`
IXHONG
  • 浏览: 456007 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Spring的IoC容器实现原理(一)#loadBeanDefinition

阅读更多

Spring有十几个组件,核心组件为bean(演员)-context(舞台)-core(道具)

bean包装的是object,而object中肯定要有数据,如何给这些数据提供生存环境就是context要解决的问题,对于context来说他就是要发现每个bean之间的关系,为他们建立起来并维护好这些关系。所以context就是一个bean关系的集合,这个关系集合就是我们常说的IOC容器。core组件就是发现、建立和维护每个bean之间的关系所需要的一些工具,把core叫做util更为贴切。 

 

IOC的基础 
下面我们从IOC/AOP开始,它们是Spring平台实现的核心部分;虽然,我们一开始大多只是在这个层面上,做一些配置和外部特性的使用工作,但对这两个核心模块工作原理和运作机制的理解,对深入理解Spring平台,却是至关重要的;因为,它们同时也是Spring其他模块实现的基础。从Spring要做到的目标,也就是从简化Java EE开发的出发点来看,简单的来说,它是通过对POJO开发的支持,来具体实现的;具体的说,Spring通过为应用开发提供基于POJO的开发模式,把应用开发和复杂的Java EE服务,实现解耦,并通过提高单元测试的覆盖率,从而有效的提高整个应用的开发质量。这样一来,实际上,就需要把为POJO提供支持的,各种Java EE服务支持抽象到应用平台中去,去封装起来;而这种封装功能的实现,在Spring中,就是由IOC容器以及AOP来具体提供的,这两个模块,在很大程度上,体现了Spring作为应用开发平台的核心价值。它们的实现,是Rod.Johnson在他的另一本著作《Expert One-on-One J2EE Development without EJB》 中,所提到Without EJB设计思想的体现;同时也深刻的体现了Spring背后的设计理念。 

从更深一点的技术层面上来看,因为Spring是一个基于Java语言的应用平台,如果我们能够对Java计算模型,比如像JVM虚拟机实现技术的基本原理有一些了解,会让我们对Spring实现的理解,更加的深入,这些JVM虚拟机的特性使用,包括像反射机制,代理类,字节码技术等等。它们都是在Spring实现中,涉及到的一些Java计算环境的底层技术;尽管对应用开发人员来说,可能不会直接去涉及这些JVM虚拟机底层实现的工作,但是了解这些背景知识,或多或少,对我们了解整个Spring平台的应用背景有很大的帮助;打个比方来说,就像我们在大学中,学习的那些关于计算机组织和系统方面的基本知识,比如像数字电路,计算机组成原理,汇编语言,操作系统等等这些基本课程的学习。虽然,坦率的来说,对我们这些大多数课程的学习者,在以后的工作中,可能并没有太多的机会,直接从事这么如此底层的技术开发工作;但具备这些知识背景,为我们深入理解基于这些基础技术构架起来的应用系统,毫无疑问,是不可缺少的。随着JVM虚拟机技术的发展,可以设想到的是,更多虚拟机级别的基本特性,将会持续的被应用平台开发者所关注和采用,这也是我们在学习平台实现的过程中,非常值得注意的一点,因为这些底层技术实现,毫无疑问,会对Spring应用平台的开发路线,产品策略产生重大的影响。同时,在使用Spring作为应用平台的时候,如果需要更深层次的开发和性能调优,这些底层的知识,也是我们知识库中不可缺少的部分。有了这些底层知识,理解整个系统,想来就应该障碍不大了。 

IOC的一点认识 
对Spring IOC的理解离不开对依赖反转模式的理解,我们知道,关于如何反转对依赖的控制,把控制权从具体业务对象手中转交到平台或者框架中,是解决面向对象系统设计复杂性和提高面向对象系统可测试性的一个有效的解决方案。这个问题触发了IoC设计模式的发展,是IoC容器要解决的核心问题。同时,也是产品化的IoC容器出现的推动力。而我觉得Spring的IoC容器,就是一个开源的实现依赖反转模式的产品。 

那具体什么是IoC容器呢?它在Spring框架中到底长什么样?说了这么多,其实对IoC容器的使用者来说,我们常常接触到的BeanFactory和ApplicationContext都可以看成是容器的具体表现形式。这些就是IoC容器,或者说在Spring中提IoC容器,从实现来说,指的是一个容器系列。这也就是说,我们通常所说的IoC容器,如果深入到Spring的实现去看,会发现IoC容器实际上代表着一系列功能各异的容器产品。只是容器的功能有大有小,有各自的特点。打个比方来说,就像是百货商店里出售的商品,我们举水桶为例子,在商店中出售的水桶有大有小;制作材料也各不相同,有金属的,有塑料的等等,总之是各式各样,但只要能装水,具备水桶的基本特性,那就可以作为水桶来出售来让用户使用。这在Spring中也是一样,它有各式各样的IoC容器的实现供用户选择和使用;使用什么样的容器完全取决于用户的需要,但在使用之前如果能够了解容器的基本情况,那会对容器的使用是非常有帮助的;就像我们在购买商品时进行的对商品的考察和挑选那样。 

我们从最基本的XmlBeanFactory看起,它是容器系列的最底层实现,这个容器的实现与我们在Spring应用中用到的那些上下文相比,有一个非常明显的特点,它只提供了最基本的IoC容器的功能。从它的名字中可以看出,这个IoC容器可以读取以XML形式定义的BeanDefinition。理解这一点有助于我们理解ApplicationContext与基本的BeanFactory之间的区别和联系。我们可以认为直接的BeanFactory实现是IoC容器的基本形式,而各种ApplicationContext的实现是IoC容器的高级表现形式。 

仔细阅读XmlBeanFactory的源码,在一开始的注释里面已经对 XmlBeanFactory的功能做了简要的说明,从代码的注释还可以看到,这是Rod Johnson在2001年就写下的代码,可见这个类应该是Spring的元老类了。它是继承DefaultListableBeanFactory这个类的,这个DefaultListableBeanFactory就是一个很值得注意的容器! 

