`

<<博弈论>>归纳4

 
阅读更多

 

 

倒后推理

 

实际中,一个50:50的妥协也是倒后推理的结果

 

例子:

5个海盗抢得100枚金币,分赃的规则:
    (1)抽签决定各人的号码【1,2,3.4.5】。
    (2)由1号提出分配方案,5人表决,超过半数同意就通过.否则他将被扔进大海喂鲨鱼。
    (3)1号死后,由2号提方案,4人表决.当且仅当超过半数同意时方案通过,否则2号同样被扔进大海。
    (4)依次类推,直到找到一个每个人都接受的方案。如果只剩下5号,他当然接受一人独吞的结果。
    假定每个强盗都是理性的。如果你是第一个强盗,你该如何提出分配方案才能够使自己的收益最大化?
     这道题十分复杂。为了叙述方便,我们先公布答案,再做分析。 

     分配规则给人的第一印象是:如果自己抽到了1号.那将是一件不幸的事。因为作为头一个提出方案的人.能活下来的机会都微乎其微。即使他自己一分不要,把钱全部送给另外4人,那些人可能也不赞同他的分配方案,那么他只有死路一条。如果你也这样想,那么答案会大大出乎你意料:结果是【97,0,1,2,0】或者【97,0,l,0,2】。
      不妨站在这四人的角度分析: 5号是最不合作的,因为他没有被扔下海的风险.从直觉上说.每扔下去一个潜在的对手就少一个;4号正好相反,他生存的机会完全取决于前面还有人活着,因此值得争取:3号对前两个的命运完全不关心,他只需要4号支持就可以了;2号则需要3票才能活,那么,你…思路对头,但是太笼统了。所以,应该按照严格的逻辑思维去推想他们的决定。
    从哪儿开始呢?前面我们提过“向前展望,倒后推理”,推理过程应该是从后向前,因为越往后策略越容易看清。5号的策略最简单:巴不得把所有人都进去喂鲨鱼(但这并不意味着他要对每个人投反对票.他也要考虑其他人方案通过的情况)。来看4号:如果1~3号强盗都喂了鲨鱼,只剩4号和5号的话.5号一定投反对票让4号喂鲨鱼。以独吞全部金币。所以.4号唯有支持3号才能保命。3号知道这一点,会提出f100,0,0】的分配方案.对4号、5号一毛不拔而将全部金币归为己有,因为他知道4号一无所获还是会投赞成票.再加上自己一票他的方案即可通过。不过.2号推知3号的方案.就会提出[98,0,l,1]的方案,即放弃3号.而给予4号和5号各1枝金币。由于该方案对4号和5号来说比在3号分配时更为有利,因此可以得到他们的支持。这样,2号将拿走98枚金币。不过,2号的方案会被1号所洞悉,1号并将提出【97,0.1,2,0】或【97,O,1,0,2】的方案,即放弃2号,而给3号l枚金币.同时给4号或5号2枚金币。由于l号的这一方案对于3号和4号或5号来说,相比2号分配时更优,得到他们的赞成票.再加上1号自己的票.1号的方案可获通过.97枚金币可轻松落人腰包。这无疑是1号能够获取最大收益的方案了!

 

倒推法是分析完全信息下的动态博弈的有效工具,但是现实中不是完全信息博弈,

 

 

分蛋糕博弈

与斗鸡博弈不同的时,双方都会从行动中收益,博弈的关键在于收益的分配,当蛋糕的大小不随时间改变的时候,比拼实力之后,根据实力选择对应的蛋糕份额

 

当蛋糕随着时间缩小的时候,谈判本身就是有成本的

例子:

设想桌子上放着的是一个冰淇淋蛋糕,两个孩子在就分配方式讨价还价
的时候.蛋糕在不停地融化。我们假设每提出一个建议或反建议,蛋糕都会
朝零的方向缩小同样大小。

 

谈判久拖不决的原因是双方没有就蛋糕缩小(利益流逝)的程度达成共识

 

