`

MessagePack, Protocol Buffers和Thrift序列化框架原理和比较说明

    博客分类:
  • PHP
阅读更多

http://jimmee.iteye.com/blog/2042420

第1部分 messagepack说明

1.1messagepack的消息编码说明

为什么messagepackjson序列化使用的字节流更少, 可通过图1-1、图1-2有个直观的感觉。

 

 

1- 1 messagepackjson的格式对比1



 

1- 2 messagepackjson的格式对比2

messagepack的具体的消息格式如图1-3所示,messagepack的数据类型主要分类两类:固定长度类型和可变长度类型。



 

1- 3 messagepack的消息格式

messagepack的具体类型信息表示如图1-4所示。

 

 

1- 4 messagepack的类型信息

1.2 messagepack的序列化和反序列化方式

现在msgpack能支持基本的数据类型,支持listmap, 还支持自定义的数据类型。例子1, 序列化和反序列化一个javabean, 只要加上@MessagePackMessage的注解。

 

Java代码 复制代码 收藏代码
  1. /** 
  2.  * 一个用于messagepack测试序列化和反序列的javabean 
  3.  *  
  4.  * @author jimmee 
  5.  */  
  6. @MessagePackMessage   
  7. public class Person {  
  8. /** 编号 */  
  9. public int id;  
  10. /** 名字 */  
  11. public String name;  
  12. /**身高*/  
  13. public double height;  
  14. /** 
  15.  * 默认构造函数 
  16.  */  
  17. public Person() {  
  18. }  
/**
 * 一个用于messagepack测试序列化和反序列的javabean
 * 
 * @author jimmee
 */
@MessagePackMessage 
public class Person {
/** 编号 */
public int id;
/** 名字 */
public String name;
/**身高*/
public double height;
/**
 * 默认构造函数
 */
public Person() {
}

 

 

 

序列化直接调用MessagePackpack方法;反序列化则调用对应的unpack方法。这两个方法,都支持传递序列化和反序列化的数据类型。

1.3 与json的序列化性能对比

如下所示,通过100条数据的序列化和反序列化进行对比。

 

Java代码 复制代码 收藏代码
  1. List<Map> msgs = new ArrayList<Map>();  
  2. for (int i = 0; i < 100; i++) {  
  3. Map msg = new HashMap();  
  4. msg.put(Const.FID, i);  
  5. msg.put(Const.SUBJECT, "subject" + i);  
  6. msg.put(Const.LABEL0, 1);  
  7. msg.put(Const.FROM, "test@163.com");  
  8. msg.put(Const.TO, "test@126.com");  
  9. msg.put(Const.MODIFIED_DATE, new Date().getTime());  
  10. msg.put(Const.RECEIVED_DATE, new Date().getTime());  
  11. msg.put(Const.SENT_DATE, new Date().getTime());  
  12. msgs.add(msg);  
  13.     }  
List<Map> msgs = new ArrayList<Map>();
for (int i = 0; i < 100; i++) {
Map msg = new HashMap();
msg.put(Const.FID, i);
msg.put(Const.SUBJECT, "subject" + i);
msg.put(Const.LABEL0, 1);
msg.put(Const.FROM, "test@163.com");
msg.put(Const.TO, "test@126.com");
msg.put(Const.MODIFIED_DATE, new Date().getTime());
msg.put(Const.RECEIVED_DATE, new Date().getTime());
msg.put(Const.SENT_DATE, new Date().getTime());
msgs.add(msg);
    }

 

 

比较结果如表1-1所示。

1- 1 messagepackjson的性能对比

框架

字节大小(byte

序列化时间(ns

反序列化时间(ns

messagepack

12793

2313335

529458

json

17181

 1338371

1776519

 

可以看出,messagepack的序列化字节数比json小将近30%;序列化时间messagepack差不多是json的两倍;反序列化时间,messagepack只需要json30%的时间。

但是,值得注意的是,虽然messagepack的反序列化时间比较少,但是要真正转换为前端需要的类型参数格式,还需要额外的一些时间。

第2部分 protocol buffers

2.1 protocol buffers的消息编码说明

Protocol Buffers支持的数据类型如下图所示:



  

2- 1 protocol buffers支持的数据类型。

首先对Varint进行说明。Varint 是一种紧凑的表示数字的方法。它用一个或多个字节来示一个数字,值越小的数字使用越少的字节数。这能减少用来表示数字的字节数。