Java代码  收藏代码
  1. public class XmlBeanFactory extends DefaultListableBeanFactory {  
  2.     private final XmlBeanDefinitionReader reader = new XmlBeanDefinitionReader(this);  
  3.     public XmlBeanFactory(Resource resource) throws BeansException {  
  4.         this(resource, null);  
  5.     }  
  6.     public XmlBeanFactory(Resource resource, BeanFactory parentBeanFactory) throws BeansException {  
  7.         super(parentBeanFactory);  
  8.         this.reader.loadBeanDefinitions(resource);  
  9.     }  
  10. }  

BeanFactory测试:

public class BeanFactoryTest {

    public static void main(String[] args) {
        ResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
        Resource res = resolver.getResource("classpath:spring-test.xml");
        BeanFactory bf = new XmlBeanFactory(res);
        System.out.println("init BeanFactory");

        Mars mars = bf.getBean("mars", Mars.class);
        System.out.println(mars.getCnName() + ":" + mars.getAge());
    }
}

 
XmlBeanFactory的功能是建立在DefaultListableBeanFactory这个基本容器的基础上的,在这个基本容器的基础上实现了其他诸如XML读取的附加功能。对于这些功能的实现原理,看一看XmlBeanFactory的代码实现就能很容易地理解。在如下的代码中可以看到,在XmlBeanFactory构造方法中需要得到Resource对象。对XmlBeanDefinitionReader对象的初始化,以及使用这个这个对象来完成loadBeanDefinitions的调用,就是这个调用启动了从Resource中载入BeanDefinitions的过程,这个loadBeanDefinitions同时也是IoC容器初始化的重要组成部分。 

简单来说,IoC容器的初始化包括BeanDefinition的Resouce定位、载入和注册这三个基本的过程。我觉得重点是在载入和对BeanDefinition做解析的这个过程。可以从DefaultListableBeanFactory来入手看看IoC容器是怎样完成BeanDefinition载入的。在refresh调用完成以后,可以看到loadDefinition的调用: 

Java代码  收藏代码
  1. public abstract class AbstractXmlApplicationContext extends AbstractRefreshableConfigApplicationContext {  
  2.     public AbstractXmlApplicationContext() {  
  3.     }  
  4.     public AbstractXmlApplicationContext(ApplicationContext parent) {  
  5.         super(parent);  
  6.     }  
  7.     //这里是实现loadBeanDefinitions的地方  
  8.     protected void loadBeanDefinitions(DefaultListableBeanFactory beanFactory) throws IOException {  
  9.         // Create a new XmlBeanDefinitionReader for the given BeanFactory.  
  10.         // 创建 XmlBeanDefinitionReader,并通过回调设置到 BeanFactory中去,创建BeanFactory的使用的也是 DefaultListableBeanFactory。  
  11.         XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(beanFactory);  
  12.   
  13.         // Configure the bean definition reader with this context's  
  14.         // resource loading environment.  
  15.         // 这里设置 XmlBeanDefinitionReader, 为XmlBeanDefinitionReader 配置ResourceLoader,因为DefaultResourceLoader是父类,所以this可以直接被使用  
  16.         beanDefinitionReader.setResourceLoader(this);  
  17.         beanDefinitionReader.setEntityResolver(new ResourceEntityResolver(this));  
  18.   
  19.         // Allow a subclass to provide custom initialization of the reader,  
  20.         // then proceed with actually loading the bean definitions.  
  21.     // 这是启动Bean定义信息载入的过程  
  22.         initBeanDefinitionReader(beanDefinitionReader);  
  23.         loadBeanDefinitions(beanDefinitionReader);  
  24.     }  
  25.   
  26.     protected void initBeanDefinitionReader(XmlBeanDefinitionReader beanDefinitionReader) {  
  27.     }  


这里使用 XmlBeanDefinitionReader来载入BeanDefinition到容器中,如以下代码清单所示: 

Java代码  收藏代码
  1.     //这里是调用的入口。  
  2.     public int loadBeanDefinitions(Resource resource) throws BeanDefinitionStoreException {  
  3.         return loadBeanDefinitions(new EncodedResource(resource));  
  4.     }  
  5.     //这里是载入XML形式的BeanDefinition的地方。  
  6.     public int loadBeanDefinitions(EncodedResource encodedResource) throws BeanDefinitionStoreException {  
  7.         Assert.notNull(encodedResource, "EncodedResource must not be null");  
  8.         if (logger.isInfoEnabled()) {  
  9.             logger.info("Loading XML bean definitions from " + encodedResource.getResource());  
  10.         }  
  11.   
  12.         Set<EncodedResource> currentResources = this.resourcesCurrentlyBeingLoaded.get();  
  13.         if (currentResources == null) {  
  14.             currentResources = new HashSet<EncodedResource>(4);  
  15.             this.resourcesCurrentlyBeingLoaded.set(currentResources);  
  16.         }  
  17.         if (!currentResources.add(encodedResource)) {  
  18.             throw new BeanDefinitionStoreException(  
  19.                     "Detected recursive loading of " + encodedResource + " - check your import definitions!");  
  20.         }  
  21.         //这里得到XML文件,并得到IO的InputSource准备进行读取。  
  22.         try {  
  23.             InputStream inputStream = encodedResource.getResource().getInputStream();  
  24.             try {  
  25.                 InputSource inputSource = new InputSource(inputStream);  
  26.                 if (encodedResource.getEncoding() != null) {  
  27.                     inputSource.setEncoding(encodedResource.getEncoding());  
  28.                 }  
  29.                 return doLoadBeanDefinitions(inputSource, encodedResource.getResource());  
  30.             }  
  31.             finally {  
  32.                 inputStream.close();  
  33.             }  
  34.         }  
  35.         catch (IOException ex) {  
  36.             throw new BeanDefinitionStoreException(  
  37.                     "IOException parsing XML document from " + encodedResource.getResource(), ex);  
  38.         }  
  39.         finally {  
  40.             currentResources.remove(encodedResource);  
  41.             if (currentResources.isEmpty()) {  
  42.                 this.resourcesCurrentlyBeingLoaded.set(null);  
  43.             }  
  44.         }  
  45.     }  
  46. //具体的读取过程可以在doLoadBeanDefinitions方法中找到:  
  47.     //这是从特定的XML文件中实际载入BeanDefinition的地方  
  48.     protected int doLoadBeanDefinitions(InputSource inputSource, Resource resource)  
  49.             throws BeanDefinitionStoreException {  
  50.         try {  
  51.             int validationMode = getValidationModeForResource(resource);  
  52.             //这里取得XML文件的Document对象,这个解析过程是由 documentLoader完成的,这个documentLoader是DefaultDocumentLoader,在定义documentLoader的地方创建  
  53.             Document doc = this.documentLoader.loadDocument(  
  54.                     inputSource, getEntityResolver(), this.errorHandler, validationMode, isNamespaceAware());  
  55.             //这里启动的是对BeanDefinition解析的详细过程,这个解析会使用到Spring的Bean配置规则,是我们下面需要详细关注的地方。  
  56.             return registerBeanDefinitions(doc, resource);  
  57.         }  
  58.         catch (BeanDefinitionStoreException ex) {  
  59.             throw ex;  
  60.         }  
  61.         catch (SAXParseException ex) {  
  62.             throw new XmlBeanDefinitionStoreException(resource.getDescription(),  
  63.                     "Line " + ex.getLineNumber() + " in XML document from " + resource + " is invalid", ex);  
  64.         }  
  65.         catch (SAXException ex) {  
  66.             throw new XmlBeanDefinitionStoreException(resource.getDescription(),  
  67.                     "XML document from " + resource + " is invalid", ex);  
  68.         }  
  69.         catch (ParserConfigurationException ex) {  
  70.             throw new BeanDefinitionStoreException(resource.getDescription(),  
  71.                     "Parser configuration exception parsing XML from " + resource, ex);  
  72.         }  
  73.         catch (IOException ex) {  
  74.             throw new BeanDefinitionStoreException(resource.getDescription(),  
  75.                     "IOException parsing XML document from " + resource, ex);  
  76.         }  
  77.         catch (Throwable ex) {  
  78.             throw new BeanDefinitionStoreException(resource.getDescription(),  
  79.                     "Unexpected exception parsing XML document from " + resource, ex);  
  80.         }  
  81.     }  
protected EntityResolver getEntityResolver() {
		if (this.entityResolver == null) {
			// Determine default EntityResolver to use.
			ResourceLoader resourceLoader = getResourceLoader();
			if (resourceLoader != null) {
				this.entityResolver = new ResourceEntityResolver(resourceLoader);
			}
			else {
				this.entityResolver = new DelegatingEntityResolver(getBeanClassLoader());
			}
		}
		return this.entityResolver;
	}

