垃圾回收是Java最大的特点之一,由于垃圾回收是java虚拟机自动进行,在代码开发中不用去管理垃圾什么时候回收。而且现在集群部署及机器物理内存可扩增,内存问题在很多开发场景都被忽略,都是让Java虚拟机自己管理。
怎么确定一个对象可以被回收
最主要的两个垃圾回收算法就是引用计数和跟踪搜索算法,引用计数算法就是给对象添加一个计数器,当被引用时就加1,引用失效时就减1,在任何情况下都为0时,该对象就可以被回收;但这种算法难以解决对象环状循环引用的问题。
跟踪搜索算法在《深入理解Java虚拟机》书中定义为:通过一系列命名为“GC Root”的节点向下搜索,当一个对象到“GC Root”节点没有任何引用,即到“GC Root”节点不可达,则该对象就可以被回收。
至于"GC Root”节点定义
1、虚拟机栈(栈帧中的本地变量表)中的引用的对象。
2、方法区中的类静态属性引用的对象。
3、方法区中的常量引用的对象。
4、本地方法栈中JNI(即一般说的Native方法)的引用的对象。
垃圾回收的方法
标记清除算法(Mark-Sweep)
顾名思义,先将需要回收的对象进行一一标记,完成之后进行统一的回收。这是最基本垃圾回收算法,但是在最初标记的时候以及清除垃圾的时候效率都不高,并且在清除后以前被占用的内存就变成了不连续的内存碎片,在存放大对象时很可以为因为连续的内存不够而引发Full GC。
复制算法
复制算法为了解决效率,将内存划分为相同的两快,每次存放时只存放一边,内存满了之后就将存货的复制到另一边,然后对剩下的进行垃圾清理,每次回收时只用移动对象内存指针,按照顺序分配,且不用考虑内存碎片的问题,简单高效。现在的分代收集算法中新生代基本就是按照这种算法实现。但对存放时间长的对象,每次就要进行多次复制,而且还需要额外的空间担保,所以并不适用于老年代。
标记整理算法
与标记清楚算法前部分一样,在清理对象时,将存活的对象移动并按顺序排列,完成后将存货对象界限意外的删除,这种多用于老年代收集
。
分代收集算法,将内存根据对象不同的生命周期划分为几块,一般分为新生代、老年代、持久区等,然后每个分区选择当前最合适的垃圾回收算法。
垃圾回收
在run configuration 中添加:
-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:+PrintGCTimeStamps
意思是运行的初始和最大内存为jvm20m,新生代使用10m。-XX:SurvivorRatio=8 表示新生代中eden和survivor的比例,由于survivor是同时存在2个,所以为8:1:1,-XX:+PrintGCDetails打印GC日志, -XX:+PrintGCTimeStamps 打印时间
public class JavaOOMError {
private static byte[] bts = null;
public static void init(){
bts = new byte[3 * 1024 * 1024];
}
public static void main(String[] args) {
init();
byte[] bts1 = new byte[1 * 1024 * 1024];
System.out.println("-----" + 1);
byte[] bts2 = new byte[2 * 1024 * 1024];
System.out.println("-----" + 2);
byte[] bts3 = new byte[3 * 1024 * 1024];
System.out.println("-----" + 3);
byte[] bts4 = new byte[4 * 1024 * 1024];
System.out.println("-----" + 4);
// bts4 = null;
byte[] bts5 = new byte[5 * 1024 * 1024];
System.out.println("-----" + 5);
}
}
运行结果:
-----1
-----2
0.644: [GC (Allocation Failure) 0.645: [DefNew: 6807K->482K(9216K), 0.0102920 secs] 6807K->6626K(19456K), 0.0109738 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
-----3
-----4
0.658: [GC (Allocation Failure) 0.658: [DefNew: 7812K->7812K(9216K), 0.0000349 secs]0.658: [Tenured: 6144K->9216K(10240K), 0.0090041 secs] 13956K->13793K(19456K), [Metaspace: 1636K->1636K(4480K)], 0.0095951 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
