花了差不多一年半时间,牺牲了每个周末,费了九牛二虎之力,终于完成个人人生的第一本书《大数据架构详解:从数据获取到深度学习》。整个过程其实挺痛苦的,时常想放弃,幸好坚持下来了。
回想这我500天,我常问自己两个问题:
1)我问自己为什么选择去写一本大数据技术的书,是什么让自己坚持?
我感觉可能更多的原因是实践大数据架构和技术这么多年,对技术的理解到一定的程度,心中有许多话不吐不快,因此需要找一个地方完整的表达。
2)那大数据从业者或者有志向搞大数据的同学和读者需要一本书?
往往大家误以为大数据是门单点技术,其实大数据技术是一个技术族,大家需要一本完整介绍大数据的技术的书。
有了这两个问题的答案,这本书的创意和主题思想也就有了。所以我要写一本从架构、业务、技术三个维度深入浅出地介绍了大数据处理领域端到端的知识点书。
书里面主要内容包括三部分:第一部分从数据的产生、采集、计算、存储、消费端到端的角度介绍大数据技术的起源、发展、关键技术点和未来趋势,结合生动的业界最新产品,以及学术界最新的研究方向和成果,让深奥的技术浅显易懂;第二部分从业务和技术角度介绍实际案例,让读者理解大数据的用途及技术的本质;第三部分介绍大数据技术不是孤立的,讲解如何与前沿的云技术、深度学习、机器学习等相结合。
(最后打个广告,如果大家对这个本书感兴趣,大家可以到京东,淘宝,当当,亚马逊,互动出版社等都可以预定,京东有现货https://item.jd.com/10826699444.html,谢谢支持!)
本书的目录如下,大家看看有没有你感兴趣的内容:
第一部分 大数据的本质
第1章 大数据是什么 2
1.1 大数据导论 2
1.1.1 大数据简史 2
1.1.2 大数据现状 3
1.1.3 大数据与BI 3
1.2 企业数据资产 4
1.3 大数据挑战 5
1.3.1 成本挑战 6
1.3.2 实时性挑战 6
1.3.3 安全挑战 6
1.4 小结 6
第2章 运营商大数据架构 7
2.1 架构驱动的因素 7
2.2 大数据平台架构 7
2.3 平台发展趋势 8
2.4 小结 8
第3章 运营商大数据业务 9
3.1 运营商常见的大数据业务 9
3.1.1 SQM(运维质量管理) 9
3.1.2 CSE(客户体验提升) 9
3.1.3 MSS(市场运维支撑) 10
3.1.4 DMP(数据管理平台) 10
3.2 小结 11
第二部分 大数据技术
第4章 数据获取 14
4.1 数据分类 14
4.2 数据获取组件 14
4.3 探针 15
4.3.1 探针原理 15
4.3.2 探针的关键能力 16
4.4 网页采集 26
4.4.1 网络爬虫 26
4.4.2 简单爬虫Python代码示例 32
4.5 日志收集 33
4.5.1 Flume 33
4.5.2 其他日志收集组件 47
4.6 数据分发中间件 47
4.6.1 数据分发中间件的作用 47
4.6.2 Kafka架构和原理 47
4.7 小结 82
第5章 流处理 83
5.1 算子 83
5.2 流的概念 83
5.3 流的应用场景 84
5.3.1 金融领域 84
5.3.2 电信领域 85
5.4 业界两种典型的流引擎 85
5.4.1 Storm 85
5.4.2 Spark Streaming 89
5.4.3 融合框架 102
5.5 CEP 108
5.5.1 CEP是什么 108
5.5.2 CEP的架构 109
5.5.3 Esper 110
5.6 实时结合机器学习 110
5.6.1 Eagle的特点 111
5.6.2 Eagle概览 111
5.7 小结 116
第6章 交互式分析 117
6.1 交互式分析的概念 117
6.2 MPP DB技术 118
6.2.1 MPP的概念 118
6.2.2 典型的MPP数据库 121
6.2.3 MPP DB调优实战 131
6.2.4 MPP DB适用场景 162
6.3 SQL on Hadoop 163
6.3.1 Hive 163
6.3.2 Phoenix 165
6.3.3 Impala 166
6.4 大数据仓库 167
6.4.1 数据仓库的概念 167
6.4.2 OLTP/OLAP对比 168
6.4.3 大数据场景下的同与不同 168
6.4.4 查询引擎 169
6.4.5 存储引擎 170
6.5 小结 171
第7章 批处理技术 172
7.1 批处理技术的概念 172
7.2 MPP DB技术 172
7.3 MapReduce编程框架 173
7.3.1 MapReduce起源 173
7.3.2 MapReduce原理 173
7.3.3 Shuffle 174
7.3.4 性能差的主要原因 177
7.4 Spark架构和原理 177
7.4.1 Spark的起源和特点 177
7.4.2 Spark的核心概念 178
7.5 BSP框架 217
7.5.1 什么是BSP模型 217
7.5.2 并行模型介绍 218
7.5.3 BSP模型基本原理 220
7.5.4 BSP模型的特点 222
