题目大意:有N个学校,学校与学校之间要能够两两通信,现在有2个解决方案:1.要是这些学校都能用上该软件,要准备多少份软件。
2.要是只有一份软件,那么要新建多少条边。
算法思路:就是一个求强连通图问题,第一个问题可以转化为,再强连通分量之间,有多少个入度为0的强连通分量。第二个问题可以转化为,要构成一个强连通图,需要添加多少条边连接这些强连通分量(相当于求这些强连通分量的入度为0点的个数和出度为0的点之间的个数之间的最大值)。
这里我用了tarjan算法,因为折算阀无论在时间复杂度方面还是编码量方面都很有优势。
#include<iostream> #include<cstdio> #include<cstring> #include<stack> using namespace std; int n,m,times,flag; int maps[105][105]; bool visited[105]; int dfn[105],low[105],indeer[105],outdeer[105]; bool ins[105]; int group[105]; stack<int>stk; void tarjan(int u) { visited[u]=true; dfn[u]=low[u]=times++; stk.push(u);//不管三七二十一先标记后入栈 ins[u]=true; for(int i=1;i<=n;i++) { if(maps[u][i]) { if(!dfn[i]) { tarjan(i); low[u]=min(low[u],low[i]); } else if(ins[i])//是否有回边 { low[u]=min(low[u],dfn[i]); } } } int k; if(low[u]>=dfn[u])//如果和回边有连接则low[u]==回边节点h的dfn[h],小于原来的dfn[u] { do { k=stk.top(); stk.pop(); ins[k]=false; group[k]=flag; //printf("%d ",k); }while(u!=k); flag++; // printf("\n"); } } int main() { memset(indeer,0,sizeof(indeer)); memset(outdeer,0,sizeof(outdeer)); memset(dfn,0,sizeof(dfn)); memset(low,0,sizeof(low)); scanf("%d",&n); for(int i=1;i<=n;i++) { while(true) { scanf("%d",&m); if(m==0) break; maps[i][m]=1; } } flag=1; memset(visited,false,sizeof(visited)); times=1; for(int i=1;i<=n;i++)//这里要对每一个没有被访问到过的节点进行强连通判断 {//因为该图有可能就是好几个独立的图 if(!dfn[i]) { tarjan(i); } } //printf("%d\n",flag-1); for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(maps[i][j]&&group[i]!=group[j]) { indeer[group[j]]++; outdeer[group[i]]++; } } } int t1=0,t2=0;//t1表示入度为0的最大个数,t2表示出度为0的最大个数 int sumf=0,sumf2=0; for(int i=1;i<=flag-1;i++) { if(indeer[i]==0) t1++; else if(outdeer[i]==0) t2++; } if(flag-1==1) { printf("1\n0\n");//如果只有单个节点,只需要一份软件,不需要连边 } else printf("%d\n%d\n",t1,max(t1,t2)); // printf("%d\n",max(t1,t2)); return 0; }
相关推荐
POJ1236 - Network of Schools - **题目链接**:[POJ1236](http://acm.pku.edu.cn/JudgeOnline/problem?id=1236) - **解法概述**:本题要求找出一个完全图,可以使用 DFS 或 BFS 进行遍历,以确定图中所有节点是否...
连通性问题,如POJ 1236 "Network of Schools" 和 POJ 1659 "Frogs' Neighborhood",则通常需要DFS(深度优先搜索)和缩点技巧,以及对图的度数进行分析。 在ACM竞赛中,理解和掌握这些算法是至关重要的,因为它们...
【标题】"POJ.rar_poj java_poj1048" 涉及的知识点主要围绕编程竞赛中的“约瑟夫环”问题,这里是一个加强版,使用Java语言进行解决。 【描述】"POJ1048,加强版的约瑟夫问题 难度中等" 提示我们,这个问题是编程...
* 图的深度优先遍历和广度优先遍历:图的深度优先遍历和广度优先遍历是指遍历图的两种方式,如 poj1860、poj3259、poj1062、poj2253、poj1125、poj2240。 * 最短路径算法:最短路径算法是指计算图中两点之间的最短...
