`

闲扯kafka mq

阅读更多

本文主要讲解关于kafka mq的设计思想及个人理解。关于kafka的详细信息,大家可以参考官网的文献http://kafka.apache.org/documentation.html这是一篇相当不错的文章,值得仔细研读。

 

第一个问题:消息队列(Message Queue)是干嘛用的?

首先,要对消息队列有一个基本的理解。不少人虽然在用消息队列,却并没有搞清楚消息队列是干嘛的。

有人会回答,消息队列就是为了分发消息用的。这当然没错,废话总是真理嘛。那么,消息队列是用来提高性能,加速消息传输的吗?显然不是,消息队列虽然提供了数据上的冗余,但它不是一种缓存。如果你想加速,直接在把生产者与消费者合在一起写,中间自己加一个全内存的queue,没有了持久化,没有了网络传输,岂不更快。有人说,消息队列,就是一个数据源,作为下一级输入的数据源,存放中间结果用的。这当然也没错,但是如果纯作存放中间结果用,你为什么不直接用数据库,或者用redis,说不定性能还更佳。
在我看来,对消息队列最好的诠释,还是之前在看active mq文档时看到的那句:"fire and forget"。说中文,两个字:“解耦”。它实现了生产者与消费者的有效解耦,降低了系统复杂性。作为一个生产者,它主要关心的应该就是自己的生产工作,它不应该关心自己生产的东西,到底被谁消费,如何消费。它应该就是简单的把生产好的东西,往一个仓库一放(即fire),然后就可以不管了(forget),毫无心理负担。至于后面的事,消息如何交付给消费者,这种交付方式是不是会丢失消息之类的可靠性问题一概不管(这也就是为什么消息队列不仅是一个中间结果存放区的原因)。这个作为中间仓库,负责与消费者打交道,同时保证后续交付可靠性的角色,就是消息队列来担当的。
这里打一个不太和谐的比喻。就好比约炮,开完一炮之后,就转身就走,头都不回,很潇洒,fire and forget。至于后续的事,是不是怀孕了,要奶孩子了,抚养成人之类的问题,producer可以一概不管,由消息队列成功接盘。所以,这里的producer有点类似隔壁老王,而消息队列,则无私担当了冤大头这个伟大角色。

 

神奇的kafka

相对于传统的jms系统,kafka的设计是相当激进的。传统jms之于kafka,有点类似于mongodb之于mysql,走的是粗犷路线,从一开始的设计上就是追求分布式,高可用与并发性能去的。跟我们老大讨论时,他也提到,active mq是为实现jms去的,所以搞得会过于复杂,而kafka mq根本就不去支持jms,没有约束。
先贴一段,官网上的原话:

The Kafka cluster retains all published messages—whether or not they have been consumed—for a configurable period of time. For example if the log retention is set to two days, then for the two days after a message is published it is available for consumption, after which it will be discarded to free up space. Kafka's performance is effectively constant with respect to data size so retaining lots of data is not a problem.

kafka集群会保存所有发布的消息,无论该消息,是否已经确认被消费者所接收。所有这些消息,是作为log被保存的。 消息存起来,好几天后才删,这一点就很神奇,大部份消息队列在确认consumer已接收之后,很快就会把消息删除(即便是持久化保存的消息)。而更神奇的是,kafka卡的性能基本不会因持久化的信息量的增长而变差,基本为一个常量。
其实这跟kafka的log(即持久化的消息)的存储方式有很大关系,说白了,kafka的log是以数据文件配合索引文件来完成查询的(没错,对kafka的一条消息发送,其实就是一次consumer的一次查询操作),所以每次对通过指定的offset对消息的读取,基本都只需要恒定次数的磁头寻道次数就可以完成。

In fact the only metadata retained on a per-consumer basis is the position of the consumer in the log, called the "offset". This offset is controlled by the consumer: normally a consumer will advance its offset linearly as it reads messages, but in fact the position is controlled by the consumer and it can consume messages in any order it likes. For example a consumer can reset to an older offset to reprocess.