7.5.5 BSP模型的评价 222
7.5.6 BSP与MapReduce对比 222
7.5.7 BSP模型的实现 223
7.5.8 Apache Hama简介 223
7.6 批处理关键技术 227
7.6.1 CodeGen 227
7.6.2 CPU亲和技术 228
7.7 小结 229
第8章 机器学习和数据挖掘 230
8.1 机器学习和数据挖掘的联系与区别 230
8.2 典型的数据挖掘和机器学习过程 231
8.3 机器学习概览 232
8.3.1 学习方式 232
8.3.2 算法类似性 233
8.4 机器学习&数据挖掘应用案例 235
8.4.1 尿布和啤酒的故事 235
8.4.2 决策树用于电信领域故障快速定位 236
8.4.3 图像识别领域 236
8.4.4 自然语言识别 238
8.5 交互式分析 239
8.6 深度学习 240
8.6.1 深度学习概述 240
8.6.2 机器学习的背景 241
8.6.3 人脑视觉机理 242
8.6.4 关于特征 244
8.6.5 需要有多少个特征 245
8.6.6 深度学习的基本思想 246
8.6.7 浅层学习和深度学习 246
8.6.8 深度学习与神经网络 247
8.6.9 深度学习的训练过程 248
8.6.10 深度学习的框架 248
8.6.11 深度学习与GPU 255
8.6.12 深度学习小结与展望 256
8.7 小结 257
第9章 资源管理 258
9.1 资源管理的基本概念 258
9.1.1 资源调度的目标和价值 258
9.1.2 资源调度的使用限制及难点 258
9.2 Hadoop领域的资源调度框架 259
9.2.1 YARN 259
9.2.2 Borg 260
9.2.3 Omega 262
9.2.4 本节小结 263
9.3 资源分配算法 263
9.3.1 算法的作用 263
9.3.2 几种调度算法分析 263
9.4 数据中心统一资源调度 271
9.4.1 Mesos+Marathon架构和原理 271
9.4.2 Mesos+Marathon小结 283
9.5 多租户技术 284
9.5.1 多租户概念 284
9.5.2 多租户方案 284
9.6 基于应用描述的智能调度 287
9.7 Apache Mesos架构和原理 288
9.7.1 Apache Mesos背景 288
9.7.2 Apache Mesos总体架构 288
9.7.3 Apache Mesos工作原理 290
9.7.4 Apache Mesos关键技术 295
9.7.5 Mesos与YARN比较 304
9.8 小结 305
第10章 存储是基础 306
10.1 分久必合,合久必分 306
10.2 存储硬件的发展 306
10.2.1 机械硬盘的工作原理 306
10.2.2 SSD的原理 307
10.2.3 3DXPoint 309
10.2.4 硬件发展小结 309
10.3 存储关键指标 309
10.4 RAID技术 309
10.5 存储接口 310
10.5.1 文件接口 311
10.5.2 裸设备 311
10.5.3 对象接口 312
10.5.4 块接口 316
10.5.5 融合是趋势 328
10.6 存储加速技术 328
10.6.1 数据组织技术 328
10.6.2 缓存技术 335
10.7 小结 336
第11章 大数据云化 337
11.1 云计算定义 337
11.2 应用上云 337
11.2.1 Cloud Native概念 338
11.2.2 微服务架构 338
11.2.3 Docker配合微服务架构 342
11.2.4 应用上云小结 348
11.3 大数据上云 348
11.3.1 大数据云服务的两种模式 348
11.3.2 集群模式AWSEMR 349
11.3.3 服务模式Azure Data Lake Analytics 352
11.4 小结 354
第三部分 大数据文化
第12章 大数据技术开发文化 356
12.1 开源文化 356
12.2 DevOps理念 356
12.2.1 Development和Operations的组合 357
12.2.2 对应用程序发布的影响 357
12.2.3 遇到的问题 358
12.2.4 协调人 358
12.2.5 成功的关键 359
12.3 速度远比你想的重要 359
12.4 小结 361
微信扫一扫
关注该公众号
相关推荐
大数据架构详解 从数据获取到深度...《大数据架构详解:从数据获取到深度学习》这本书对大数据和深度学习做了全面深入的讲解,帮助读者获得关于大数据和深度学习的整体认知,并能够理解两大领域在实际场景中的应用。
《Hadoop海量数据处理 技术详解与项目实战 大数据云计算IP 第2版》这本书是深入理解Hadoop技术及其实战应用的重要参考资料。Hadoop作为大数据处理领域的一个核心框架,因其分布式计算的能力,被广泛应用于各类大数据...