在博弈中,决定大饼切分方式的一个重要因素是各方的等待成本。虽然双方可能失去同样多的利益,一方却可能有别的替代方法,减少损失。因此,要减少己方的等待成本

 

 

保护讨价还价的能力

 一天深夜,两名美国经济学家在会议结束之后,要返回酒店。他们在耶路撒冷街头找了一辆有牌照的出租车,告诉司机应该怎么去他们的酒店。司机几乎立即认出他们是美国客人,因此拒绝打表,并许诺会给他们一个低于打表数目的更好的价钱。自然.两人对这样的许诺颇有点将信将疑。
    在他们表示愿意按照打表数目付钱的前提下.这个陌生的司机为什么还要提出这么一个奇怪的少收一点的许诺呢,他们怎么才能知道自己有没有多付车钱呢'另一方面,此前他们除了答应按照打表数目付钱之外,并没有许诺再向司机支付其他报酬。假如他们打算跟司机讨价还价,而这场谈判叉破裂了,那么他们就得另找一辆出租汽车。他们的思路是.一旦他们到达酒店,他们的讨价还价地位将会大大改善。何况,此时此刻再找一辆出租车实在很不容易。
    于是他们坐车出发,顺利到达酒店。司机要求他们支付以色列币2500谢克尔(相当于2 75美元)。因为在以色列讨价还价非常普遍,所以美国人还价2200谢克尔。司机生气了,不等对方说话就锁死r全部车门,按照原路段命地开车往回走。司机开车回到出发点.非常粗暴地把他们扔出车外.一边大叫:“现在你们自己去看看你们那2200谢克尔能走多远吧!”
    他们又找了一辆出租车。这名司机开始打表,跳到2200谢克尔的时候,他们也回到了酒店。
    毫无疑问,花这么多时间折腾,对于两位经济学家来说还值不到300谢克尔。但是这个故事的价值却不容忽视.因为它说明一旦面对一个不懂得讨价还价的对手,可能会出现什么样的危验。在自尊和理性这两样东西之间,我们必须学会权衡。假如总共只不过要多花20美分,更明智的选择可能是到达目的地之后乖乖付钱。

    这个故事还有第二个教训。设想一下,假如两个美国人是在下车之后再来讨论价钱问题,他们的讨价还价地位该有多大的改善。    如果是租一辆出租车.思路应该与此完全相反。假如你在上车之前告诉司机你要到哪里去.那么你很有可能眼雹巴看着出租车弃你而去,另找更好的主顾。记住,你最好先上车,然后告诉司机你要到哪里去。    这个故事还提示我们.必须学会通过改变我们与对手之间的位置,刨造一个对自己最佳的讨价还价的地位。

 

 

路径依赖

我们选择QWER键盘的经历,迫使我们不得不继续使用这种较差的技术。通过博弈论可知,行为习惯有很重的影响,解决这类问题的办法是借助一场短期而严厉的运动

 

 

超速均衡

ess策略:即进化稳定策略,指凡是种群大部分成员采用的策略,而且这种策略比别的策略好,那么就是ess策略。因此,对于个体来说,最好的策略取决于种群中大多数成员在干什么。所以从众效应是有一定道理的。

 

运用这种从众规律,可以解决一些问题。

例子:

 

    随着楚国实力的增强。与中原各国的冲突也日益增多。对于战车的需求也相应增加。但是楚国民俗习坐矮车,民间的牛车底座程低,不适于在战时用做马车。楚王准备下令全国提高车的底座。孙叔敖说:“下令太多,民不知所从,这不好。如果您想把车底座改高,我请求让各个地方的城镇把街巷两头的门限升高。乘车的人都是有身份的君子,他们不能为过门槛频繁下车,自然就会把车的底座造高了。”
      楚王听从了.没有发布政令,而是由官府机构统一放弃矮车.改乘高车,同时将城镇街巷两头设较高的门限,这样过了不到三个月.全国的牛车底座都升高了。

