一。为何使用分布式锁?
当应用服务器数量超过1台,对相同数据的访问可能造成访问冲突(特别是写冲突)。单纯使用关系数据库比如MYSQL的应用可以借助于事务来实现锁,也可以使用版本号等实现乐观锁,最大的缺陷就是可用性降低(性能差)。对于GLEASY这种满足大规模并发访问请求的应用来说,使用数据库事务来实现数据库就有些捉襟见肘了。另外对于一些不依赖数据库的应用,比如分布式文件系统,为了保证同一文件在大量读写操作情况下的正确性,必须引入分布式锁来约束对同一文件的并发操作。
二。对分布式锁的要求
1.高性能(分布式锁不能成为系统的性能瓶颈)
2.避免死锁(拿到锁的结点挂掉不会导致其它结点永远无法继续)
3.支持锁重入
三。方案1,基于zookeeper的分布式锁
/** * DistributedLockUtil.java * 分布式锁工厂类,所有分布式请求都由该工厂类负责 **/ public class DistributedLockUtil { private static Object schemeLock = new Object(); private static Object mutexLock = new Object(); private static Map<String,Object> mutexLockMap = new ConcurrentHashMap(); private String schema; private Map<String,DistributedReentrantLock> cache = new ConcurrentHashMap<String,DistributedReentrantLock>(); private static Map<String,DistributedLockUtil> instances = new ConcurrentHashMap(); public static DistributedLockUtil getInstance(String schema){ DistributedLockUtil u = instances.get(schema); if(u==null){ synchronized(schemeLock){ u = instances.get(schema); if(u == null){ u = new DistributedLockUtil(schema); instances.put(schema, u); } } } return u; } private DistributedLockUtil(String schema){ this.schema = schema; } private Object getMutex(String key){ Object mx = mutexLockMap.get(key); if(mx == null){ synchronized(mutexLock){ mx = mutexLockMap.get(key); if(mx==null){ mx = new Object(); mutexLockMap.put(key,mx); } } } return mx; } private DistributedReentrantLock getLock(String key){ DistributedReentrantLock lock = cache.get(key); if(lock == null){ synchronized(getMutex(key)){ lock = cache.get(key); if(lock == null){ lock = new DistributedReentrantLock(key,schema); cache.put(key, lock); } } } return lock; } public void reset(){ for(String s : cache.keySet()){ getLock(s).unlock(); } } /** * 尝试加锁 * 如果当前线程已经拥有该锁的话,直接返回false,表示不用再次加锁,此时不应该再调用unlock进行解锁 * * @param key * @return * @throws InterruptedException * @throws KeeperException */ public LockStat lock(String key) throws InterruptedException, KeeperException{ if(getLock(key).isOwner()){ return LockStat.NONEED; } getLock(key).lock(); return LockStat.SUCCESS; } public void clearLock(String key) throws InterruptedException, KeeperException{ synchronized(getMutex(key)){ DistributedReentrantLock l = cache.get(key); l.clear(); cache.remove(key); } } public void unlock(String key,LockStat stat) throws InterruptedException, KeeperException{ unlock(key,stat,false); } public void unlock(String key,LockStat stat,boolean keepalive) throws InterruptedException, KeeperException{ if(stat == null) return; if(LockStat.SUCCESS.equals(stat)){ DistributedReentrantLock lock = getLock(key); boolean hasWaiter = lock.unlock(); if(!hasWaiter && !keepalive){ synchronized(getMutex(key)){ lock.clear(); cache.remove(key); } } } } public static enum LockStat{ NONEED, SUCCESS } }