### 大数据应用书籍知识点详解 #### 一、SMACK大数据融合架构概述 根据书名“2017最新大数据应用书籍”以及描述中的重复强调,“SMACK大数据融合架构构建大数据应用”是本书的核心主题之一。SMACK代表的是一个集成...
### 大数据开发教程及案例知识点详解 #### 一、大数据开发概述 大数据开发涉及到数据的采集、存储、处理、分析以及最终的可视化等多个...这将有助于学习者更好地适应快速变化的大数据领域,为未来的挑战做好准备。
《Hadoop权威指南》是大数据领域的一本经典著作,中文版的第四版更是对原书进行了全面的修订和升级,旨在为中国读者提供更贴近实际、更易理解的Hadoop技术详解。这本书深入浅出地讲解了如何利用Hadoop平台进行大规模...
- **批量层介绍**:本书重点介绍了大数据架构中的批量层,这是处理历史数据的主要场所,通常用于执行复杂的数据处理任务。 - **存储技术**:详细阐述了在批量层中使用的各种存储技术,比如如何利用Apache Hadoop等...
书中涵盖了Hadoop的环境搭建、核心组件详解,以及大数据领域中的流式计算和数据挖掘知识。Hadoop是一种开源的分布式系统基础架构,允许用户在不了解分布式底层细节的情况下开发程序,并通过集群运算高速处理和存储...
《Hadoop海量数据处理技术详解与项目实战》一书,是专为Hadoop工程师和大数据工程师精心编撰的指南,旨在深入解析Hadoop在处理海量数据时的技术原理和实际应用。Hadoop作为开源的分布式计算框架,是大数据处理的核心...
本书首先介绍了Hadoop的基本概念和架构,包括Hadoop的起源、发展以及其在大数据领域的地位。接着,深入讲解了Hadoop的安装和配置,让读者能够亲手搭建和管理Hadoop集群。然后,对HDFS进行了详尽的阐述,包括其工作...
- 本书通过一系列经典案例,展示了如何在大数据环境中有效使用MongoDB进行数据存储和管理。 - 特别强调了如何根据不同的业务场景选择合适的数据模型和索引策略。 #### 三、MongoDB增删改操作详解 - **增(Insert...
### SSM企业级框架实战(大数据开发...对于想要成为大数据开发工程师的读者来说,《SSM企业级框架实战》这本书提供了一个很好的学习资源,不仅可以掌握SSM框架的使用方法,还能了解如何将其应用于实际的大数据项目中。
### 大数据基础知识详解 #### 一、大数据概念与特点 **标题:“Big Data For Dummies”** **描述:“Big Data For Dummies”** 在《大数据基础》这本指南中,作者Judith Hurwitz、Alan Nugent、Dr. Fern Halper...
《从Paxos到Zookeeper分布式一致性原理与实践》与《ZooKeeper-分布式过程协同技术详解》这两本书深入探讨了分布式系统中的一个重要概念——一致性,以及如何通过ZooKeeper这一工具来实现高效的分布式协同。...
《Hive编程指南》是大数据领域的一本重要参考资料,它主要关注的是Apache Hive,这是一个用于大数据处理和分析的开源...无论你是数据工程师、数据分析师还是对大数据感兴趣的初学者,这本书都是一个不可或缺的资源。
《Hadoop应用开发技术详解》一书深入剖析了Hadoop这一分布式计算框架的各个方面,旨在帮助开发者和数据工程师掌握在大规模数据...无论是进行数据处理、分析还是构建复杂的大数据应用,这本书都能提供有力的技术支持。
最后,本书还展望了大数据技术的发展趋势以及Oracle在这一领域的未来规划。随着物联网、人工智能等新兴技术的兴起,Oracle将继续创新和完善其大数据产品线,以满足不断变化的企业需求。 综上所述,《Oracle Big ...
这本书深入浅出地介绍了ZooKeeper在分布式系统中的应用和核心技术,为读者提供了一条清晰的学习路径。 ZooKeeper是一个开源的分布式协调服务,由雅虎创建并贡献给了Apache软件基金会。它设计的目标是简化分布式环境...
本书主要内容包括:Ansible架构及安装,Ansible组件、组件扩展、API,playbook详解、*实践案例分析,用ansible-vault保护敏感数据,Ansible与云计算的结合,部署Zabbix组件、Haproxy+LAMP架构,以及Ansible在大数据...