比如对于 int32 类型的数字,一般需要 个 byte 来表示。但是采用 Varint,对于很小的 int32 类型的数字,则可以用 个 byte 来表示。当然,采用 Varint 表示法,大的数字则需要 个 byte 来表示。从统计的角度来说,一般不会所有的消息中的数字都是大数,因此大多数情况下,采用 Varint 后,可以用更少的字节数来表示数字信息。

Varint 中的每个 byte 的最高位 bit 有特殊的含义,如果该位为 1,表示后续的 byte 也是该数字的一部分,如果该位为 0,则结束。其他的 个 bit 都用来表示数字。因此小于 128 的数字都可以用一个 byte 表示。大于 128 的数字,比如 300,会用两个字节来表示:1010 1100 0000 0010

2-2说明了 Google Protocol Buffer 如何解析两个 bytes。注意到最终计算前将两个 byte 的位置相互交换过一次,这是因为 Google Protocol Buffer 字节序采用 little-endian 的方式。



  

2- 2 protocol buffers解析两个字节

消息经过序列化后会成为一个二进制数据流,该流中的数据为一系列的 Key-Value 对,如图2-3所示。



  

2- 3 protocol buffers的消息流

采用这种 Key-Pair 结构无需使用分隔符来分割不同的 Field。对于可选的 Field,如果消息中不存在该 field,那么在最终的 Message Buffer 中就没有该 field,这些特性都有助于节约消息本身的大小。

假设我们生成如下的一个消息Message

 Message.id = 5

 Message.info = “hello”

则最终的 Message Buffer 中有两个 Key-Value 对,一个对应消息中的 id;另一个对应 info

Key 用来标识具体的 field,在解包的时候,Protocol Buffer 根据 Key 就可以知道相应的 Value 应该对应于消息中的哪一个 field

Key 的定义如下:

 (field_number << 3) | wire_type 

可以看到 Key 由两部分组成。第一部分是 field_number。第二部分为 wire_type。表示 Value 的传输类型。

wire type如表2-1所示。

2- 1 wire type说明

Type 

Meaning 

Used For 

Varint 

int32, int64, uint32, uint64, sint32, sint64, bool, enum 

64-bit 

fixed64, sfixed64, double 

Length-delimited 

string, bytes, embedded messages, packed repeated fields 

Start group 

Groups (deprecated) 

End group 

Groups (deprecated) 

32-bit 

fixed32, sfixed32, float 

 

在计算机内,一个负数一般会被表示为一个很大的整数,因为计算机定义负数的符号位为数字的最高位。如果采用 Varint 表示一个负数,那么一定需要 个 byte。为此 Google Protocol Buffer 定义了 sint32sint64 类型,采用 zigzag 编码。

Zigzag 编码用无符号数来表示有符号数字,正数和负数交错,如图2-3所示。使用 zigzag 编码,绝对值小的数字,无论正负都可以采用较少的 byte 来表示,充分利用了 Varint 这种技术。


  

2- 4 ZigZag编码

2.2 protocol buffers的序列化和反序列化

步骤:

创建消息的定义文件.proto

使用protoc工具将proto文件转换为相应语言的源码;

使用类库支持的序列化和反序列化方法进行操作。

 

以同样的数据的操作为例:

1. 定义proto文件messages.ptoto

 

Java代码 复制代码 收藏代码
  1. message MessageMeta {  
  2.   required int32 id = 1;  
  3.   required string subject = 2;    
  4. optional int32 lablel0 = 3;  
  5. required string from = 4;  
  6. required string to = 5;  
  7. optional int64 modifiedDate = 6;  
  8. optional int64 receivedDate = 7;  
  9. optional int64 sentDate = 8;  
  10. }  
message MessageMeta {
  required int32 id = 1;
  required string subject = 2;  
optional int32 lablel0 = 3;
required string from = 4;
required string to = 5;
optional int64 modifiedDate = 6;
optional int64 receivedDate = 7;
optional int64 sentDate = 8;
}

 

 

 

 

Java代码 复制代码 收藏代码
  1. message MessageMetas {  
  2. repeated MessageMeta msg = 1;  
  3. }  
message MessageMetas {
repeated MessageMeta msg = 1;
}

 

 

2. message.proto文件转换为java语言的源码

例如, 执行命令:protoc -I=src --java_out=out src/messages.proto产生Messagesjava文件。

3. 执行序列化和反序列化

 