/** *DistributedReentrantLock.java *本地线程之间锁争用,先使用虚拟机内部锁机制,减少结点间通信开销 */ public class DistributedReentrantLock { private static final Logger logger = Logger.getLogger(DistributedReentrantLock.class); private ReentrantLock reentrantLock = new ReentrantLock(); private WriteLock writeLock; private long timeout = 3*60*1000; private final Object mutex = new Object(); private String dir; private String schema; private final ExitListener exitListener = new ExitListener(){ @Override public void execute() { initWriteLock(); } }; private synchronized void initWriteLock(){ logger.debug("初始化writeLock"); writeLock = new WriteLock(dir,new LockListener(){ @Override public void lockAcquired() { synchronized(mutex){ mutex.notify(); } } @Override public void lockReleased() { } },schema); if(writeLock != null && writeLock.zk != null){ writeLock.zk.addExitListener(exitListener); } synchronized(mutex){ mutex.notify(); } } public DistributedReentrantLock(String dir,String schema) { this.dir = dir; this.schema = schema; initWriteLock(); } public void lock(long timeout) throws InterruptedException, KeeperException { reentrantLock.lock();//多线程竞争时,先拿到第一层锁 try{ boolean res = writeLock.trylock(); if(!res){ synchronized(mutex){ mutex.wait(timeout); } if(writeLock == null || !writeLock.isOwner()){ throw new InterruptedException("锁超时"); } } }catch(InterruptedException e){ reentrantLock.unlock(); throw e; }catch(KeeperException e){ reentrantLock.unlock(); throw e; } } public void lock() throws InterruptedException, KeeperException { lock(timeout); } public void destroy() throws KeeperException { writeLock.unlock(); } public boolean unlock(){ if(!isOwner()) return false; try{ writeLock.unlock(); reentrantLock.unlock();//多线程竞争时,释放最外层锁 }catch(RuntimeException e){ reentrantLock.unlock();//多线程竞争时,释放最外层锁 throw e; } return reentrantLock.hasQueuedThreads(); } public boolean isOwner() { return reentrantLock.isHeldByCurrentThread() && writeLock.isOwner(); } public void clear() { writeLock.clear(); } }
/**
*WriteLock.java
*基于zk的锁实现
*一个最简单的场景如下:
*1.结点A请求加锁,在特定路径下注册自己(会话自增结点),得到一个ID号1
*2.结点B请求加锁,在特定路径下注册自己(会话自增结点),得到一个ID号2
*3.结点A获取所有结点ID,判断出来自己是最小结点号,于是获得锁
*4.结点B获取所有结点ID,判断出来自己不是最小结点,于是监听小于自己的最大结点(结点A)变更事件
*5.结点A拿到锁,处理业务,处理完,释放锁(删除自己)
*6.结点B收到结点A变更事件,判断出来自己已经是最小结点号,于是获得锁。
*/
public class WriteLock extends ZkPrimative {
private static final Logger LOG = Logger.getLogger(WriteLock.class);
private final String dir;
private String id;
private LockNode idName;
private String ownerId;
private String lastChildId;
private byte[] data = {0x12, 0x34};
private LockListener callback;
public WriteLock(String dir,String schema) {
super(schema,true);
this.dir = dir;
}
public WriteLock(String dir,LockListener callback,String schema) {
this(dir,schema);
<a href="http://www.nbso.ca/">nbso online casino reviews</a> this.callback = callback;
}
public LockListener getLockListener() {
return this.callback;
}
public void setLockListener(LockListener callback) {
this.callback = callback;
}
public synchronized void unlock() throws RuntimeException {
if(zk == null || zk.isClosed()){
return;
}
if (id != null) {
try {
zk.delete(id, -1);
} catch (InterruptedException e) {
LOG.warn("Caught: " e, e);
//set that we have been interrupted.
Thread.currentThread().interrupt();
} catch (KeeperException.NoNodeException e) {
// do nothing
} catch (KeeperException e) {
LOG.warn("Caught: " e, e);
throw (RuntimeException) new RuntimeException(e.getMessage()).