 

public DelegatingEntityResolver(ClassLoader classLoader) {
		this.dtdResolver = new BeansDtdResolver();
		this.schemaResolver = new PluggableSchemaResolver(classLoader);
	}

 

public PluggableSchemaResolver(ClassLoader classLoader) {
		this.classLoader = classLoader;
		this.schemaMappingsLocation = DEFAULT_SCHEMA_MAPPINGS_LOCATION; // "META-INF/spring.schemas"
	}

 
关于具体的Spring BeanDefinition的解析,是在BeanDefinitionParserDelegate中完成的。这个类里包含了各种Spring Bean定义规则的处理,感兴趣的同学可以仔细研究。我们举一个例子来分析这个处理过程,比如我们最熟悉的对Bean元素的处理是怎样完成的,也就是我们在XML定义文件中出现的<bean></bean>这个最常见的元素信息是怎样被处理的。在这里,我们会看到那些熟悉的BeanDefinition定义的处理,比如id、name、aliase等属性元素。把这些元素的值从XML文件相应的元素的属性中读取出来以后,会被设置到生成的BeanDefinitionHolder中去。这些属性的解析还是比较简单的。对于其他元素配置的解析,比如各种Bean的属性配置,通过一个较为复杂的解析过程,这个过程是由parseBeanDefinitionElement来完成的。解析完成以后,会把解析结果放到BeanDefinition对象中并设置到BeanDefinitionHolder中去,如以下清单所示: 
#DefaultBeanDefinitionDocumentReader

/**
	 * Parse the elements at the root level in the document:
	 * "import", "alias", "bean".
	 * @param root the DOM root element of the document
	 */
	protected void parseBeanDefinitions(Element root, BeanDefinitionParserDelegate delegate) {
		if (delegate.isDefaultNamespace(root)) {
			NodeList nl = root.getChildNodes();
			for (int i = 0; i < nl.getLength(); i++) {
				Node node = nl.item(i);
				if (node instanceof Element) {
					Element ele = (Element) node;
					if (delegate.isDefaultNamespace(ele)) {
                  // 解析import, alias, beans等默认标签
						parseDefaultElement(ele, delegate);
					}
					else {
                  // 解析aop, mvc, dubbo等自定义标签,这部分在文末解释
						delegate.parseCustomElement(ele);
					}
				}
			}
		}
		else {
			delegate.parseCustomElement(root);
		}
	}
/**
	 * Process the given bean element, parsing the bean definition
	 * and registering it with the registry.
	 */
	protected void processBeanDefinition(Element ele, BeanDefinitionParserDelegate delegate) {
		BeanDefinitionHolder bdHolder = delegate.parseBeanDefinitionElement(ele);
		if (bdHolder != null) {
			bdHolder = delegate.decorateBeanDefinitionIfRequired(ele, bdHolder);
			try {
				// Register the final decorated instance.
				BeanDefinitionReaderUtils.registerBeanDefinition(bdHolder, getReaderContext().getRegistry());
			}
			catch (BeanDefinitionStoreException ex) {
				getReaderContext().error("Failed to register bean definition with name '" +
						bdHolder.getBeanName() + "'", ele, ex);
			}
			// Send registration event.
			getReaderContext().fireComponentRegistered(new BeanComponentDefinition(bdHolder));
		}
	}

  #BeanDefinitionReaderUtils

 

public static void registerBeanDefinition(
			BeanDefinitionHolder definitionHolder, BeanDefinitionRegistry registry)
			throws BeanDefinitionStoreException {

		// Register bean definition under primary name.
		String beanName = definitionHolder.getBeanName();
		registry.registerBeanDefinition(beanName, definitionHolder.getBeanDefinition());

		// Register aliases for bean name, if any.
		String[] aliases = definitionHolder.getAliases();
		if (aliases != null) {
			for (String aliase : aliases) {
				registry.registerAlias(beanName, aliase);
			}
		}
	}
 上面的registry正是DefaultListableBeanFactory!

 

#BeanDefinitionParserDelegate

Java代码  收藏代码
  1. public BeanDefinitionHolder parseBeanDefinitionElement(Element ele, BeanDefinition containingBean) {  
  2.         //这里取得在<bean>元素中定义的id、name和aliase属性的值  
  3.         String id = ele.getAttribute(ID_ATTRIBUTE);  
  4.         String nameAttr = ele.getAttribute(NAME_ATTRIBUTE);  
  5.   
  6.         List<String> aliases = new ArrayList<String>();  
  7.         if (StringUtils.hasLength(nameAttr)) {  
  8.             String[] nameArr = StringUtils.tokenizeToStringArray(nameAttr, BEAN_NAME_DELIMITERS);  
  9.             aliases.addAll(Arrays.asList(nameArr));  
  10.         }  
  11.   
  12.         String beanName = id;  
  13.         if (!StringUtils.hasText(beanName) && !aliases.isEmpty()) {  
  14.             beanName = aliases.remove(0);  
  15.             if (logger.isDebugEnabled()) {  
  16.                 logger.debug("No XML 'id' specified - using '" + beanName +  
  17.                         "' as bean name and " + aliases + " as aliases");  
  18.             }  
  19.         }  
  20.   
  21.         if (containingBean == null) {  
  22.             checkNameUniqueness(beanName, aliases, ele);  
  23.         }  
  24.   
  25.         //这个方法会引发对bean元素的详细解析  
  26. AbstractBeanDefinition beanDefinition = parseBeanDefinitionElement(ele, beanName, containingBean);  
  27.         if (beanDefinition != null) {  
  28.             if (!StringUtils.hasText(beanName)) {  
  29.                 try {  
  30.                     if (containingBean != null) {  
  31.                         beanName = BeanDefinitionReaderUtils.generateBeanName(  
  32.                                 beanDefinition, this.readerContext.getRegistry(), true);  
  33.                     }  
  34.                     else {  
  35.                         beanName = this.readerContext.generateBeanName(beanDefinition);  
  36.                         // Register an alias for the plain bean class name, if still possible,  
  37.                         // if the generator returned the class name plus a suffix.  
  38.                         // This is expected for Spring 1.2/2.0 backwards compatibility.  
  39.                         String beanClassName = beanDefinition.getBeanClassName();  
  40.                         if (beanClassName != null &&  
  41.                                 beanName.startsWith(beanClassName) && beanName.length() > beanClassName.length() &&  
  42.                                 !this.readerContext.getRegistry().isBeanNameInUse(beanClassName)) {  
  43.                             aliases.add(beanClassName);  
  44.                         }  
  45.                     }  
  46.                     if (logger.isDebugEnabled()) {  
  47.                         logger.debug("Neither XML 'id' nor 'name' specified - " +  
  48.                                 "using generated bean name [" + beanName + "]");  
  49.                     }  
  50.                 }  
  51.                 catch (Exception ex) {  
  52.                     error(ex.getMessage(), ele);  
  53.                     return null;  
  54.                 }  
  55.             }  
  56.             String[] aliasesArray = StringUtils.toStringArray(aliases);  
  57.             return new BeanDefinitionHolder(beanDefinition, beanName, aliasesArray);  
  58.         }  
  59.   
  60.         return null;  
  61.     }  


