes(), "columnValue1".getBytes()); put.addImmutable("columnFamily1".getBytes(), "columnName2".getBytes(), "columnValue2".getBytes()); put.addImmutable("columnFamily1".getBytes(), "columnName3".getBytes(), "columnValue3".getBytes()); put.setDurability(Durability.SKIP_WAL); putLists.add(put); if(putLists.size()==bestBathPutSize){ //达到最佳大小值了,马上提交一把 mutator.mutate(putLists); mutator.flush(); putLists.clear(); } } //剩下的未提交数据,最后做一次提交 mutator.mutate(putLists); mutator.flush(); }catch(IOException e) { LOG.info("exception while creating/destroying Connection or BufferedMutator", e); }
2.BufferedMutatorParams
BufferedMutatorParams主要是收集构造BufferedMutator对象的参数信息,这些参数包括hbase数据表名、hbase客户端缓冲区、hbase rowkey最大所占空间、线程池和监听hbase操作的回调监听器(比如监听hbase写入失败)
package org.apache.hadoop.hbase.client; import java.util.concurrent.ExecutorService; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.classification.InterfaceAudience; import org.apache.hadoop.hbase.classification.InterfaceStability; /** * 构造BufferedMutator对象的类BufferedMutatorParams */ @InterfaceAudience.Public @InterfaceStability.Evolving public class BufferedMutatorParams { static final int UNSET = -1; private final TableName tableName;//hbase数据表 private long writeBufferSize = UNSET;//hbase客户端缓冲区 private int maxKeyValueSize = UNSET;//hbase rowkey最大所占空间 private ExecutorService pool = null;//线程池 private BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {//监听hbase操作的回调监听器,比如监听hbase写入失败 @Override public void onException(RetriesExhaustedWithDetailsException exception, BufferedMutator bufferedMutator) throws RetriesExhaustedWithDetailsException { throw exception; } }; public BufferedMutatorParams(TableName tableName) {//构造方法 this.tableName = tableName; } public TableName getTableName() {//获取表名 return tableName; } public long getWriteBufferSize() {//获取写缓冲区大小 return writeBufferSize; } /** * 重写缓冲区设置函数 */ public BufferedMutatorParams writeBufferSize(long writeBufferSize) { this.writeBufferSize = writeBufferSize; return this; } public int getMaxKeyValueSize() {//获取rowkey所占空间 return maxKeyValueSize; } /** * 重写设置rowkey所占空间的函数 */ public BufferedMutatorParams maxKeyValueSize(int maxKeyValueSize) { this.maxKeyValueSize = maxKeyValueSize; return this; } public ExecutorService getPool() {//获取线程池 return pool; } public BufferedMutatorParams pool(ExecutorService pool) {//构造函数 this.pool = pool; return this; } public BufferedMutator.ExceptionListener getListener() {//获取监听器 return listener; } public BufferedMutatorParams listener(BufferedMutator.ExceptionListener listener) {//构造函数 this.listener = listener; return this; } }
3.BufferedMutator
BufferedMutator是一个接口,主要定义了一些抽象方法:
public interface BufferedMutator extends Closeable { TableName getName();//获取表名 Configuration getConfiguration();//获取hadoop配置对象Configuration void mutate(Mutation mutation) throws IOException;//操作缓冲区 void mutate(List<? extends Mutation> mutations) throws IOException;//批量操作缓冲区 @Override void close() throws IOException;//实现Closeable接口,这样可以利用JDK1.7新特性不写finally就可以关闭对象 void flush() throws IOException;//想hbase服务端提交数据请求 long getWriteBufferSize();//获取写缓冲区大小 @InterfaceAudience.Public @InterfaceStability.Evolving interface ExceptionListener {//监听器 public void onException(RetriesExhaustedWithDetailsException exception, BufferedMutator mutator) throws RetriesExhaustedWithDetailsException; } }
4.BufferedMutatorImpl