     看到这里,我们已经能够理解孙叔敖在抬高城门槛的行动中所运用的智慧了。在他的方法中,提高门槛的高度.相当于对底座较低的矮车进行的一种惩罚,而为高车提供的一种便利。最开始的时候,使用矮车的“君子们”受到种种限制.产生种种不便,无法顺利通过街巷的门限。而与此同时,官府所使用的高车又给了他们一个示范的效应。为了得到这种通行便利.改造自己的车辆底座也就理所当然地成为一种优势策略。    孙叔赦的做法对我们的启示在于,一个短暂而立竿见影的执法过程,其效率不仅远远胜过无法触动现行习惯的任何行政命令,而且大大高于一个投人同样力量进行的一个长期而温和的执法过程。

 

只要花较小的力气,对问题中的关键部分加以引导和控制,就能扩散至全局

 

 

共同知识:对一个事件来说,如果所有博奔当事人对该事件都有了解,并且所有当
事人都知道其他当事人也知道这一事件,并且所有当事人都知道所有当事人
都知道这一事件,那么该事件就是共同知识。

 

当一个知识变成共同知识的时候,决策过程就相应的变化了,原有的封闭的信息变成了公共的信息,于是我们就推理,我知道他知道我知道……

 

 

不确定性可分为两大类:主观不确定性和客观不确定性。

       主观不确定性是指决策者由于有关资料的缺乏而不能对事物的态度做出正确的判断,而这种判断却是其他掌握资料的人可以有的。和主观不确定性相关的信息常常具有不对称性。对个人来说.拥有信息越多,越有可能做出正确决策。对社会来说,信息越透明.越有助于降低人们的交易成本,提高社会效率。

       客观不确定性是指事物状态的客观属性本身具有不确定性。对此。人们
可以通过认识去把握客观规律。但是,认识本身并不能消除这种不确定性。

 

解决信息不对称问题

当信息不对称时,就容易出现劣币驱逐良币的现象,要减少逆向选择.就必须解决信息不对称问题。解决思路是委托人或“高质量”代理人通过信息决策,减少委托人与代理人之间信息不对称的程度。解决的途径有两个:其一是委托人通过制定一套策略或合同来获取代理人的信息不对称信息,这就是“信息甄别”;其二是“高质量”代理人利用信息优势向委托人传播自己的私人信息,这就是“信息传递”。    同样的道理.一个好的政治制度,必须设计出分离均衡,使那些说真话不偷懒的官和不说真话并且偷懒的官都有所选择,把比较差的官筛选出去。这也是一个行政制度具有效率的必要条件。一个制度要有好的效率.必须让那些具有信息优势的人来监督官员。谁具有信息优势呢,当然是那些本地的居民。

 

斯宾塞指出:“在二手车市场张,如果高质量旧汽车的卖家能够找出一种方式,使得付出的成本低于低质量产品卖家付出的成本,那么。作为一种高质量的信息传递,将能够从市场活动获得足够的补偿而获益。”因此,对高质量旧车的卖家来说,只要某种发送信号方式的边际成本较低。市场将会出现某种均衡。信息传递本身是有成本的,只有具有一定实力的产品,才能负担起这种成本,因此,这种行为本身就屏蔽了一部分劣质商家。 如果发送信息的成本对所有人都一样,那就没有用了。

 

因此信息传递模型的关键:

1.信息传递是有成本的

2.要让不同的人发送同一个信息的成本是不同的

 

 

分离均衡的筛子

分离均衡研究的是拥有信息的一方主动发布信息,从不同类中分离出来,这样才有利可图。

 

分离均衡与信号传递不同之处:信号传递研究的是拥有不同信息的人如何通过信号传递,来把自己与同类分离出来。分离均衡是说明不拥有信息的人如何设计一个机制,来进行信息甄别,使具有不同信息的人不隐瞒信息和行为,进而提高市场效率。