在具体生成BeanDefinition以后。我们举一个对property进行解析的例子来完成对整个BeanDefinition载入过程的分析,还是在类BeanDefinitionParserDelegate的代码中,它对BeanDefinition中的定义一层一层地进行解析,比如从属性元素集合到具体的每一个属性元素,然后才是对具体的属性值的处理。根据解析结果,对这些属性值的处理会封装成PropertyValue对象并设置到BeanDefinition对象中去,如以下代码清单所示。 

Java代码  收藏代码
  1. /** 
  2.  * 这里对指定bean元素的property子元素集合进行解析。 
  3.  */  
  4. public void parsePropertyElements(Element beanEle, BeanDefinition bd) {  
  5.     //遍历所有bean元素下定义的property元素  
  6.     NodeList nl = beanEle.getChildNodes();  
  7.     for (int i = 0; i < nl.getLength(); i++) {  
  8.         Node node = nl.item(i);  
  9.         if (node instanceof Element && DomUtils.nodeNameEquals(node, PROPERTY_ELEMENT)) {  
  10.             //在判断是property元素后对该property元素进行解析的过程  
  11.             parsePropertyElement((Element) node, bd);  
  12.         }  
  13.     }  
  14. }  
  15. public void parsePropertyElement(Element ele, BeanDefinition bd) {  
  16.     //这里取得property的名字  
  17.     String propertyName = ele.getAttribute(NAME_ATTRIBUTE);  
  18.     if (!StringUtils.hasLength(propertyName)) {  
  19.         error("Tag 'property' must have a 'name' attribute", ele);  
  20.         return;  
  21.     }  
  22.     this.parseState.push(new PropertyEntry(propertyName));  
  23.     try {  
  24.         //如果同一个bean中已经有同名的存在,则不进行解析,直接返回。也就是说,如果在同一个bean中有同名的property设置,那么起作用的只是第一个。  
  25.         if (bd.getPropertyValues().contains(propertyName)) {  
  26.             error("Multiple 'property' definitions for property '" + propertyName + "'", ele);  
  27.             return;  
  28.         }  
  29.         //这里是解析property值的地方,返回的对象对应对Bean定义的property属性设置的解析结果,这个解析结果会封装到PropertyValue对象中,然后设置到BeanDefinitionHolder中去。  
  30.         Object val = parsePropertyValue(ele, bd, propertyName);  
  31.         PropertyValue pv = new PropertyValue(propertyName, val);  
  32.         parseMetaElements(ele, pv);  
  33.         pv.setSource(extractSource(ele));  
  34.         bd.getPropertyValues().addPropertyValue(pv);  
  35.     }  
  36.     finally {  
  37.         this.parseState.pop();  
  38.     }  
  39. }  
  40. /** 
  41.  * 这里取得property元素的值,也许是一个list或其他。 
  42.  */  
  43. public Object parsePropertyValue(Element ele, BeanDefinition bd, String propertyName) {  
  44.     String elementName = (propertyName != null) ?  
  45.                     "<property> element for property '" + propertyName + "'" :  
  46.                     "<constructor-arg> element";  
  47.   
  48.     // Should only have one child element: ref, value, list, etc.  
  49.     NodeList nl = ele.getChildNodes();  
  50.     Element subElement = null;  
  51.     for (int i = 0; i < nl.getLength(); i++) {  
  52.         Node node = nl.item(i);  
  53.         if (node instanceof Element && !DomUtils.nodeNameEquals(node, DESCRIPTION_ELEMENT) &&  
  54.                 !DomUtils.nodeNameEquals(node, META_ELEMENT)) {  
  55.             // Child element is what we're looking for.  
  56.             if (subElement != null) {  
  57.                 error(elementName + " must not contain more than one sub-element", ele);  
  58.             }  
  59.             else {  
  60.                 subElement = (Element) node;  
  61.             }  
  62.         }  
  63.     }  
  64.     //这里判断property的属性,是ref还是value,不允许同时是ref和value。  
  65.     boolean hasRefAttribute = ele.hasAttribute(REF_ATTRIBUTE);  
  66.     boolean hasValueAttribute = ele.hasAttribute(VALUE_ATTRIBUTE);  
  67.     if ((hasRefAttribute && hasValueAttribute) ||  
  68.             ((hasRefAttribute || hasValueAttribute) && subElement != null)) {  
  69.         error(elementName +  
  70.                 " is only allowed to contain either 'ref' attribute OR 'value' attribute OR sub-element", ele);  
  71.     }  
  72.     //如果是ref,创建一个ref的数据对象RuntimeBeanReference,这个对象封装了ref的信息。  
  73.     if (hasRefAttribute) {  
  74.         String refName = ele.getAttribute(REF_ATTRIBUTE);  
  75.         if (!StringUtils.hasText(refName)) {  
  76.             error(elementName + " contains empty 'ref' attribute", ele);  
  77.         }  
  78.         RuntimeBeanReference ref = new RuntimeBeanReference(refName);  
  79.         ref.setSource(extractSource(ele));  
  80.         return ref;  
  81.     } //如果是value,创建一个value的数据对象TypedStringValue ,这个对象封装了value的信息。  
  82.     else if (hasValueAttribute) {  
  83.         TypedStringValue valueHolder = new TypedStringValue(ele.getAttribute(VALUE_ATTRIBUTE));  
  84.         valueHolder.setSource(extractSource(ele));  
  85.         return valueHolder;  
  86.     } //如果还有子元素,触发对子元素的解析  
  87.     else if (subElement != null) {  
  88.         return parsePropertySubElement(subElement, bd);  
  89.     }  
  90.     else {  
  91.         // Neither child element nor "ref" or "value" attribute found.  
  92.         error(elementName + " must specify a ref or value", ele);  
  93.         return null;  
  94.     }  
  95. }  