package org.apache.hadoop.hbase.client; import com.google.common.annotations.VisibleForTesting; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.classification.InterfaceAudience; import org.apache.hadoop.hbase.classification.InterfaceStability; import org.apache.hadoop.hbase.ipc.RpcControllerFactory; import java.io.IOException; import java.io.InterruptedIOException; import java.util.Arrays; import java.util.LinkedList; import java.util.List; import java.util.concurrent.ConcurrentLinkedQueue; import java.util.concurrent.ExecutorService; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; /** * hbase1.0.0才开始使用BufferedMutatorImpl * 主要用于在多线程中操作同一个数据表 * 需要注意的是多线程中共享一个BufferedMutator对象,如果某个线程中出错,其他线程也会出错 */ @InterfaceAudience.Private @InterfaceStability.Evolving public class BufferedMutatorImpl implements BufferedMutator { private static final Log LOG = LogFactory.getLog(BufferedMutatorImpl.class); private final ExceptionListener listener;//hbase客户端每次操作的监听回调对象 protected ClusterConnection connection; //持有的链接 private final TableName tableName;//hbase数据表 private volatile Configuration conf;//hadoop配置类Configuration @VisibleForTesting final ConcurrentLinkedQueue<Mutation> writeAsyncBuffer = new ConcurrentLinkedQueue<Mutation>();//hbase缓冲区队列 @VisibleForTesting AtomicLong currentWriteBufferSize = new AtomicLong(0);//线程安全的长整型值,主要累计当前在缓冲区中数据所占空间大小 private long writeBufferSize;//hbase客户端缓冲区大小 private final int maxKeyValueSize;//hbase客户端rowkey所占最大空间 private boolean closed = false;//hbase客户端是否已经被关闭 private final ExecutorService pool;//hbase客户端使用的线程池 @VisibleForTesting protected AsyncProcess ap; //hbase客户端异步操作对象 BufferedMutatorImpl(ClusterConnection conn, RpcRetryingCallerFactory rpcCallerFactory, RpcControllerFactory rpcFactory, BufferedMutatorParams params) { if (conn == null || conn.isClosed()) { throw new IllegalArgumentException("Connection is null or closed."); } this.tableName = params.getTableName(); this.connection = conn; this.conf = connection.getConfiguration(); this.pool = params.getPool(); this.listener = params.getListener(); //基于传入的conf构建自己的属性ConnectionConfiguration,客户端没有设置的配置会自动使用默认值 ConnectionConfiguration tableConf = new ConnectionConfiguration(conf); //设置缓冲区大小 this.writeBufferSize = params.getWriteBufferSize() != BufferedMutatorParams.UNSET ? params.getWriteBufferSize() : tableConf.getWriteBufferSize(); //设置rowkey最大所占空间 this.maxKeyValueSize = params.getMaxKeyValueSize() != BufferedMutatorParams.UNSET ? params.getMaxKeyValueSize() : tableConf.getMaxKeyValueSize(); //hbase客户端异步操作对象 ap = new AsyncProcess(connection, conf, pool, rpcCallerFactory, true, rpcFactory); } @Override public TableName getName() {//获取表名 return tableName; } @Override public Configuration getConfiguration() {//获取hadoop配置对象Configuration,这里是客户端传入的conf return conf; } @Override public void mutate(Mutation m) throws InterruptedIOException, RetriesExhaustedWithDetailsException {//操作缓冲区 mutate(Arrays.asList(m)); } @Override public void mutate(List<? extends Mutation> ms) throws InterruptedIOException, RetriesExhaustedWithDetailsException { //如果BufferedMutatorImpl已经关闭,直接退出返回 if (closed) { throw new IllegalStateException("Cannot put when the BufferedMutator is closed."); } //这里先不断循环累计提交的List<Put>记录所占的空间,放置到toAddSize long toAddSize = 0; for (Mutation m : ms) { if (m instanceof Put) { validatePut((Put) m); } toAddSize += m.heapSize(); } // This behavior is highly non-intuitive... it does not protect us against // 94-incompatible behavior, which is a timing issue because hasError, the below code // and setter of hasError are not synchronized. Perhaps it should be removed. if (ap.hasError()) { //设置BufferedMutatorImpl当前记录的提交记录所占空间值为toAddSize currentWriteBufferSize.addAndGet(toAddSize); //把提交的记录List<Put>放置到缓存对象writeAsyncBuffer,在为提交完成前先不进行清理 writeAsyncBuffer.addAll(ms); //这里当捕获到异常时候,再进行异常前的一次数据提交 backgroundFlushCommits(true); } else { //设置BufferedMutatorImpl当前记录的提交记录所占空间值为toAddSize currentWriteBufferSize.addAndGet(toAddSize); //把提交的记录List<Put>放置到缓存对象writeAsyncBuffer,在为提交完成前先不进行清理 writeAsyncBuffer.addAll(ms); } // Now try and queue what needs to be queued. // 如果当前提交的List<Put>记录所占空间大于hbase.client.write.buffer设置的值,默认2MB,那么就马上调用backgroundFlushCommits方法 // 如果小于hbase.client.write.buffer设置的值,那么就直接退出,啥也不做 while (currentWriteBufferSize.get() > writeBufferSize) { backgroundFlushCommits(false); } } // 校验Put public void validatePut(final Put put) throws IllegalArgumentException { HTable.validatePut(put, maxKeyValueSize); } @Override public synchronized void close() throws IOException { try { if (this.closed) {//如果已经关闭了,直接返回 return; } //关闭前做最后一次提交 backgroundFlushCommits(true); this.pool.shutdown();//关闭线程池 boolean terminated; int loopCnt = 0; do { // wait until the pool has terminated terminated = this.pool.awaitTermination(60, TimeUnit.SECONDS); loopCnt += 1; if (loopCnt >= 10) { LOG.warn("close() failed to terminate pool after 10 minutes. Abandoning pool."); break; } } while (!terminated); } catch (InterruptedException e) { LOG.warn("waitForTermination interrupted"); } finally { this.closed = true; } } @Override public synchronized void flush() throws InterruptedIOException, RetriesExhaustedWithDetailsException { //主动调用flush提交数据到hbase服务端 backgroundFlushCommits(true); } private void backgroundFlushCommits(boolean synchronous) throws InterruptedIOException, RetriesExhaustedWithDetailsException { LinkedList<Mutation> buffer = new LinkedList<>(); // Keep track of the size so that this thread doesn't spin forever long dequeuedSize = 0; try { //分析所有提交的List<Put>,Put是Mutation的实现 Mutation m; //如果(hbase.client.write.buffer <= 0 || 0 < (whbase.client.write.buffer * 2) || synchronous)&& writeAsyncBuffer里仍然有Mutation对象 //那么就不断计算所占空间大小dequeuedSize //currentWriteBufferSize的大小则递减 while ((writeBufferSize <= 0 || dequeuedSize < (writeBufferSize * 2) || synchronous) && (m = writeAsyncBuffer.poll()) != null) { buffer.add(m); long size = m.heapSize(); dequeuedSize += size; currentWriteBufferSize.addAndGet(-size); } //backgroundFlushCommits(false)时候,当List<Put>,这里不会进入 if (!synchronous && dequeuedSize == 0) { return; } //backgroundFlushCommits(false)时候,这里会进入,并且不会等待结果返回 if (!synchronous) { //不会等待结果返回 ap.submit(tableName, buffer, true, null, false); if (ap.hasError()) { LOG.debug(tableName + ": One or more of the operations have failed -" + " waiting for all operation in progress to finish (successfully or not)"); } } //backgroundFlushCommits(true)时候,这里会进入,并且会等待结果返回 if (synchronous || ap.hasError()) { while (!buffer.isEmpty()) { ap.submit(tableName, buffer, true, null, false); } //会等待结果返回 RetriesExhaustedWithDetailsException error = ap.waitForAllPreviousOpsAndReset(null); if (error != null) { if (listener == null) { throw error; } else { this.listener.onException(error, this); } } } } finally { //如果还有数据,那么给到外面最后提交 for (Mutation mut : buffer) { long size = mut.heapSize(); currentWriteBufferSize.addAndGet(size); dequeuedSize -= size; writeAsyncBuffer.add(mut); } } } /** * 设置hbase客户端缓冲区所占空间大小 */ @Deprecated public void setWriteBufferSize(long writeBufferSize) throws RetriesExhaustedWithDetailsException, InterruptedIOException { this.writeBufferSize = writeBufferSize; if (currentWriteBufferSize.get() > writeBufferSize) { flush(); } } /** * 获取写缓冲区大小 */ @Override public long getWriteBufferSize() { return this.writeBufferSize; } @Deprecated public List<Row> getWriteBuffer() { return Arrays.asList(writeAsyncBuffer.toArray(new Row[0])); } }
5.BufferedMutatorExample
在hbase的源代码模块hbase-examples里提供了使用hbase客户端的例子,这个java类是BufferedMutatorExample,从这个类里面告诉了我们另外一种操作hbase客户端的实现,其代码如下:
import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.BufferedMutator; import org.apache.hadoop.hbase.client.BufferedMutatorParams; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.RetriesExhaustedWithDetailsException; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; /** * An example of using the {@link BufferedMutator} interface. */ public class BufferedMutatorExample extends Configured implements Tool { private static final Log LOG = LogFactory.getLog(BufferedMutatorExample.class); private static final int POOL_SIZE = 10;// 线程池大小 private static final int TASK_COUNT = 100;// 任务数 private static final TableName TABLE = TableName.valueOf("foo");// hbase数据表foo private static final byte[] FAMILY = Bytes.toBytes("f");// hbase数据表foo的列簇f /** * 重写Tool.run(String [] args)方法,传入的是main函数的参数String[] args */ @Override public int run(String[] args) throws InterruptedException, ExecutionException, TimeoutException { /** 一个异步回调监听器,在hbase write失败的时候触发. */ final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() { @Override public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) { for (int i = 0; i < e.getNumExceptions(); i++) { LOG.info("Failed to sent put " + e.getRow(i) + "."); } } }; /** * BufferedMutator的构造参数对象BufferedMutatorParams. * BufferedMutatorParams参数如下: * TableName tableName * long writeBufferSize * int maxKeyValueSize * ExecutorService pool * BufferedMutator.ExceptionListener listener * 这里只设置了属性tableName和listener * */ BufferedMutatorParams params = new BufferedMutatorParams(TABLE).listener(listener); /** * step 1: 创建一个连接Connection和BufferedMutator对象,供线程池中的所有线程共享使用 * 这里利用了jdk1.7里的新特性try(必须实现java.io.Closeable的对象){}catch (Exception e) {}, * 在调用完毕后会主动调用(必须实现java.io.Closeable的对象)的close()方法, * 这里也即默认实现了finally的功能,相当于执行了 * finally{ * conn.close(); * mutator.close(); * } */ try ( final Connection conn = ConnectionFactory.createConnection(getConf()); final BufferedMutator mutator = conn.getBufferedMutator(params) ) { /** 操作BufferedTable对象的工作线程池,大小为10 */ final ExecutorService workerPool = Executors.newFixedThreadPool(POOL_SIZE); List<Future<Void>> futures = new ArrayList<>(TASK_COUNT); /** 不断创建任务,放入线程池执行,任务数为100个 */ for (int i = 0; i < TASK_COUNT; i++) { futures.add(workerPool.submit(new Callable<Void>() { @Override public Void call() throws Exception { /** * step 2: 所有任务都共同向BufferedMutator的缓冲区发送数据, * 所有任务共享BufferedMutator的缓冲区(hbase.client.write.buffer), * 所有任务共享回调监听器listener和线程池 * */ /** * 这里构造Put对象 * */ Put p = new Put(Bytes.toBytes("someRow")); p.addColumn(FAMILY, Bytes.toBytes("someQualifier"), Bytes.toBytes("some value")); /** * 添加数据到BufferedMutator的缓冲区(hbase.client.write.buffer), * 这里不会立即提交数据到hbase服务端,只会在缓冲区大小大于hbase.client.write.buffer时候才会主动提交数据到服务端 * */ mutator.mutate(p); /** * TODO * 这里你可以在退出本任务前自己主动调用mutator.flush()提交数据到hbase服务端 * mutator.flush(); * */ return null; } })); } /** * step 3: 遍历每个回调任务的Future,如果未执行完,每个Future等待5分钟 */ for (Future<Void> f : futures) { f.get(5, TimeUnit.MINUTES); } /** * 最后关闭线程池 */ workerPool.shutdown(); } catch (IOException e) { // exception while creating/destroying Connection or BufferedMutator LOG.info("exception while creating/destroying Connection or BufferedMutator", e); } /** * 这里没有finally代码,原因是前面用了jdk1.7里的新特性try(必须实现java.io.Closeable的对象){}catch (Exception e) {}, * 在调用完毕后会主动调用(必须实现java.io.Closeable的对象)的close()方法,也即会调用conn.close(),mutator.close() */ return 0; } public static void main(String[] args) throws Exception { //调用工具类ToolRunner执行实现了接口Tool的对象BufferedMutatorExample的run方法,同时会把String[] args传入BufferedMutatorExample的run方法 ToolRunner.run(new BufferedMutatorExample(), args); } }
6.源码收获
- BufferedMutator完全可以用于操作hbase客户端;
- BufferedMutator可以供多线程共享使用;
相关推荐
赠送jar包:phoenix-core-4.7.0-HBase-1.1.jar; 赠送原API文档:phoenix-core-4.7.0-HBase-1.1-javadoc.jar; 赠送源代码:phoenix-core-4.7.0-HBase-1.1-sources.jar; 赠送Maven依赖信息文件:phoenix-core-4.7.0...
HBase 元数据修复工具包。 ①修改 jar 包中的application.properties,重点是 zookeeper.address、zookeeper.nodeParent、hdfs....③开始修复 `java -jar -Drepair.tableName=表名 hbase-meta-repair-hbase-2.0.2.jar`
这个"apache-phoenix-4.14.3-HBase-1.3-bin.tar.gz"文件是Phoenix的特定版本,针对HBase 1.3构建的二进制发行版。 1. **Apache Phoenix架构**:Phoenix主要由四部分组成:SQL解析器、元数据存储、优化器和执行器。...