 

信息传递的几个原则

       第一.如果体有几个坏消息要宣布,应该把几个坏消息同时公布于人。把几个坏消息结合起来,它们所引起的边际效用递减会使各个坏消息加总起来的总效用最小。人们常常讨厌雪上加霜、火上浇油的做法,可是真正让人们选择去经受两次伤害还是经受一次大的伤害,在能够承受的限度内,对于很多人来说还是快刀斩乱麻来得更加爽快一些。   

       第二.如果你有几个好消息要公布,应该把几个好消息分开公布。你把这两个好消息分两天告诉别人会让开心两次。因为分两次听到两个好消息等于经历了两次快乐,这两次快乐的总和要比一次性享受两个好消息带来的快乐更大。双喜临门固然非常令人高兴,可是天天有喜也许能够带来更多的欢笑。
       第三,如果你有一个大大的好消息和一个小小的坏消息,应该把这两个消息一起告诉别人。这样的话.小小的坏消息带来的痛苦会教大大的好消息带来的快乐冲淡,负面效应也就小得多。比如你被叫到上司的办公室,被告知说因为工作表现突出,每个月被加薪150元。但是不巧的是,你在挤公车的时候不小心丢了[00元钱,那么你回家该把这两个消息一起告诉你的家人。虽然丢了100元钱,但比起加薪这个喜讯也算不了什么.你的家人一定不会在意那丢失的100元钱的。
       第四.如果有一个大大的坏消息和一个小小的好消息,应该分别公布这两条消息。这样的话,小小的好消息带来的快乐不至于被大大的坏消息带来的痛苦所淹没.人们还是可以享受好消息带来的快乐。举例来说.现在股市不景气,你买的股票今天股价暴跌,使你损失10万元。不过,你的运气还算不错.在超市购物时中了一盒价值50元的巧克力。你应当将这两个消息分两天带回家,尽管爱人得知股票亏损的消息会很沮丧,说不定还会怪你没有投资眼光,不过这并不妨碍她第二天品尝巧克力的甜美。但是,如果你一次性把两条消息同时告诉他的话.说不定她吃起巧克力来感觉味道也是苦的。

 

 

决不妥协的策略

       夏侯懋镇守濮阳。吕布派将领假装来降,乘机却劫持了夏侯懋,来索取财宝。韩浩独自带军队屯在营门外.要求众将按兵不动,各个军营安定了下来。韩浩便进人夏侯懋所在之处,斥责劫持人质的人说:“你们凶残顽劣,竟然敢劫持我们的大将军,你们还想活命吗我接受了命令来讨伐贼人,难道能因为一个将军被劫持就放纵你们胡作非为吗?”接着他又哭着对夏侯懋说:“事关国法,我有什么办法呢?”说罢,他迅速召集军队攻打劫持者。劫持者惶恐惊惧,磕头求饶.韩浩马上把他们全捉了起来。
    曹操十分赞赏韩浩的行为。发令:从今以后,再遇到劫持人质的人,就一定要全力攻打他们,不要顾忌被劫持的人质。从此以后,劫持人质的事情就再也没有发生过。
    曹操之所以表扬韩浩,是因为他明白,只有采取绝不妥协的态度,才能够最大限度地阻吓有意劫持者,打消他们通过劫持人质来索取赎金的念头。只有这个绝不谈判的威胁是可信的,那么,劫持者才会意识到他们的行动注定徒劳无功。
    但是其中的风险也考验着韩浩和曹操。每一次.只要遭遇劫持事件,一旦这个威胁必须实践,拒绝妥协的态度可能使被劫持者命丧黄泉。但这种风险也恰恰是区别一个有战略眼光的领抽和一个短视者的试金石。只有前者才明白,屈服一次绝不仅是满足一批劫持者的要求那么简单,还会诱发更多的劫持。
    事实上,这一思维方式是很多决策者的共识。

 