比如,再往下看,我们看到像List这样的属性配置是怎样被解析的,依然在BeanDefinitionParserDelegate中:返回的是一个List对象,这个List是Spring定义的ManagedList,作为封装List这类配置定义的数据封装,如以下代码清单所示。 

Java代码  收藏代码
  1. public List parseListElement(Element collectionEle, BeanDefinition bd) {  
  2.     String defaultElementType = collectionEle.getAttribute(VALUE_TYPE_ATTRIBUTE);  
  3.     NodeList nl = collectionEle.getChildNodes();  
  4.     ManagedList<Object> target = new ManagedList<Object>(nl.getLength());  
  5.     target.setSource(extractSource(collectionEle));  
  6.     target.setElementTypeName(defaultElementType);  
  7.     target.setMergeEnabled(parseMergeAttribute(collectionEle));  
  8.     //具体的List元素的解析过程。  
  9.     parseCollectionElements(nl, target, bd, defaultElementType);  
  10.     return target;  
  11. }  
  12. protected void parseCollectionElements(  
  13.         NodeList elementNodes, Collection<Object> target, BeanDefinition bd, String defaultElementType) {  
  14.     //遍历所有的元素节点,并判断其类型是否为Element。  
  15.     for (int i = 0; i < elementNodes.getLength(); i++) {  
  16.         Node node = elementNodes.item(i);  
  17.         if (node instanceof Element && !DomUtils.nodeNameEquals(node, DESCRIPTION_ELEMENT)) {  
  18.     //加入到target中去,target是一个ManagedList,同时触发对下一层子元素的解析过程,这是一个递归的调用。  
  19.             target.add(parsePropertySubElement((Element) node, bd, defaultElementType));  
  20.         }  
  21.     }  
  22. }  


经过这样一层一层的解析,我们在XML文件中定义的BeanDefinition就被整个给载入到了IoC容器中,并在容器中建立了数据映射。在IoC容器中建立了对应的数据结构,或者说可以看成是POJO对象在IoC容器中的映像,这些数据结构可以以AbstractBeanDefinition为入口,让IoC容器执行索引、查询和操作。 

在我的感觉中,对核心数据结构的定义和处理应该可以看成是一个软件的核心部分了。所以,这里的BeanDefinition的载入可以说是IoC容器的核心,如果说IoC容器是Spring的核心,那么这些BeanDefinition就是Spring的核心的核心了! 

呵呵,这部分代码数量不小,但如果掌握这条主线,其他都可以举一反三吧,就像我们掌握了操作系统启动的过程,以及在操作系统设计中的核心数据结构像进程数据结构,文件系统数据结构,网络协议数据结构的设计和处理一样,对整个系统的设计原理,包括移植,驱动开发和应用开发,是非常有帮助的!

 

让我们回到牛逼的delegate:

 

public BeanDefinition parseCustomElement(Element ele) {
		return parseCustomElement(ele, null);
	}

	public BeanDefinition parseCustomElement(Element ele, BeanDefinition containingBd) {
		String namespaceUri = getNamespaceURI(ele);
		NamespaceHandler handler = this.readerContext.getNamespaceHandlerResolver().resolve(namespaceUri);
		if (handler == null) {
			error("Unable to locate Spring NamespaceHandler for XML schema namespace [" + namespaceUri + "]", ele);
			return null;
		}
		return handler.parse(ele, new ParserContext(this.readerContext, this, containingBd));
	}

 

public class DefaultNamespaceHandlerResolver implements NamespaceHandlerResolver {

	/**
	 * The location to look for the mapping files. Can be present in multiple JAR files.
	 */
	public static final String DEFAULT_HANDLER_MAPPINGS_LOCATION = "META-INF/spring.handlers";

        public DefaultNamespaceHandlerResolver() {
		this(null, DEFAULT_HANDLER_MAPPINGS_LOCATION);
	}

/**
	 * Locate the {@link NamespaceHandler} for the supplied namespace URI
	 * from the configured mappings.
	 * @param namespaceUri the relevant namespace URI
	 * @return the located {@link NamespaceHandler}, or {@code null} if none found
	 */
	public NamespaceHandler resolve(String namespaceUri) {
		Map<String, Object> handlerMappings = getHandlerMappings();
		Object handlerOrClassName = handlerMappings.get(namespaceUri);
		if (handlerOrClassName == null) {
			return null;
		}
		else if (handlerOrClassName instanceof NamespaceHandler) {
			return (NamespaceHandler) handlerOrClassName;
		}
		else {
			String className = (String) handlerOrClassName;
			try {
				Class<?> handlerClass = ClassUtils.forName(className, this.classLoader);
				if (!NamespaceHandler.class.isAssignableFrom(handlerClass)) {
					throw new FatalBeanException("Class [" + className + "] for namespace [" + namespaceUri +
							"] does not implement the [" + NamespaceHandler.class.getName() + "] interface");
				}
				NamespaceHandler namespaceHandler = (NamespaceHandler) BeanUtils.instantiateClass(handlerClass);
				namespaceHandler.init();
				handlerMappings.put(namespaceUri, namespaceHandler);
				return namespaceHandler;
			}
			catch (ClassNotFoundException ex) {
				throw new FatalBeanException("NamespaceHandler class [" + className + "] for namespace [" +
						namespaceUri + "] not found", ex);
			}
			catch (LinkageError err) {
				throw new FatalBeanException("Invalid NamespaceHandler class [" + className + "] for namespace [" +
						namespaceUri + "]: problem with handler class file or dependent class", err);
			}
		}
	}
}

 我们自定义标签时,需要做的是在META-INF下建两个文件spring.handlers, spring.schemas,然后实现我们自己的NamespaceHandler和BeanDefinitionParser.