以active mq为例的消息队列,其订阅发布模式,都可以认为是有状态的。消息队列这一头必须要记录consumer的接收情况,然后才能决定,发送哪一条消息。试想一下,就算我们就实现一个简单的数据结构 queue,我们肯定也要记录当前队列的top的引用是指向哪个节点的。众所周知,有状态的服务,难以做横向扩展(直接加机器)。那么,kafka是如何保证其消息发送(其实就是pull查询)是无状态的呢?
从上面的这段官方的英文讲解中可以看出答案,就是kafka这边干脆不记录consumer的具体读取到队列哪个位置的这种状态信息,这个位置信息(也就是offset),交由每个consumer中负责连接kafka的部分自行管理,例如kafka提供的consumer端的client实现就是将这个offset信息定时存到zookeeper上,而kafka本身所做的事,就快跟一个分布式存储系统差不多了。这样的做法也带来了额外的好处,上面文档中所提的最后一句,一个consumer可以根据一个较早的offset进行查找,重新获得某条消息。估计有人要惊了,这算哪门子的好处,我用来作消息队列,又不是数据库,一般看队列头的消息就够了,为什么老要去查找过去的消息?关于这个问题,下文来表。

分布式kafka

从分布这个角度来看,还是那句话,kafka之于active mq,相当于mongodb之于mysql。无论active mq还是mysql,起始都是从单机开始发展起来的,一开始就不是为了分布式而设计,而后再在原来的基本础上再做分布式的处理。所以这样的分布式,总觉得差那么一点味道,不纯正。例如active mq的Master-Slave模式无法做负载均衡,而Broker Cluster却又不是HA(高可靠)的。 回头看kafka,天生为分布式而生。它的分布式是行列式形式的,如下图。



 每个topic的log信息,被分成多个partition分布在不同的broker(kafka实例)上。一般我们可以按照某个key的hash值去分partition,实现路由,具体的路由方式可以自行指定或者实现。然后,每个partition包含多个复本,分散在不同的broker,每个复本同步存储相同的log信息,保证高靠性。每个partition的复本组中有一个选作leader,而其他作follower,典型的行列式分布式布署。唯一让人觉着不痛快的,就是写和读都是走leader的,这样就无法把一些读负载均衡到follower上去。

并行与有序的矛盾

对于消息队列来说,并行与有序是矛盾的。假设,消息队列中存放的消息,是对数据库某表的内容修改操作命令,那么对同一条记录的修改操作命令必须有序到达,不然后面的结果选到,可能造成混乱,结果无意义。还是以active mq为例,满足这样的需求,要怎么办?没有办法,唯一的办法,就是保证一个queue,只有一个consumer在取,如果有多个consumer同时取的话,虽然consumer内部的消息能够保持有序,但是多个consumer之间的消息就无法保证有序了。这样的话,反正你只有一个consumer能取,再怎么分布式也是白搭,无法并行消费。
Kafka做了一定的改进。我们都知道,kafka的log存储是分partition的。而大多数有序需求,并不同要求全局有序。就像上文提到的要求,可能只要保证对同一个id的记录的操作保证有序便可。我们可以按照key(这里就是id值),进行分组,将消息分到不同的partition中去,同一个id的相关纪录,肯定会归到同一个partition中去,而且在partition内部有序。这时就可以认为每一个partition就是一个单独的消息队列,可以为每个partition指定一个consumer。当然,如果为一个partition指定多个consumer又会丢失有序性。虽然不够完美,但相对传统jms,这种并行性的提高,已算是一个不小的进步。
那么如果你要求全局有序呢?抱歉,这种需求,kafka也只能通过指定一个单独的consumer来实现。幸好,一般的应用中很少出现这样的需求。按key分组,基本能满足大多数的需求。

 

终极一问:为什么kafka在consumer确认接收消息之后,还不删除消息,甚至提供consumer利用offset查找较早消息的功能?