制度设计中的折衷

一个组织岗位的设计,必须考虑到逆向选择和道德风险。在设计制度的时候,必须在要求说真话和不偷懒之间傲一个折中。比如老师让没做作业的学生举手,如果你对举了手的学生惩罚太重,那么下次就段有人会再说真话,而如果你惩罚太轻,又会诱使更多的人不做作业。
 
分离均衡实例
在商业市场上也存在同样的“机制设计”。大家都知道,客户为了自身利益有时也会隐藏自己的私人信息,从而出现信息在买卖双方间不对称的情况。    客户知道自己的需求,而卖家不完全知道.因为高需求客户为了以更低的价格成交,往往会隐藏自己“具有高需求”的信息。在这种情况下,差别定价方式可以甄别出不同需求程度的客户,从而使卖家可以获取尽可能多的利润(对于高需求客户以较高的价格成交,对于低需求客户以较低的价格成交)。
    比如,在推出一本新书时,通过提供精装本和平装本两种版本,出版商可以将读者分为两大类:一类对书的评价较高,另一类对书的评价较低。在提供电信服务时,服务商可以对手机用户提供两种收费标准:一种是单位时间通话费用较低,但需交纳一定的月租费;另一种是单位时间通话费用较高.但不需交纳月租费。根据用户的不同选择,服务商可以将用户区分为高频率用户和低频率用户两类。
    亨特先生被派到美国新兵培训中心推广军人保验。听他演讲的新兵100%都自愿购买了保险,从来没人能达到这么高的成功率。培训主任很想知道他的推销之道,于是悄悄来到课室,听他对新兵讲些什么。
    “小伙子们,我要向你们解释军人保险带来的保障。”亨特说,“假如发生了战争,你不幸阵亡了政府将会给你的家属赔偿20万美元;但如果你没有买保险.政府只会支付6000美元的抚恤金…·”这时.下面有一个新兵沮丧地说:“这有什么用,多少钱都换不回我的命。”听到这里.亨特不慌不忙地说:“你错了,想想看,一旦发生了战争,政府会先派挪一种士兵上战场’买了保险的还是没买保险的?”

 

边缘政策

为了避免与对手同归于尽,人们一定希望找到一个刚好足够阻吓对手而又不会过火的回应方法,这种方法就是使威胁变得缓和一些,创造一种风险,而不是一种确定性。边缘政策将皮球踢给对方,让对方知难而退。

分享到:
评论

相关推荐

    博弈论笔记,博弈论基础,推荐学习

    博弈论,这门深奥而有趣的学科,是经济学、数学、计算机科学等多个领域的重要理论工具。它主要研究在策略互动中的决策者如何选择最优策略,以最大化自身的利益。本资料包,"博弈论笔记",提供了对这个领域的基础介绍...

    GameTheory 博弈论 ACM必备

    博弈论,英文名为Game Theory,是研究决策者之间相互作用的一种数学理论,广泛应用于经济学、社会学、生物学、计算机科学等多个领域,特别是在ACM(国际大学生程序设计竞赛)中,博弈论作为解决某些复杂问题的有效...

    博弈论教程

    根据给定文件的信息,我们可以提炼出以下关于博弈论的相关知识点: ### 博弈论简介 博弈论是一种数学方法,用于研究决策者之间策略互动的情况。它最初由约翰·冯·诺依曼和奥斯卡·摩根斯特恩在20世纪40年代提出,...

    广东工业大学《博弈论》历年期末考试试卷(含答案).pdf

    根据提供的标题“广东工业大学《博弈论》历年期末考试试卷(含答案)”及描述,我们可以推测这份文档主要包含了广东工业大学关于《博弈论》课程的历年期末考试题目及其对应的答案。以下将围绕《博弈论》这一主题展开...

    耶鲁博弈论24讲_全笔记_v_2.1

    接下来的讲座涉及了更加复杂的博弈论主题,包括进化稳定、序贯博弈、逆向归纳、不完全信息、子博弈精炼均衡、重复博弈、非对称信息等。 - **进化稳定**:探讨生物进化过程中种群策略的稳定性。 - **序贯博弈**:...