 

public class AopNamespaceHandler extends NamespaceHandlerSupport {

	/**
	 * Register the {@link BeanDefinitionParser BeanDefinitionParsers} for the
	 * '{@code config}', '{@code spring-configured}', '{@code aspectj-autoproxy}'
	 * and '{@code scoped-proxy}' tags.
	 */
	public void init() {
		// In 2.0 XSD as well as in 2.1 XSD.
		registerBeanDefinitionParser("config", new ConfigBeanDefinitionParser());
		registerBeanDefinitionParser("aspectj-autoproxy", new AspectJAutoProxyBeanDefinitionParser());
		registerBeanDefinitionDecorator("scoped-proxy", new ScopedProxyBeanDefinitionDecorator());

		// Only in 2.0 XSD: moved to context namespace as of 2.1
		registerBeanDefinitionParser("spring-configured", new SpringConfiguredBeanDefinitionParser());
	}

}

 #AspectJAutoProxyBeanDefinitionParser

public BeanDefinition parse(Element element, ParserContext parserContext) {
		AopNamespaceUtils.registerAspectJAnnotationAutoProxyCreatorIfNecessary(parserContext, element);
		extendBeanDefinition(element, parserContext);
		return null;
	}

# AopNamespaceUtils

public static void registerAspectJAnnotationAutoProxyCreatorIfNecessary(
			ParserContext parserContext, Element sourceElement) {

		BeanDefinition beanDefinition = AopConfigUtils.registerAspectJAnnotationAutoProxyCreatorIfNecessary(
				parserContext.getRegistry(), parserContext.extractSource(sourceElement));
		useClassProxyingIfNecessary(parserContext.getRegistry(), sourceElement);
		registerComponentIfNecessary(beanDefinition, parserContext);
	}

 #AopConfigUtils

public static BeanDefinition registerAspectJAnnotationAutoProxyCreatorIfNecessary(BeanDefinitionRegistry registry, Object source) {
		return registerOrEscalateApcAsRequired(AnnotationAwareAspectJAutoProxyCreator.class, registry, source);
	}

private static BeanDefinition registerOrEscalateApcAsRequired(Class cls, BeanDefinitionRegistry registry, Object source) {
		Assert.notNull(registry, "BeanDefinitionRegistry must not be null");
		if (registry.containsBeanDefinition(AUTO_PROXY_CREATOR_BEAN_NAME)) {
			BeanDefinition apcDefinition = registry.getBeanDefinition(AUTO_PROXY_CREATOR_BEAN_NAME);
			if (!cls.getName().equals(apcDefinition.getBeanClassName())) {
				int currentPriority = findPriorityForClass(apcDefinition.getBeanClassName());
				int requiredPriority = findPriorityForClass(cls);
				if (currentPriority < requiredPriority) {
					apcDefinition.setBeanClassName(cls.getName());
				}
			}
			return null;
		}
		RootBeanDefinition beanDefinition = new RootBeanDefinition(cls);
		beanDefinition.setSource(source);
		beanDefinition.getPropertyValues().add("order", Ordered.HIGHEST_PRECEDENCE);
		beanDefinition.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
                // 看这里!
		registry.registerBeanDefinition(AUTO_PROXY_CREATOR_BEAN_NAME, beanDefinition);
		return beanDefinition;
	}

 另外,基于注解的配置,

<context:component-scan base-package="com.itlong.whatsmars.spring"/>

 处理过程参见ComponentScanBeanDefinitionParser,

public BeanDefinition parse(Element element, ParserContext parserContext) {
		String[] basePackages = StringUtils.tokenizeToStringArray(element.getAttribute(BASE_PACKAGE_ATTRIBUTE),
				ConfigurableApplicationContext.CONFIG_LOCATION_DELIMITERS);

		// Actually scan for bean definitions and register them.
		ClassPathBeanDefinitionScanner scanner = configureScanner(parserContext, element);
		Set<BeanDefinitionHolder> beanDefinitions = scanner.doScan(basePackages);
		registerComponents(parserContext.getReaderContext(), beanDefinitions, element);

		return null;
	}

 

分享到:
评论
1 楼 IXHONG 2016-05-09  
互相注入有没有问题得看采用的何种注入方式

相关推荐

    欧姆龙NJ PLC与多品牌总线设备控制程序详解及应用实例

    内容概要:本文详细介绍了欧姆龙NJ系列PLC与多个品牌总线设备(如汇川伺服、雷赛步进控制器、SMC电缸等)的控制程序及其配置方法。重点讨论了PDO映射、参数配置、单位转换、故障排查等方面的实际经验和常见问题。文中提供了具体的代码示例,帮助读者理解和掌握这些复杂系统的调试技巧。此外,还特别强调了不同品牌设备之间的兼容性和注意事项,以及如何避免常见的配置错误。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要进行PLC与总线设备集成工作的专业人士。 使用场景及目标:适用于需要将欧姆龙NJ PLC与其他品牌总线设备集成在一起的应用场景,如工厂自动化生产线、机器人控制等。主要目标是提高系统的可靠性和效率,减少调试时间和成本。 其他说明:文章不仅提供了理论知识,还包括大量来自实际项目的实践经验,有助于读者更好地应对现实中的挑战。建议读者在实践中不断积累经验,逐步掌握各种设备的特点和最佳实践。

    数字化企业转型大数据解决方案.pptx

    数字化企业转型大数据解决方案.pptx

    基于MATLAB的多智能体一致性算法在电力系统分布式经济调度中的应用

    内容概要:本文详细介绍了利用MATLAB实现多智能体系统一致性算法在电力系统分布式经济调度中的应用。文中通过具体的MATLAB代码展示了如何将发电机组和柔性负荷视为智能体,通过局部通信和协商达成全局最优调度。核心算法通过迭代更新增量成本和增量效益,使各个节点在无中央指挥的情况下自行调整功率,最终实现经济最优分配。此外,文章还讨论了通信拓扑对收敛速度的影响以及一些工程优化技巧,如稀疏矩阵存储和自适应参数调整。 适合人群:从事电力系统调度、分布式控制系统设计的研究人员和技术人员,尤其是对多智能体系统和MATLAB编程有一定了解的人群。 使用场景及目标:适用于希望提高电力系统调度效率、降低成本并增强系统鲁棒性的应用场景。主要目标是在分布式环境下实现快速、稳定的经济调度,同时减少通信量和计算资源消耗。 其他说明:文章提供了详细的代码示例和测试结果,展示了算法的实际性能和优势。对于进一步研究和实际应用具有重要参考价值。

    获取虎牙直播流地址的油猴脚本,可以直接使用VLC等播放器打开地址播放

    获取虎牙直播流地址的油猴脚本,可以直接使用VLC等播放器打开地址播放。

    电力系统中基于MATLAB的价格型需求响应与电价弹性矩阵优化

    内容概要:本文详细介绍了如何利用MATLAB进行价格型需求响应的研究,特别是电价弹性矩阵的构建与优化。文章首先解释了电价弹性矩阵的概念及其重要性,接着展示了如何通过MATLAB代码实现弹性矩阵的初始化、负荷变化量的计算以及优化方法。文中还讨论了如何通过非线性约束和目标函数最小化峰谷差,确保用户用电舒适度的同时实现负荷的有效调节。此外,文章提供了具体的代码实例,包括原始负荷曲线与优化后负荷曲线的对比图,以及基于历史数据的参数优化方法。 适合人群:从事电力系统优化、能源管理及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解并掌握价格型需求响应机制的专业人士,旨在帮助他们更好地理解和应用电价弹性矩阵,优化电力系统的负荷分布,提高能源利用效率。 其他说明:文章强调了实际应用中的注意事项,如弹性矩阵的动态校准和用户价格敏感度的滞后效应,提供了实用的技术细节和实践经验。