我拿这个问题去问过我的几个不太熟悉kafka的逗比朋友,居然让他们折磨了一晚上也没想出来。我觉得为了理解kafka,必须要闹明白这个问题。
第一点,前文已述,kafka的存储方式,是按照数据文件(会按段划分)结合索引文件形成log来完成的,consumer用offset来查找,这种使用方式,注定不允许你对文件中的某条记录做删除操作。试想一下,你删了其中某条消息,你用来查的offset还会是对的吗?你是不是又要完全重新组织文件,想想就好烦。
第二点,就是确实存在consumer去找较老的消息的可能性存在。具体是什么场景呢?还是先上图吧



 这是一个最简单的生产者消费者模型。我们现在看到的消费者是一个完整的个体。消息队列,将消息发送给消费者,消费者反馈说已收到,消息队列就可以删消息了。确实很和谐,而且传统的jms就是这样做的。

但有的时候,消费者的处理并没有那么简单,消费者的处理可能分布式的处理,包含多个处理环节,第一个环节处理了,发送至下一个环节,下一个处理环节位于的可能就是不同的系统,已经是不同的服务器上了的进程了。当你第一个处理环节的节点接确认收到消息后,通知消息队列,已接收。那如果后续环节出现差错呢,比方如后面的传输中在到达终点前发现数据丢失,抑或是某个环节的服务挂掉了,这部份消息传输的可靠信又如何保证?难道你在每个处理节点之间再加具有能持久化功能,能保证消息可靠性的消息队列?这样想想,又是好复杂,好麻烦的样子。
利用kafka,就可以一直向第一个处理环节的节点发送消息,先不用管后续结点,当后续发现消息丢失的情况的下,就可以通过之前的offset,重新去从kafka获取这一条消息,全头重新执行(但是这样,存在有序性的问题)。刚才所述的多个处理环节的场景就是典型的流式计算的场景。这也是为什么storm流式计算框架官方推荐kafka作为其消息来源一个重要原因。
这部份属上个人理解,有要纠错的,或有补允的。欢迎在评论区留言。

最后,明天就是年三十了,祝各位读者老爷们,新年快乐!

20150217 首发于3dobe.com:http://3dobe.com/archives/68/

本站链接接:http://quentinxxz.iteye.com/blog/2186718

 

  • 大小: 55.7 KB
  • 大小: 13 KB
分享到:
评论

相关推荐

    java 所有技术点源码学习大集合 kafka mq redis es boot cloud task 等等学习源码

    java 所有技术点源码学习大集合 kafka mq redis es boot cloud task mybatis shiro Handler dubbo docker async swagger thymeleaf websocket task-quartz mybatis-plus jpa oauth aop ...等等一大堆打包学习源码,需要...

    消息中间件kafka与activemq、rabbitmq、zeromq、rocketmq的比较

    #### Kafka与Activemq、Rabbitmq、ZeroMq、Rocketmq的比较 在现代分布式系统中,消息中间件(Message Queue, MQ)扮演着至关重要的角色,它们用于在分布式组件之间传输消息,帮助解决网络延迟、组件故障等问题,...

    RabbitMQ和Kafka详细笔记以及示例代码

    RabbitMQ和Kafka详细笔记以及示例代码

    golang接受 kafka 日志数据 格式转化后 保存到clickhouse 批量 高速 结构化日志保存

    filebeat服务收集起来并发送到 kafka消息队列 golang服务 从kafka接收日志数据 经过日志格式的清洗与转化后 保存到clickhouse数据库 供检索分析使用 这是一个完整的日志收集循环 适合一个小型分布式或单体服务使用

    5、kafka监控工具Kafka-Eagle介绍及使用

    Kafka 提供了高吞吐量、低延迟的消息传递能力,是大数据领域中重要的消息队列(MQ)解决方案。Kafka-Eagle 是针对 Kafka 集群设计的一款高效、易用的监控工具,旨在提供对 Kafka 的深度监控和管理。 Kafka-Eagle 的...

    kafkatool 连接kafka工具

    **Kafka Tool 连接 Kafka 工具详解** 在大数据处理和实时流处理领域,Apache Kafka 是一个不可或缺的组件,它作为一个分布式的消息中间件,提供高效、可扩展且可靠的发布订阅服务。为了方便管理和操作 Kafka 集群,...

    Kafka管理工具Kafka Tool

    **Kafka Tool:高效管理Apache Kafka集群的利器** Apache Kafka是一个分布式的流处理平台,广泛应用于大数据实时处理、日志聚合、消息系统等多个领域。在Kafka的实际操作中,管理和监控集群是至关重要的任务,而...