    博弈论与竞争策略归纳.pdf

    博弈论与竞争策略归纳.pdf

    博弈论知识点总结完整版 & 复习题及答案

    博弈论,又称游戏理论,是研究决策者在有冲突或合作情况下的决策选择的一种数学工具。这个领域结合了数学、经济学、心理学和社会科学等多个领域的知识,广泛应用于社会科学、生物学、军事战略以及计算机科学等多个...

    博弈论 game theory经典教材,书籍,网络安全方向必读

    ### 博弈论在网络安全中的应用 #### 一、引言与基础知识介绍 博弈论作为研究决策者之间策略互动的一种理论,在多个领域如经济学、管理学、计算机科学等都有着广泛的应用。网络安全作为现代社会信息技术发展的重要...

    社会学博弈论PPT学习教案.pptx

    到了80至90年代,博弈论进一步发展,提出了顺推归纳法、序列均衡和进化博弈理论。 博弈论在经济学中的应用极其广泛,包括但不限于产业组织理论、信息经济学、讨价还价理论、拍卖理论、公共经济学、产权与制度分析、...

    博弈论与网络安全和隐私

    博弈论与网络安全和隐私的研究领域涉及将博弈论的理论方法应用于解决计算机和通信网络中的安全性和隐私问题。在网络安全领域中,博弈论被用来分析在不同参与者之间可能发生的策略性互动,以及这些互动如何影响网络的...

    完全信息动态博弈(博弈论与信息经济学-山西财经大学.pptx

    完全信息动态博弈是博弈论中的一个重要概念,主要探讨在所有参与者拥有全部信息的条件下,博弈如何进行和结果如何决定。这种博弈通常通过扩展形式来表示,即博弈树模型,其中包括五个基本要素: 1. **局中人(N)**:...

    博弈论课件4重复博弈PPT课件.ppt

    博弈论是一种分析决策者之间互动行为的数学工具,尤其在经济学、政治学、社会学以及生物学等领域有着广泛的应用。重复博弈是博弈论的一个重要分支,它研究的是相同结构的博弈在一定时间内反复进行的情况。与一次性...

    管理学博弈论PPT学习教案.pptx

    该PPT列出了一些经典的博弈论教材,如罗云峰的《博弈论教程》、姚国庆的《博弈论》、张维迎的《博弈论与信息经济学》等,这些资源可以深入学习博弈论的理论和应用。 通过学习管理学博弈论,我们可以更好地理解和...

    博弈论作业答案.doc

    【博弈论作业答案详解】 1. **博弈论基础与纳什均衡** 博弈论是研究决策者之间互动行为的数学理论,其中的核心概念是纳什均衡。纳什均衡是指在博弈中,每个参与者都无法通过单方面改变策略来提高自己的收益,即...

    博弈论作业.docx

    博弈论是一种分析决策者在互动情境下如何做出最佳选择的数学工具。在多个领域,如经济学、政治学、生物学甚至心理学,博弈论都有广泛的应用。以下是对给定内容的详细解释: 1. **纯策略纳什均衡**: 在第一个博弈...

    北大博弈论习题1.pdf

    本题涉及到多个博弈论的概念,包括纯策略与混合策略纳什均衡、逆向归纳法、不完美信息博弈、贝叶斯均衡以及信号博弈。 一、纳什均衡是博弈论中的核心概念,指每个参与者在考虑其他人的策略选择后,没有动机改变自己...

    国外博弈论lecture13PPT学习教案.pptx

    博弈论是经济学、决策科学和游戏理论中的核心概念,它研究在有冲突和合作的多主体环境下,参与者如何做出选择以最大化自身利益。在“国外博弈论lecture13”这一主题中,主要讨论了动态博弈论(Dynamic games)及其在...

Global site tag (gtag.js) - Google Analytics