0.667: [Full GC (Allocation Failure) 0.667: [Tenured: 9216K->9216K(10240K), 0.0030476 secs] 13793K->13782K(19456K), [Metaspace: 1636K->1636K(4480K)], 0.0031219 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at com.test.gc.JavaOOMError.main(JavaOOMError.java:51)
Heap
def new generation total 9216K, used 4893K [0x03e00000, 0x04800000, 0x04800000)
eden space 8192K, 59% used [0x03e00000, 0x042c7458, 0x04600000)
from space 1024K, 0% used [0x04700000, 0x04700000, 0x04800000)
to space 1024K, 0% used [0x04600000, 0x04600000, 0x04700000)
tenured generation total 10240K, used 9216K [0x04800000, 0x05200000, 0x05200000)
the space 10240K, 90% used [0x04800000, 0x05100090, 0x05100200, 0x05200000)
Metaspace used 1654K, capacity 2242K, committed 2368K, reserved 4480K
在打印3前新生代执行一次Minor GC,由于初始化的静态变量占了3M,后面用new 了1和2 共3M对象,所以第三次执行新生代剩余的不足2M,后面的在new一个3M大对象无法存放时,就会执行一次垃圾会后,回收后新生代空间 “ 6807K->482K(9216K) ”,之前的6m就被放到老年代(之所以不能被清除,是因为所有的对象都是通过New关键字出来);
在3和4被执行后,执行5时,由于此时5的需要的空间为5M,新生代已被占用7M,空间不足,会执行垃圾回收,执行minor GC后,将3放到老年代中 Tenured: 6144K->9216K(10240K) ,但是新生代发现内存还是不够,执行Full GC,最后还是没有可连续的5M内存空间,就只能报“OutOfMemoryError: Java heap space”异常。
从上面可以看出,java垃圾回收的一个具体信息,在上面代码中,如果将 bts4 = null;注释去掉,再次执行
-----1
-----2
0.757: [GC (Allocation Failure) 0.758: [DefNew: 6807K->482K(9216K), 0.0059942 secs] 6807K->6626K(19456K), 0.0066999 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
-----3
-----4
0.765: [GC (Allocation Failure) 0.765: [DefNew: 7812K->7812K(9216K), 0.0000312 secs]0.765: [Tenured: 6144K->9697K(10240K), 0.0050508 secs] 13956K->9697K(19456K), [Metaspace: 1636K->1636K(4480K)], 0.0051905 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
-----5
Heap
def new generation total 9216K, used 5446K [0x03e00000, 0x04800000, 0x04800000)
eden space 8192K, 66% used [0x03e00000, 0x04351af0, 0x04600000)
from space 1024K, 0% used [0x04700000, 0x04700000, 0x04800000)
to space 1024K, 0% used [0x04600000, 0x04600000, 0x04700000)
tenured generation total 10240K, used 9697K [0x04800000, 0x05200000, 0x05200000)
the space 10240K, 94% used [0x04800000, 0x05178440, 0x05178600, 0x05200000)
Metaspace used 1640K, capacity 2242K, committed 2368K, reserved 4480K
并没有报出异常,主要在放入4后,执行5时,内存不够执行垃圾回收,由于此时4已经属于不存活对象,被回收掉,3转到了老年代;此时新生代的空间足够放入5,所以并不会执行Full GC。
分享到:
相关推荐
Java虚拟机实战-垃圾回收及性能调优
这是一篇关于java虚拟机垃圾回收算法的论文。
Java 虚拟机的垃圾收集是指在 Java 虚拟机中自动地回收不再使用的对象,以释放内存空间。垃圾收集可以是周期性的,也可以是根据需要进行的。Java 虚拟机提供了多种垃圾收集算法,如标记-清除算法、复制算法、标记-...