    CSP-J 2021 初赛真题.pdf

    CSP-J 2021 初赛真题.pdf

    基于麻雀优化算法SSA与LSTM结合的MATLAB时间序列单输入单输出预测模型

    内容概要:本文详细介绍了如何利用麻雀优化算法(SSA)与长短期记忆网络(LSTM)相结合,在MATLAB环境中构建一个用于时间序列单输入单输出预测的模型。首先简述了SSA和LSTM的基本原理,接着逐步讲解了从数据准备、预处理、模型构建、参数优化到最后的预测与结果可视化的完整流程。文中提供了详细的MATLAB代码示例,确保读者能够轻松复现实验。此外,还讨论了一些关键参数的选择方法及其对模型性能的影响。 适合人群:对时间序列预测感兴趣的科研人员、研究生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要对单变量时间序列数据进行高精度预测的应用场合,如金融、能源等领域。通过本篇文章的学习,读者将掌握如何使用MATLAB实现SSA优化LSTM模型的具体步骤和技术要点。 其他说明:为了提高模型的泛化能力,文中特别强调了数据预处理的重要性,并给出了具体的实现方式。同时,针对可能出现的问题,如过拟合、梯度爆炸等,也提供了一些建议性的解决方案。

    西门子S7-1200 PLC与施耐德变频器Modbus通讯实现及调试技巧

    内容概要:本文详细介绍了西门子S7-1200 PLC与施耐德ATV310/312变频器通过Modbus RTU进行通讯的具体实现步骤和调试技巧。主要内容涵盖硬件接线、通讯参数配置、控制启停、设定频率、读取运行参数的方法以及常见的调试问题及其解决方案。文中提供了具体的代码示例,帮助读者理解和实施通讯程序。此外,还强调了注意事项,如地址偏移量、数据格式转换和超时匹配等。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要将西门子PLC与施耐德变频器进行集成的工作人员。 使用场景及目标:适用于需要通过Modbus RTU协议实现PLC与变频器通讯的工程项目。目标是确保通讯稳定可靠,掌握解决常见问题的方法,提高调试效率。 其他说明:文中提到的实际案例和调试经验有助于读者避免常见错误,快速定位并解决问题。建议读者在实践中结合提供的代码示例和调试工具进行操作。

    Scala语言思维导图

    本文详细介绍了Scala语言的基础知识和特性。Scala是一种运行在JVM上的编程语言,兼具面向对象和函数式编程的特点,适合大数据处理。其环境配置需注意Java版本和路径问题。语言基础涵盖注释、变量、数据类型、运算符和流程控制。函数特性包括高阶函数、柯里化、闭包、尾递归等。面向对象方面,Scala支持继承、抽象类、特质等,并通过包、类和对象实现代码组织和管理,同时提供了单例对象和伴生对象的概念。

    Comsol仿真探索石墨烯-金属强耦合拉比分裂现象及其应用

    内容概要:本文详细探讨了石墨烯-金属强耦合拉比分裂现象的研究,主要借助Comsol多物理场仿真软件进行模拟。文章首先介绍了拉比分裂的基本概念,即当石墨烯与金属相互靠近时,原本单一的共振模式会分裂成两个,这种现象背后的电磁学和量子力学原理对于开发新型光电器件、高速通信设备等意义重大。接着阐述了Comsol在研究中的重要作用,包括构建石墨烯-金属相互作用模型、设置材料属性、定义边界条件、划分网格以及求解模型的具体步骤。此外,还展示了具体的建模示例代码,并对模拟结果进行了深入分析,解释了拉比分裂现象的形成机理。最后强调了该研究对未来技术创新的重要价值。 适合人群:从事物理学、材料科学、光电工程等领域研究的专业人士,尤其是对石墨烯-金属强耦合感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解石墨烯-金属强耦合拉比分裂现象的研究人员,旨在帮助他们掌握Comsol仿真工具的应用技巧,提高研究效率,推动相关领域的创新发展。 其他说明:文中提供的代码片段和建模思路可供读者参考实践,但需要注意实际应用时需根据具体情况调整参数配置。

    嵌入式电机控制中FPGA与Nios II结合的Verilog实现及优化技巧

    内容概要:本文详细介绍了基于FPGA的电机控制系统的设计与实现,重点探讨了Verilog和Nios II软核相结合的方式。具体来说,编码器模块利用Verilog实现了高精度的四倍频计数,解决了AB相信号的跳变问题;坐标变换部分则由Nios II软核负责,通过C语言实现Clarke变换和Park变换,提高了计算效率;SVPWM生成模块采用了Verilog硬件加速,优化了调制波的生成时间和波形质量。此外,文章还讨论了Nios II和Verilog之间的高效交互方式,如自定义指令和DMA传输,以及中断处理机制,确保系统的实时性和稳定性。文中提到的一些优化技巧,如定点数运算、查表法、流水线设计等,进一步提升了系统的性能。 适合人群:具有一定FPGA和嵌入式开发经验的研发人员,尤其是对电机控制感兴趣的工程师。 使用场景及目标:适用于需要高性能、低延迟的电机控制应用场景,如工业自动化、机器人、无人机等领域。目标是帮助读者掌握FPGA与Nios II结合的电机控制方法,提高系统的实时性和可靠性。 其他说明:文章提供了详细的代码片段和优化建议,有助于读者理解和实践。同时,文中提及了一些常见的调试问题及其解决方案,如符号位处理不当导致的电机反转、数据溢出等问题,提醒读者在实际项目中加以注意。

    ### 【嵌入式开发】基于Qt的ATK-DLRK3568实战指南:从入门到项目实战题:嵌

    内容概要:本文档《ATK-DLRK3568嵌入式Qt开发实战V1.2》是正点原子出品的一份面向初学者的嵌入式Qt开发指南,主要内容涵盖嵌入式Linux环境下Qt的安装配置、C++基础、Qt基础、多线程编程、网络编程、多媒体开发、数据库操作以及项目实战案例。文档从最简单的“Hello World”程序开始,逐步引导读者熟悉Qt开发环境的搭建、常用控件的使用、信号与槽机制、UI设计、数据处理等关键技术点。此外,文档还提供了详细的项目实战案例,如车牌识别系统的开发,帮助读者将理论知识应用于实际项目中。 适合人群:具备一定Linux和C++基础,希望快速入门嵌入式Qt开发的初学者或有一定开发经验的研发人员。 使用场景及目标: 1. **环境搭建**:学习如何在Ubuntu环境下搭建Qt开发环境,包括安装必要的工具和库。 2. **基础知识**:掌握C++面向对象编程、Qt基础控件的使用、信号与槽机制等核心概念。 3. **高级功能**:理解多线程编程、网络通信、多媒体处理、数据库操作等高级功能的实现方法。 4. **项目实战**:通过具体的项目案例(如车牌识别系统),巩固