【标题】"POJ1159-Palindrome" 是北京大学在线编程平台POJ上的一道编程题目。这道题目主要考察的是字符串处理和回文判断的知识点。 【描述】"北大POJ1159-Palindrome 解题报告+AC代码" 暗示了解决这道问题的方法和...
标题“POJ3253-POJ3253-Fence Repair【STL优先队列】”指的是一个在线编程竞赛题目,源自北京大学的在线判题系统POJ(Problem Online Judge)。该题目要求参赛者使用C++编程语言解决特定的问题,并且在解决方案中...
这些题目是针对ACM竞赛(ACM International Collegiate Programming Contest,简称ICPC)中的编程训练,POJ(Problem Set for Online Judges)是一个在线的编程竞赛平台,提供了许多算法和逻辑思维的练习题目。...
1. **状态转移方程**:设计复杂的动态规划状态转移方程(poj1191, poj1054, poj3280, poj2029, poj2948, poj1925, poj3034)。 2. **记忆化搜索**:结合动态规划和递归搜索(POJ3254, poj2411, poj1185)。 3. **...
【标题】"POJ2002-Squares"是一个经典的计算机编程题目,源自北京大学的在线判题系统(POJ,即PKU Online Judge)。这个题目主要涉及到算法设计和实现,尤其是数学和动态规划方面的知识。 【描述】"解题报告+AC代码...
根据给定的文件信息,我们可以总结出一份详细的IT知识训练计划,主要针对编程竞赛和算法学习,特别是聚焦于POJ(Problem Online Judge)平台上的题目训练。这份计划分为两个阶段,初级阶段和中级阶段,共计涉及了165...
标题中的"jihe.rar_2289_POJ 3714_poj3714_poj3714 Ra_visual c" 提到了一个压缩文件,可能包含有关编程竞赛或算法解决的资源,特别是与POJ(Problem On Judge)平台上的问题3714相关的。"Ra_visual c"可能指的是...
- **例题**:poj1860, poj3259, poj1062, poj2253, poj1125, poj2240 - **解释**:最短路径算法包括Dijkstra算法、Bellman-Ford算法、Floyd算法以及堆优化的Dijkstra算法等。 ##### (3) 最小生成树算法 - **例题**...
* 较为复杂的动态规划:例如 poj1191、poj1054、poj3280、poj2029、poj2948、poj1925、poj3034。 数学 1. 组合数学: * 加法原理和乘法原理。 * 排列组合。 * 递推关系:例如 poj3252、poj1850、poj1019、poj...
【标题】"POJ1837-Balance"是一个在线编程竞赛题目,源自著名的编程练习平台POJ(Programming Online Judge)。这个题目旨在测试参赛者的算法设计和实现能力,特别是处理平衡问题的技巧。 【描述】"解题报告+AC代码...
标题和描述中的“poj各种分类”主要指向的是在POJ(Peking University Online Judge)平台上,根据解题策略和算法类型对题目进行的分类。POJ作为一个知名的在线编程平台,提供了大量的算法练习题,适合从初学者到...
poj 3414解题报告poj 3414解题报告poj 3414解题报告poj 3414解题报告
1. **POJ1236 NetworkofSchools** - **题意**:询问需要添加多少边才能使图完全连通。 - **解法**:首先进行深度优先搜索(DFS)进行缩点处理,然后统计每个点的度数。 2. **POJ1659 Frogs'Neighborhood** - *...
【标题】"POJ1201-Intervals" 是北京大学在线编程平台POJ上的一道题目,这道题目主要涉及计算机科学中的算法设计与分析,尤其是数据结构和时间复杂度优化方面的知识。 【描述】"北大POJ1201-Intervals 解题报告+AC...
【标题】"POJ1010-STAMPS"是一个编程题目,来源于北京大学的在线判题系统POJ(Problem Set of Peking University),这是一处训练程序员算法技能和编程能力的平台。该题目旨在考察参赛者对动态规划或贪心算法的理解...
poj 1012解题报告poj 1012解题报告poj 1012解题报告poj 1012解题报告