《Spring Boot Starter HBase:构建高效HBase操作的利器》 在Java开发中,Spring Boot以其简洁、高效的特性,已经成为Web开发框架的首选之一。它通过自动配置和启动器(starter)来简化应用的搭建与运行。而当我们...
Apache Phoenix是构建在HBase之上的关系型数据库层,作为内嵌的客户端JDBC驱动用以对HBase中的数据进行低延迟访问。Apache Phoenix会将用户编写的sql查询编译为一系列的scan操作,最终产生通用的JDBC结果集返回给...
在"apache-phoenix-4.14.0-HBase-1.2-src.tar.gz"这个压缩包中,我们主要会发现以下几个关键的知识点: 1. **Phoenix架构**:Phoenix采用了分层架构,包括客户端驱动、服务器端元数据服务、以及SQL编译器和执行器。...
在标题"apache-phoenix-4.8.1-HBase-1.2-bin.tar.gz"中,我们可以看到这是Apache Phoenix的4.8.1版本,它兼容HBase的1.2版本。这个压缩包是二进制发行版,通常包含了运行Phoenix所需的全部文件,包括JAR包、配置文件...
这个“apache-kylin-3.0.2-bin-hbase1x.tar.gz”文件是Apache Kylin的3.0.2版本的二进制发行版,针对HBase 1.x版本进行了优化。下面我们将详细讨论Apache Kylin及其3.0.2版本的关键特性,以及与HBase的集成。 ...
赠送jar包:phoenix-core-4.7.0-HBase-1.1.jar; 赠送原API文档:phoenix-core-4.7.0-HBase-1.1-javadoc.jar; 赠送源代码:phoenix-core-4.7.0-HBase-1.1-sources.jar; 赠送Maven依赖信息文件:phoenix-core-4.7.0...
在您提供的压缩包 "apache-phoenix-4.8.1-HBase-0.98-bin.tar" 中,包含了 Apache Phoenix 的特定版本,即 4.8.1,针对 HBase 0.98 版本。 **Apache Phoenix 知识点:** 1. **SQL on HBase**: Phoenix 使得非关系...
"apache-atlas-2.0.0-hbase-hook.tar.gz" 是一个特定于Apache Atlas 2.0.0版本的HBase Hook压缩包,这意味着它包含了使Apache Atlas与HBase数据库集成的组件。 Apache Atlas的HBase Hook是一个关键的特性,它允许...
2. **客户端连接管理**:该组件提供了管理HBase客户端连接的工具,包括连接池的设置和生命周期管理,确保高效且安全的连接使用。 3. **模板操作**:通过Spring的Template机制,提供了易于使用的API来执行常见的...
Apache Atlas 2.1.0 版本引入了对HBase的集成支持,也就是我们这里提到的 "apache-atlas-2.1.0-hbase-hook",这是一个针对HBase数据库的Hook组件。这个tar.gz压缩包是为在CDH6.3.1(Cloudera Data Hub 6.3.1)平台上...
小牛学堂-大数据24期-04-Hadoop Hive Hbase Flume Sqoop-12天适合初学者.txt
这个名为"apache-phoenix-4.10.0-HBase-1.1-bin.tar.gz"的压缩包包含了Phoenix 4.10.0版本,专为运行在HBase 1.1版本上的系统设计。通过使用Phoenix,开发人员可以利用SQL语法来操作存储在HBase中的数据,从而简化了...
"apache-phoenix-4.8.1-HBase-0.98-src.tar.gz" 是Phoenix项目的4.8.1版本,针对HBase 0.98的源代码包。 在这款源码包中,开发者和研究人员可以深入理解Phoenix的工作原理,以及如何自定义和优化其功能。以下是这个...
自定义的spring-boot的hbase starter,为hbase的query和更新等操作提供简易的api并集成spring-boot的auto configuration 版本 本项目版本 hbase版本 1.0.0 hbase1.1.2 打包 修改相关的maven私服地址 gradle clean ...
《Phoenix与HBase的深度解析:基于phoenix-hbase-2.4-5.1.2版本》 在大数据处理领域,Apache HBase和Phoenix是两个至关重要的组件。HBase作为一个分布式、列式存储的NoSQL数据库,为海量数据提供了高效、实时的访问...
hbase-hbck2-1.1.0-SNAPSHOT.jar