Java代码 复制代码 收藏代码
  1. MessageMetas.Builder msgsBuilder = MessageMetas.newBuilder();  
  2. for (int i = 0; i < 100; i++) {  
  3. MessageMeta.Builder msgBuilder = MessageMeta.newBuilder();  
  4. msgBuilder.setId(i);  
  5. msgBuilder.setSubject("subject" + i);  
  6. msgBuilder.setLablel0(1);  
  7. msgBuilder.setFrom("test@163.com");  
  8. msgBuilder.setTo("test@126.com");  
  9. msgBuilder.setModifiedDate(new Date().getTime());  
  10. msgBuilder.setReceivedDate(new Date().getTime());  
  11. msgBuilder.setSentDate(new Date().getTime());  
  12. msgsBuilder.addMsg(msgBuilder.build());  
  13. }  
  14. MessageMetas msgs = msgsBuilder.build();  
MessageMetas.Builder msgsBuilder = MessageMetas.newBuilder();
for (int i = 0; i < 100; i++) {
MessageMeta.Builder msgBuilder = MessageMeta.newBuilder();
msgBuilder.setId(i);
msgBuilder.setSubject("subject" + i);
msgBuilder.setLablel0(1);
msgBuilder.setFrom("test@163.com");
msgBuilder.setTo("test@126.com");
msgBuilder.setModifiedDate(new Date().getTime());
msgBuilder.setReceivedDate(new Date().getTime());
msgBuilder.setSentDate(new Date().getTime());
msgsBuilder.addMsg(msgBuilder.build());
}
MessageMetas msgs = msgsBuilder.build();

 

 

之后调用相应的writeTo方法进行序列化, 调用parseFrom进行反序列化。

2.3 与json等的性能对比

2- 2 性能对比表格

框架

字节大小(byte

序列化时间(ns

反序列化时间(ns

messagepack

12793

2313335

529458

protocol buffers

6590

941790

408571

json

17181

 1338371

1776519

 

可以看出,protocol buffers在字节流,序列化时间和反序列化时间方面都明显较优(即空间和时间上都比较好)。

第3部分 thrift

thrift的架构如图3-1所示。图3-1显示了创建serverclientstack。最上面的是IDL,然后生成ClientProcessor。红色的是发送的数据。protocoltransport Thrift运行库的一部分。通过Thrift 你只需要关心服务的定义,而不需要关心protocoltransport

Thrift支持 text 和 binary protocolsbinary protocols要比text protocols,但是有时候 text protocols比较有用(例如:调试的时候)。支持的协议有:

TBinaryProtocol 直接的二进制格式

TCompactProtocol 效率和高压缩编码数据

TDenseProtocoal  和TCompactProtocol相似,但是省略了meta信息,从哪里发送的,增加了receiver。还在实验中,java实现还不可用。

TJSONProtocoal使用JSON

TSImpleJSONProtocoal 只写的protocol使用JSON。适合被脚本语言转化

TDebugProtocoal使用人类可读的text 格式 帮助调试



  

3- 1 thrift架构图

上面的protocol 说明了传送的是什么样的数据Thrift transports 则说明了怎样传送这些数据。支持的transport

TSocket 使用 blocking socket I/O

TFramedTransport 以帧的形式发送,每帧前面是一个长度。要求服务器来non-blocking server

TFileTransport 写到文件

TMemoryTransport 使用内存 I/O java实现中在内部使用了ByteArrayOutputStream

TZlibTransport 压缩 使用zlibjava实现中还不可用

最后,thrift 提供了servers

TSimpleServer 单线程server,使用标准的blocking IO用于测试

TThreadPoolServer多线程server 使用标准的blocking IO

TNonblockingServer  多线程 server使用 non-blocking IO java实现中使用了NIO channels),TFramedTransport必须使用在这个服务器。

一个server只允许定义一个接口服务。这样的话多个接口需要多个server。这样会带来资源的浪费。通常可以通过定义一个组合服务来解决。

3.1 thrift的消息编码说明

1. 支持的数据类型

所有编程语言中都可用的关键类型。

bool 布尔值,真或假

byte 有符号字节

i16  16位有符号整数

i32  32位有符号整数

i64  64位有符号整数

double 64位浮点数

string 与编码无关的文本或二进制字符串

可基于基本类型定义结构体,例如:

 