学习Java虚拟机对于深入理解Java程序的执行机制至关重要。这里我们将深入探讨Java虚拟机的几个关键知识点。 1. 类加载机制:Java程序的执行始于类加载。JVM有三个主要的类加载器——bootstrap classloader、...
"深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)-周志明"这本书提供了对JVM的深入解析,包括内存管理、垃圾收集、性能优化等多个方面,是学习和提升JVM技能的重要资源。无论你是Java新手还是经验丰富的开发者...
Java虚拟机还负责垃圾回收(Garbage Collection),即自动管理内存,释放不再使用的对象占用的内存,减轻程序员的负担。垃圾回收机制是Java语言与生俱来的特性之一,与C/C++等语言相比,Java的内存管理更简单、更...
Java虚拟机(JVM)是Java平台的核心组件之一,它提供了一个运行Java字节码的环境,并且负责管理Java程序的内存分配和垃圾回收。在本文中,我们将深入探讨Java虚拟机的体系结构、垃圾回收机制、Java对象的生命周期和...
Java虚拟机(JVM)的垃圾回收(Garbage Collection,简称GC)机制是Java编程中的一个重要组成部分,它自动管理程序的内存,确保无用的对象能够被有效地释放,从而避免内存泄漏。本文将深入探讨Java垃圾回收的基本...
本文将介绍Java虚拟机的使用和优化,包括Java虚拟机的特性、垃圾回收机制、性能优化方法等。 Java虚拟机的特性 Java虚拟机是Java语言的核心组件之一,它负责将Java源代码编译成字节码,并在不同的平台上解释执行...
它定义了JVM的概念模型,即一个抽象的计算机,规定了其运行时环境的基本结构和行为,包括类格式、数据类型、指令集、异常处理、垃圾回收等方面的标准。这一规范的重要性在于,它确保了跨平台的Java代码能够一致地...
此外,JVM还实现了垃圾回收机制,自动管理内存,避免了程序员手动管理内存的麻烦。 JVM还有许多优化技术,如分代垃圾收集、并行/并发GC、压缩引用、逃逸分析等,这些都对提升Java应用的性能起到了关键作用。对于...
通过深入学习《Java虚拟机(第二版)》,开发者不仅可以理解Java程序的运行机制,还能掌握性能优化、问题排查等高级技巧,提升自己的编程水平。这本书通常会详细讲解上述知识点,并提供丰富的示例和实践指导,帮助...
第4~~5章介绍了垃圾回收的算法和各种垃圾回收器。第6章介绍了虚拟机的性能监控和故障诊断工具。第7章详细介绍了对Java堆的分析方法和案例。第8章介绍了Java虚拟机对多线程,尤其是锁的支持。第9~~10章介绍了虚拟机的...
随着越来越多的第三方语言(Groovy、Scala、JRuby等)在Java虚拟机上运行,..., 《实战Java虚拟机——JVM故障诊断与性能优化》不仅适合Java程序员,还适合任何一名工作于Java虚拟机之上的研发人员、软件设计师、架构师
《深入Java虚拟机》这本书是Java开发者深入了解JVM(Java Virtual Machine)的必备经典之作。它详尽地探讨了Java虚拟机的工作原理、内存管理、类加载机制、字节码执行以及性能优化等多个核心主题,旨在帮助开发者...
其中,垃圾回收机制(Garbage Collection, GC)是Java虚拟机(JVM)的一项重要特性,它能够自动检测并回收不再使用的对象占用的内存空间,从而有效避免了内存泄漏问题。本文将详细介绍Java中的垃圾回收机制及其工作原理...
随着越来越多的第三方语言(Groovy、Scala、JRuby等)在Java虚拟机上运行,...《实战Java虚拟机——JVM故障诊断与性能优化》不仅适合Java程序员,还适合任何一名工作于Java虚拟机之上的研发人员、软件设计师、架构师。