`
1028826685
  • 浏览: 943767 次
  • 性别: Icon_minigender_1
  • 来自: 重庆
社区版块
存档分类

订单分库分表实践总结以及关键步骤

 
阅读更多

转载地址http://mp.weixin.qq.com/s?__biz=MzA5Nzc4OTA1Mw==&mid=2659597584&idx=1&sn=67f5327423d7c66c3d3a6d32a040198d&scene=0#rd

随着唯品会业务的快速发展,订单量的不断增长,原有的订单存储架构已经不能满足公司的发展了,特别是在大促高峰期,原订单库已经成为抢购瓶颈,已经严重制约公司的发展。

唯品会旧订单库包含几十张订单相关表,旧订单库是典型的一主多从架构;主库容量已接近服务器物理空间上限,同时也已经达到MySQL的处理上限,很快将无法再处理新增订单。

旧订单库面临的问题有:

1、超大容量问题

  • 订单相关表都已经是超大表,最大表的数据量已经是几十亿,数据库处理能力已经到了极限;

  • 单库包含多个超大表,占用的硬盘空间已经接近了服务器的硬盘极限,很快将无空间可用;

2、性能问题

单一服务器处理能力是有限的,单一订单库的TPS也有上限,不管如何优化,总会有达到上限,这限制了单位时间的订单处理能力,这个问题在大促时更加明显,如果不重构,订单达到一定量以后,就无法再继续增长,严重影响到用户体验。

3、升级扩展问题

  • 单一主库无法灵活的进行升级和扩展,无法满足公司快速发展要求;

  • 所有的订单数据都放在同一库里面,存在单点故障的风险;

综上所述,容量、性能问题是急需解决的问题,扩展是为了将来3~5年内能够很好的满足唯品会快速发展的需要,而不需要每隔几个月花费人力物力去考虑扩容等问题。

解决方法思考

1、解决容量问题

我们可以考虑到最直接的方式是增加大容量硬盘,或者对IO有更高要求,还可以考虑增加SSD硬盘来解决容量的问题。此方法无法解决单表数据量问题。

可以对数据表历史数据进行归档,但也需要频繁进行归档操作,而且不能解决性能问题。

2、解决性能问题

提高数据库服务器的配置,这个可以提升一定数量的QPS和TPS,但仍然不能解决单服务器连接数、IO读写存在上限的问题,此方法仍然存在单点故障的问题。

拆分方法探讨

常见的数据库拆分方式有三种:垂直拆分、水平拆分、垂直水平拆分。

1、垂直拆分

垂直拆库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。如下图:
垂直拆表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联,如下图:

2、水平拆分

水平拆分是把单表按某个规则把数据分散到多个表的拆分方式,比如:把单表1亿数据按某个规则拆分,分别存储到10个相同结果的表,每个表的数据是1千万,拆分出来的表,可以分别放至到不同数据库中,即同时进行水平拆库操作,如下图:
水平拆分可以降低单表数据量,让每个单表的数据量保持在一定范围内,从而提升单表读写性能。但水平拆分后,同一业务数据分布在不同的表或库中,可能需要把单表事务改成跨表事务,需要转变数据统计方式等。

3、垂直水平拆分

垂直水平拆分,是综合了垂直和水平拆分方式的一种混合方式,垂直拆分把不同类型的数据存储到不同库中,再结合水平拆分,使单表数据量保持在合理范围内,提升总TPS,提升性能,如下图:

垂直拆分策略

原订单库把所有订单相关的数据(订单销售、订单售后、订单任务处理等数据)都放在同一数据库中,不符合电商系统分层设计,对于订单销售数据,性能第一,需要能够在大促高峰承受每分钟几万到几十万订单的压力;而售后数据,是在订单生成以后,用于订单物流、订单客服等,性能压力不明显,只要保证数据的及时性即可;所以根据这种情况,把原订单库进行垂直拆分,拆分成订单售后数据、订单销售数据、其他数据等,如下图:

水平拆分策略

垂直拆分从业务上把订单下单数据与下单后处理数据分开,但对于订单销售数据,由于数据量仍然巨大,最大的订单销售相关表达到几十亿的数据量,如果遇到大型促销(如:店庆128、419、618、双十一等等),数据库TPS达到上限,单销售库单订单表仍然无法满足需求,还需要进一步进行拆分,在这里使用水平拆分策略。

订单分表是首先考虑的,分表的目标是保证每个数据表的数量保持在1000~5000万左右,在这个量级下,数据表的大小与性能是最理想的。

如果几十个分表都放到一个订单库里面,运行于单组服务器上,则受限于单组服务器的处理能力,数据库的TPS有限,所以需要考虑分库,把分表放到分库里面,减轻单库的压力,增加总的订单TPS。

1、用户编号HASH切分

使用用户编号哈希取模,根据数据量评估,把单库拆分成n个库,n个库分别存放到m组服务器中,如下图:
每组服务器容纳4个库,如果将来单服务器达到性能、容量等瓶颈,可以直接把数据库水平扩展为2倍服务器集群,还可以继续扩展为4倍服务器集群。水平扩展可以支撑公司在未来3~5年的快速订单增长。

使用用户编号进行 sharding,可以使得创建订单的处理更简单,不需要进行跨库的事务处理,提高下单的性能与成功率。

2、订单号索引表

根据用户编号进行哈希分库分表,可以满足创建订单和通过用户编号维度进行查询操作的需求,但是根据统计,按订单号进行查询的占比达到80%以上,所以需要解决通过订单号进行订单的CURD等操作,所以需要建立订单号索引表。

订单号索引表是用于用户编号与订单号的对应关系表,根据订单号进行哈希取模,放到分库里面。根据订单号进行查询时,先查出订单号对应的用户编号,再根据用户编号取模查询去对应的库查询订单数据。

订单号与用户编号的关系在创建订单后是不会更改的,为了进一步提高性能,引入缓存,把订单号与用户编号的关系存放到缓存里面,减少查表操作,提升性能,索引不命中时再去查表,并把查询结果更新到缓存中。

3、分布式数据库集群

订单水平分库分表以后,通过用户编号,订单号的查询可以通过上面的方法快速定位到订单数据,但对于其他条件的查询、统计操作,无法简单做到,所以引入分布式数据库中间件。

下图是基本构架:

总结与思考

技术架构与业务场景息息相关,不能脱离实际的业务场景、历史架构、团队能力、数据体量等等去做架构重构,对于一家快速发展的电子商务公司,订单系统是核心,订单库是核心的核心,订单库的重构就像汽车在高速公路上跑着的过程中更换轮胎。

本文是对唯品会订单库重构——采用分库分表策略对原订单库表进行拆分的粗略总结,在订单库重构过程中遇到的问题远远超过这些,比如:历史数据的迁移、各外围系统的对接等,但这些在公司强大的技术团队面前,最终都顺利的解决,新旧订单库顺利的切换,给公司快速的业务发展提供坚实的保障。

分享到:
评论
1 楼 misisipi101 2017-08-27  
假设库已经分为32个,那么要扩展到64个,怎样做呢

相关推荐

    受激拉曼散射计量【Stimulated-Raman-Scattering Metrology】 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    2011-2020广东21市科技活动人员数

    科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务

    ibus-table-chinese-yong-1.4.6-3.el7.x64-86.rpm.tar.gz

    1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码)

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;

    altermanager的企业微信告警服务

    altermanager的企业微信告警服务

    MyAgent测试版本在线下载

    MyAgent测试版本在线下载

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC ,Comsol; 二氧化钒VO2; 可调BIC

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用

    C++学生成绩管理系统源码.zip

    C++学生成绩管理系统源码

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略

    scratch介绍(scratch说明).zip

    scratch介绍(scratch说明).zip

    深度学习模型的发展历程及其关键技术在人工智能领域的应用

    内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    清华大学104页《Deepseek:从入门到精通》

    这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。

    MXTU MAX仿毒舌自适应主题源码 苹果CMSv10模板.zip

    主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日

    基于matlab平台的数字信号处理GUI设计.zip

    运行GUI版本,可二开

Global site tag (gtag.js) - Google Analytics