Java代码 复制代码 收藏代码
  1. struct Example {  
  2. 1:i32 number=10,  
  3. 2:i64 bigNumber,  
  4. 3:double decimals,  
  5. 4:string name="thrifty"  
  6. }  
struct Example {
1:i32 number=10,
2:i64 bigNumber,
3:double decimals,
4:string name="thrifty"
}

 

 

支持的容器有list<type>set<type>Map<type1,type2>

若使用TCompactProtocol,传递的消息形式如图3-2所示:

 

 

3- 2 thriftcompact方式的消息流

在这种方式下,对整数而言,也是采用可变长度的方式进行实现。一个字节,最高位表示是否还有数据,低7位是实际的数据,如图3-3所示, 整数106903的编码, 相比普通的int类型,节省一个字节。



  

3- 3 compact方式对一个整数106903进行编码

3.2thrift的序列化和反序列化方式

步骤:

创建thrift接口定义文件;

thrift的定义文件转换为对应语言的源代码;

选择相应的protocol,进行序列化和反序列化。

仍以同样的数据对象为例子:

定义thrift文件messages.thrift

 

Java代码 复制代码 收藏代码
  1. struct MessageMeta {  
  2.   1:i32 id;  
  3.   2:string subject;    
  4. 3:i32 lablel0;  
  5. 4:string from;  
  6. 5:string to;  
  7. 6:i64 modifiedDate;  
  8. 7:i64 receivedDate;  
  9. 8:i64 sentDate;  
  10. }  
  11.    
  12. struct MessageMetas {  
  13. 1:list<MessageMeta> msgs;  
  14. }  
struct MessageMeta {
  1:i32 id;
  2:string subject;  
3:i32 lablel0;
4:string from;
5:string to;
6:i64 modifiedDate;
7:i64 receivedDate;
8:i64 sentDate;
}
 
struct MessageMetas {
1:list<MessageMeta> msgs;
}

 

 

 

2. 将定义的文件转换成相应的java源码

执行命令:thrift -gen java messages.thrift

3. 执行序列化和反序列化

 

Java代码 复制代码 收藏代码
  1. MessageMetas msgs = new MessageMetas();  
  2. List<MessageMeta> msgList = new ArrayList<MessageMeta>();  
  3. for (int i = 0; i < 100; i++) {  
  4. MessageMeta msg = new MessageMeta();  
  5. msg.setId(i);  
  6. msg.setSubject("subject" + i);  
  7. msg.setLablel0(1);  
  8. msg.setFrom("test@163.com");  
  9. msg.setTo("test@126.com");  
  10. msg.setModifiedDate(new Date().getTime());  
  11. msg.setReceivedDate(new Date().getTime());  
  12. msg.setSentDate(new Date().getTime());  
  13. msgList.add(msg);  
  14. }  
  15. msgs.setMsgs(msgList);  
  16. // 序列化  
  17. ByteArrayOutputStream out = new ByteArrayOutputStream();  
  18. TTransport trans = new TIOStreamTransport(out);  
  19. TBinaryProtocol tp = new TBinaryProtocol(trans);  
  20. msgs.write(tp);  
  21.    
  22. byte [] buf = out.toByteArray();  
  23. // 反序列化  
  24. ByteArrayInputStream in = new ByteArrayInputStream(buf);  
  25. trans = new TIOStreamTransport(in);  
  26. tp = new TBinaryProtocol(trans);  
  27. MessageMetas msgs2 = new MessageMetas();  
  28. msgs2.read(tp);  
MessageMetas msgs = new MessageMetas();
List<MessageMeta> msgList = new ArrayList<MessageMeta>();
for (int i = 0; i < 100; i++) {
MessageMeta msg = new MessageMeta();
msg.setId(i);
msg.setSubject("subject" + i);
msg.setLablel0(1);
msg.setFrom("test@163.com");
msg.setTo("test@126.com");
msg.setModifiedDate(new Date().getTime());
msg.setReceivedDate(new Date().getTime());
msg.setSentDate(new Date().getTime());
msgList.add(msg);
}
msgs.setMsgs(msgList);
// 序列化
ByteArrayOutputStream out = new ByteArrayOutputStream();
TTransport trans = new TIOStreamTransport(out);
TBinaryProtocol tp = new TBinaryProtocol(trans);
msgs.write(tp);
 
byte [] buf = out.toByteArray();
// 反序列化
ByteArrayInputStream in = new ByteArrayInputStream(buf);
trans = new TIOStreamTransport(in);
tp = new TBinaryProtocol(trans);
MessageMetas msgs2 = new MessageMetas();
msgs2.read(tp);