    Java视频教程、ActiveMq、Hadoop、多线程、Kafka、WebSocket、SpringBoot、Solr、Shiro、Redis、Mysql

    Java视频教程+ActiveMq+Docker+ElasticSearch+Hadoop+Hibernate+ 多线程+Kafka+MondoDB+Mybatis+WebSocket+SpringCloud+SpringBoot+Solr+Shiro+Redis+Nginx+Mysql;全部是视频教程,收藏不易,给个好评。

    kafka可视化工具--kafkatool

    **Kafka工具详解——Kafkatool** Kafka作为一个分布式流处理平台,广泛应用于大数据实时处理和消息传递。然而,管理Kafka集群和操作其组件(如topics、partitions、offsets等)可能会变得复杂,这时就需要一些可视...

    springboot 基于spring-kafka动态创建kafka消费者

    在Spring Boot应用中,我们可以利用Spring Kafka框架来与Apache Kafka进行集成,实现高效的消息传递。本文将详细探讨如何在Spring Boot项目中基于Spring Kafka动态创建Kafka消费者。 首先,了解Kafka基本概念:...

    StormStorm集成Kafka 从Kafka中读取数据

    本文将深入探讨如何实现Storm与Kafka的集成,重点在于如何从Kafka中读取数据。 **一、整合说明** Apache Storm是一个开源的分布式实时计算系统,它能够持续处理无限的数据流,确保每个事件都得到精确一次(Exactly...

    kafka2种工具 kafkatool-64bit.exe kafka-eagle-bin-1.4.6.tar.gz

    在IT行业中,Kafka是一种广泛使用的分布式流处理平台,它由Apache软件基金会开发,主要用于构建实时数据管道和流应用。本文将围绕标题和描述中提到的两种Kafka工具——kafkatool-64bit.exe和kafka-eagle-bin-1.4.6....

    Kafka简介及使用PHP处理Kafka消息

    MQ/非关系数据库/分… Kafka 的整体架构非常简单,producer、broker(Kafka)和 consumer 都可以有多个。Producer,consumer 实现 Kafka 注册的接口,数据从 producer 发送到 broker,broker 承担一个中间缓存和...

    kafka-java-demo 基于java的kafka生产消费者示例

    【Kafka基础知识】 Kafka是由Apache开发的分布式流处理平台,它主要被设计用来处理实时数据流。在大数据处理领域,Kafka常被用于构建实时数据管道和流应用,能够高效地处理大量的实时数据。 【Java与Kafka的结合】...

    Kafka Tool linux版本,适用于kafka0.11及以上

    **Kafka Tool for Linux: 管理与使用Apache Kafka集群的高效工具** Apache Kafka是一款分布式流处理平台,常用于构建实时数据管道和流应用。Kafka Tool是针对Kafka集群进行管理和操作的一款图形用户界面(GUI)工具...

    Kafka详细课程讲义

    **Kafka详细课程讲义** 本课程主要涵盖了Apache Kafka的核心概念、安装配置、架构解析、API使用以及监控与面试知识点,旨在帮助学习者全面理解并掌握这一强大的分布式流处理平台。 **第 1 章 Kafka 概述** Apache...

    MQ对比:Kafka VS Rocketmq VS Rabbitmq.pdf

    MQ对比:Kafka VS Rocketmq VS Rabbitmq 超详细 ,值的收藏,参考资料

    Kafka技术内幕:图文详解Kafka源码设计与实现+书签.pdf+源码

    《Kafka技术内幕:图文详解Kafka源码设计与实现》是一本深入解析Apache Kafka的专著,旨在帮助读者理解Kafka的核心设计理念、内部机制以及源码实现。这本书结合图文并茂的方式,使得复杂的概念变得更为易懂。同时,...

    kafka安装包-2.13-3.6.2

    **Kafka介绍** Apache Kafka是一款高性能、分布式的消息中间件,由LinkedIn开发并捐献给Apache软件基金会。它最初设计的目标是构建一个实时的数据管道,能够高效地处理大量的数据流,同时支持发布订阅和队列模型,...

    Kafka尚硅谷.rar

    **Kafka概述** Kafka是由LinkedIn开发并贡献给Apache软件基金会的一个开源消息系统,它是一个高性能、可扩展的分布式消息中间件。Kafka最初设计的目标是处理网站活动流数据,但随着时间的发展,它已被广泛应用于...

Global site tag (gtag.js) - Google Analytics