initCause(e);
}finally {
if (callback != null) {
callback.lockReleased();
}
id = null;
}
}
}
private class LockWatcher implements Watcher {
public void process(WatchedEvent event) {
LOG.debug("Watcher fired on path: " event.getPath() " state: "
event.getState() " type " event.getType());
try {
trylock();
} catch (Exception e) {
LOG.warn("Failed to acquire lock: " e, e);
}
}
}
private void findPrefixInChildren(String prefix, ZooKeeper zookeeper, String dir)
throws KeeperException, InterruptedException {
List<String> names = zookeeper.getChildren(dir, false);
for (String name : names) {
if (name.startsWith(prefix)) {
id = dir "/" name;
if (LOG.isDebugEnabled()) {
LOG.debug("Found id created last time: " id);
}
break;
}
}
if (id == null) {
id = zookeeper.create(dir "/" prefix, data,
acl, EPHEMERAL_SEQUENTIAL);
if (LOG.isDebugEnabled()) {
LOG.debug("Created id: " id);
}
}
}
public void clear() {
if(zk == null || zk.isClosed()){
return;
}
try {
zk.delete(dir, -1);
} catch (Exception e) {
LOG.error("clear error: " e,e);
}
}
public synchronized boolean trylock() throws KeeperException, InterruptedException {
if(zk == null){
LOG.info("zk 是空");
return false;
}
if (zk.isClosed()) {
LOG.info("zk 已经关闭");
return false;
}
ensurePathExists(dir);
LOG.debug("id:" id);
do {
if (id == null) {
long sessionId = zk.getSessionId();
String prefix = "x-" sessionId "-";
idName = new LockNode(id);
LOG.debug("idName:" idName);
}
if (id != null) {
List<String> names = zk.getChildren(dir, false);
if (names.isEmpty()) {
LOG.warn("No children in: " dir " when we've just "
"created one! Lets recreate it...");
id = null;
} else {
SortedSet<LockNode> sortedNames = new TreeSet<LockNode>();
for (String name : names) {
sortedNames.add(new LockNode(dir "/" name));
}
ownerId = sortedNames.first().getName();
LOG.debug("all:" sortedNames);
SortedSet<LockNode> lessThanMe = sortedNames.headSet(idName);
LOG.debug("less than me:" lessThanMe);
if (!lessThanMe.isEmpty()) {
LockNode lastChildName = lessThanMe.last();
lastChildId = lastChildName.getName();
if (LOG.isDebugEnabled()) {
LOG.debug("watching less than me node: " lastChildId);
}
Stat stat = zk.exists(lastChildId, new LockWatcher());
if (stat != null) {
return Boolean.FALSE;
} else {
LOG.warn("Could not find the"
" stats for less than me: " lastChildName.getName());
}
} else {
if (isOwner()) {
if (callback != null) {
callback.lockAcquired();
}
return Boolean.TRUE;
}
}
}
}
}
while (id == null);
return Boolean.FALSE;
}
public String getDir() {
return dir;
}
public boolean isOwner() {
return id != null && ownerId != null && id.equals(ownerId);
}
public String getId() {
return this.id;
}
}
使用本方案实现的分布式锁,可以很好地解决锁重入的问题,而且使用会话结点来避免死锁;性能方面,根据笔者自测结果,加锁解锁各一次算是一个操作,本方案实现的分布式锁,TPS大概为2000-3000,性能比较一般;
相关推荐
总之,C#中基于ZooKeeper的分布式锁实现涉及对ZooKeeper的操作,包括创建临时顺序节点、监听节点变化以及正确释放锁。这样的实现方式保证了在分布式环境下的并发控制和数据一致性,同时具备良好的扩展性和容错性。...
实现基于Zookeeper的分布式锁,主要涉及以下核心概念: 1. **节点创建**:在Zookeeper中,每个锁可以表示为一个临时节点。当客户端需要获取锁时,会在特定路径下创建一个临时节点。由于Zookeeper的顺序性,创建的...
**Zookeeper分布式锁的关键特性包括:** 1. **顺序一致性:** Zookeeper中的节点被创建顺序是全局唯一的,这有助于实现锁的唯一性。 2. **原子性:** 创建和删除节点的操作在Zookeeper中都是原子性的,这保证了...
zooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是集群的管理者。提供了文件系统和通知机制。...在开发项目的过程中,很多大型项目都是分布式部署的,那么我们现在使用zookeeper实现一个分布式锁。
基于一致性模型,ZooKeeper确保了数据的一致性和有序性,使其成为构建分布式锁的理想选择。 **2. 分布式锁原理** 分布式锁的目的是在多个节点之间实现对共享资源的互斥访问。在ZooKeeper中,通常通过创建临时顺序...