    【人形机器人领域】宇树科技人形机器人技术实力与市场表现分析:科技创新与市场炒作的探讨

    内容概要:文章深入探讨了宇树科技人形机器人的技术实力、市场表现及未来前景,揭示其背后是科技创新还是市场炒作。宇树科技,成立于2016年,由90后创业者王兴兴创办,从四足机器人(如Laikago、AlienGo、A1)成功跨越到人形机器人(如H1和G1)。H1具有出色的运动能力和高精度导航技术,G1则专注于娱乐陪伴场景,具备模拟人手操作的能力。市场方面,宇树科技人形机器人因春晚表演而走红,但目前仅限于“极客型”用户购买,二手市场租赁价格高昂。文章认为,宇树科技的成功既源于技术突破,也离不开市场炒作的影响。未来,宇树科技将在工业、服务业、娱乐等多个领域拓展应用,但仍需克服成本、稳定性和安全等方面的挑战。 适合人群:对人工智能和机器人技术感兴趣的科技爱好者、投资者以及相关行业的从业者。 使用场景及目标:①了解宇树科技人形机器人的技术特点和发展历程;②分析其市场表现及未来应用前景;③探讨科技创新与市场炒作之间的关系。 阅读建议:本文详细介绍了宇树科技人形机器人的技术细节和市场情况,读者应关注其技术创新点,同时理性看待市场炒作现象,思考人形机器人的实际应用价值和发展潜力。

    C#3-的核心代码以及练习题相关

    C#3-的核心代码以及练习题相关

    MATLAB中基于麻雀搜索算法优化SVM分类的红酒数据集实现与解析

    内容概要:本文详细介绍了一种将麻雀搜索算法(SSA)用于优化支持向量机(SVM)分类的方法,并以红酒数据集为例进行了具体实现。首先介绍了数据预处理步骤,包括从Excel读取数据并进行特征和标签的分离。接着阐述了适应度函数的设计,采用五折交叉验证计算准确率作为评价标准。然后深入探讨了麻雀算法的核心迭代过程,包括参数初始化、种群更新规则以及如何通过指数衰减和随机扰动来提高搜索效率。此外,文中还提到了一些实用技巧,如保存最优参数以避免重复计算、利用混淆矩阵可视化分类结果等。最后给出了完整的代码框架及其在GitHub上的开源地址。 适合人群:具有一定MATLAB编程基础的研究人员和技术爱好者,尤其是对机器学习算法感兴趣的人士。 使用场景及目标:适用于需要解决多分类问题的数据科学家或工程师,旨在提供一种高效且易于使用的SVM参数优化方法,帮助用户获得更高的分类准确性。 其他说明:该方法不仅限于红酒数据集,在其他类似的数据集中同样适用。用户只需确保数据格式正确即可轻松替换数据源。

    MATLAB/Simulink中四分之一车被动悬架双质量模型的构建与分析

    内容概要:本文详细介绍了如何在MATLAB/Simulink环境中搭建四分之一车被动悬架双质量(二自由度)模型。该模型主要用于研究车辆悬架系统在垂直方向上的动态特性,特别是针对路面不平度引起的车轮和车身振动。文中不仅提供了具体的建模步骤,包括输入模块、模型主体搭建和输出模块的设计,还展示了如何通过仿真分析来评估悬架性能,如乘坐舒适性和轮胎接地性。此外,文章还讨论了一些常见的建模技巧和注意事项,如选择合适的求解器、处理代数环等问题。 适合人群:从事汽车动力学研究的科研人员、高校学生以及对车辆悬架系统感兴趣的工程师。 使用场景及目标:①用于教学目的,帮助学生理解车辆悬架系统的理论知识;②用于科研实验,验证不同的悬架设计方案;③用于工业应用,优化实际车辆的悬架系统设计。 其他说明:本文提供的模型基于MATLAB 2016b及以上版本,确保读者能够顺利重现所有步骤并获得预期结果。同时,文中附带了大量的代码片段和具体的操作指南,便于读者快速上手。

    COMSOL中光子晶体板谷态特性的建模与仿真方法

    内容概要:本文详细介绍了如何使用COMSOL软件进行光子晶体板谷态特性的建模与仿真。首先,定义了晶格常数和其他关键参数,如六边形蜂窝结构的创建、材料属性的设定以及周期性边界的配置。接下来,重点讲解了网格剖分的方法,强调了自适应网格和边界层细化的重要性。随后,讨论了如何通过参数扫描和频域分析来探索谷态特征,特别是在布里渊区高对称点附近观察到的能量带隙和涡旋结构。最后,提供了关于仿真收敛性和优化技巧的建议,确保结果的可靠性和准确性。 适合人群:从事光子学、电磁学及相关领域的研究人员和技术人员,尤其是对拓扑光子学感兴趣的学者。 使用场景及目标:适用于希望深入了解光子晶体板谷态特性的科研工作者,旨在帮助他们掌握COMSOL的具体应用方法,从而更好地进行相关实验和理论研究。 其他说明:文中不仅提供了详细的代码示例,还穿插了许多形象生动的比喻,使复杂的物理概念变得通俗易懂。同时,强调了仿真过程中需要注意的技术细节,如网格划分、边界条件设置等,有助于避免常见错误并提高仿真的成功率。

    微纳光学中金纳米球米氏散射的FDTD仿真及实验验证

    内容概要:本文详细介绍了利用有限差分时域法(FDTD)对金纳米球进行米氏散射仿真的全过程。首先,通过Python脚本设置了仿真环境,包括网格精度、材料参数、光源配置等。接着,展示了如何通过近场积分计算散射截面和吸收截面,并进行了远场角分布的仿真。文中还讨论了常见错误及其解决方法,如网格精度不足、边界条件不当等问题。最终,将仿真结果与米氏解析解进行了对比验证,确保了仿真的准确性。 适合人群:从事微纳光学研究的科研人员、研究生以及相关领域的工程师。 使用场景及目标:适用于需要精确模拟纳米颗粒与电磁波相互作用的研究项目,旨在提高仿真精度并验证理论模型。通过本文的学习,可以掌握FDTD仿真的具体实施步骤和技术要点。 其他说明:本文不仅提供了详细的代码示例,还分享了许多实践经验,帮助读者避免常见的仿真陷阱。同时强调了参数选择的重要性,特别是在纳米尺度下,每一个参数都需要精心调整以获得准确的结果。

    基数.txt

    基数

    2ddddddddddddddddddddddddddd

    2ddddddddddddddddddddddddddd

Global site tag (gtag.js) - Google Analytics