《从Paxos到Zookeeper分布式一致性原理与实践》是一本深入探讨分布式系统一致性问题的著作,其中重点讲解了Paxos算法与Zookeeper在实际应用中的理论与实践。Paxos是分布式计算领域中著名的共识算法,为解决分布式...
ZooKeeper 提供的分布式锁通常基于其原子的创建、删除节点和监视事件机制来实现。 1. **不可重入锁(Non-Recursive Lock)**: 不可重入锁不允许同一个线程再次获取已持有的锁。在ZooKeeper中,实现不可重入锁通常...
2. 分布式锁:利用ZNODE的创建、删除操作,实现跨节点的互斥访问控制。 3. 配置管理:集中式存储和分发系统的配置信息,保证所有节点访问的配置是一致的。 4. 命名服务:为分布式组件提供全局唯一的ID或名称,简化...
《ZooKeeper分布式过程协同技术详解》是一本深入解析ZooKeeper核心技术的书籍,适合所有对分布式系统和ZooKeeper有研究兴趣的读者。ZooKeeper是Apache软件基金会的一个开源项目,它为分布式应用程序提供了一个高效、...
ZooKeeper基于Paxos等一致性算法,实现了简单易用的接口,使得开发者无需关心底层复杂的共识机制,就能轻松实现诸如命名服务、配置管理、集群同步、分布式锁等功能。ZooKeeper的数据模型是一个层次化的命名空间,...
Zookeeper基于Paxos和其他一致性算法的实现,为分布式应用程序提供了命名服务、配置管理、分布式锁、群组服务等功能。Zookeeper通过ZNode(类似于文件系统的节点)来存储和操作数据,并采用观察者模式来实时监控数据...
《彻底理解ZooKeeper分布式锁实现原理》 ZooKeeper,简称zk,作为一个高可用的分布式协调服务,常被用于构建分布式系统中的各种组件,如分布式锁。在本篇文章中,我们将深入探讨如何利用Curator这个流行的开源框架...
ZooKeeper分布式锁的实现基于ZooKeeper的节点机制。ZooKeeper的节点可以分为四种类型:持久节点、临时节点、顺序节点和ephemeral节点。其中,临时节点和ephemeral节点可以被用来实现分布式锁。 临时节点实现分布式...
以下是一个简单的基于Zookeeper的分布式锁实现示例: ```java @Service public class ZookeeperDistributedLock { @Autowired private CuratorFramework curatorFramework; private String lockPath = "/...
Java(SpringBoot)基于zookeeper的分布式锁实现 本文主要介绍了Java(SpringBoot)基于zookeeper的分布式锁实现,通过示例代码详细介绍了分布式锁的实现过程,对大家的学习或者工作具有一定的参考学习价值。 分布式锁...
总结,基于ZooKeeper实现的分布式锁方案,充分利用了ZooKeeper的特性,提供了高可用、高性能的锁服务。在SpringCloud框架下,可以轻松地整合ZooKeeper,简化分布式系统的开发。不过,在实际应用中,还需要根据业务...
**Zookeeper分布式锁** Zookeeper是一个高可用的分布式协调服务,它维护了一致的命名空间和分布式事件通知。Zookeeper中的分布式锁通常通过创建临时节点(ephemeral nodes)来实现。当客户端创建一个临时节点并持有...
通过深入理解Zookeeper的工作原理以及ZookeeperNet库的使用,开发者可以有效地在C#环境中实现高可用的分布式锁,保障多节点之间的协同工作和数据一致性。在实际项目中,分布式锁可以广泛应用于数据库操作、并发任务...
Zookeeper的分布式锁主要基于两种数据结构:临时节点(ephemeral nodes)和顺序节点(sequential nodes)。 首先,临时节点是当客户端断开连接时会被自动删除的节点。这种特性使得Zookeeper可以检测到节点的存活...