 

 

3.3json等的性能对比

3- 1 性能对比

框架

字节大小(byte

序列化时间(ns

反序列化时间(ns

messagepack

12793

2313335

529458

protocol buffers

6590

941790

408571

thrift

6530

798696

754458

json

17181

 1338371

1776519

 

通过对比,可以发现thrift总的来说,都比较不错。

第4部分 小结

通过对messagepackprotocol buffers以及thrift的分析,主要分析了这些框架的序列化和反序列化部分的内容。实际上messagepackthrift都还有自己的rpc调用框架。

所有的测试都是在本机上进行,基于100条元数据进行测试。可能不同数据,以及不同的规模,测试结果应该会存在差别,https://github.com/eishay/jvm-serializers/wiki/的有比较好的测试结果说明。根据自己的测试,从性能上说,messagepackprotocol buffers以及thrift都比json好(在测试时,发现messagepack序列化的时间稍微多一些)。

从编程语言上来说,messagepackprotocol buffers以及thrift,当然还包括json,都是支持跨语言的通讯的。

从接口定义的灵活性来(或者是否支持动态类型),messagepackprotocol buffers以及thrift较好,后两者都要预先定义schema并相对固定

 

 实际工作中, 一般都采用protocol buffers或者thrift.

 

第5部分 参考资料

1. http://msgpack.org/

2. http://code.google.com/intl/zh-CN/apis/protocolbuffers/docs/overview.html

3. http://jnb.ociweb.com/jnb/jnbJun2009.html

4. http://code.google.com/p/thrift-protobuf-compare/

5. http://www.tbdata.org/archives/1307

6. https://github.com/eishay/jvm-serializers/wiki/

7. http://wiki.apache.org/thrift/

8. http://pypi.python.org/pypi/msgpack-python/

分享到:
评论

相关推荐

    平:有原则且有效的二进制序列化

    5. **Apache Thrift**:另一种跨语言的序列化框架,它不仅提供序列化,还提供了服务接口定义和RPC框架。 6. **MessagePack**:轻量级的二进制序列化格式,比JSON更快更小,适合嵌入式设备和实时系统。 7. **设计...

    cpp-serializers:比较各种C ++数据序列化库(节俭,protobuf等)的基准

    1. **Google Protocol Buffers (protobuf)**:protobuf是Google开发的一种高效的数据序列化协议,支持C++、Java和Python等多种语言。它提供了强大的代码生成工具,可以将定义的.proto文件转换为结构化数据的存取代码...

    20170723-课堂笔记1

    在Java之外,还有许多其他序列化技术,如JSON、Hessian、XML、protobuf、kryo、MsgPack、FST、thrift和protostuff等,每种技术都有其独特的优点和适用场景。例如,protobuf提供了高效、紧凑的二进制编码,kryo提供了...

    c++开源库大全21

    - **MessagePack**:提供JSON类似的二进制序列化库,适合高效数据交换。 - **protobuf (Protocol Buffers)**:Google的数据交换格式,支持C++和其他多种语言。 - **protobuf-c**:C语言的Protocol Buffers实现。 ...

    win7修复本地系统工具

    win7修复本地系统工具

    《自动化专业英语》04-Automatic-Detection-Block(自动检测模块).ppt

    《自动化专业英语》04-Automatic-Detection-Block(自动检测模块).ppt

    《计算机专业英语》chapter12-Intelligent-Transportation.ppt

    《计算机专业英语》chapter12-Intelligent-Transportation.ppt

    西门子S7-1200博图平台下3轴伺服螺丝机程序解析与应用

    内容概要:本文详细介绍了基于西门子S7-1200博图平台的3轴伺服螺丝机程序。该程序使用SCL语言编写,结合KTP700组态和TIA V14及以上版本,实现了对X、Y、Z三个轴的精密控制。文章首先概述了程序的整体架构,强调了其在自动化控制领域的高参考价值。接着深入探讨了关键代码片段,如轴初始化、运动控制以及主程序的设计思路。此外,还展示了如何通过KTP700组态实现人机交互,并分享了一些实用的操作技巧和技术细节,如状态机设计、HMI交互、异常处理等。 适用人群:从事自动化控制系统开发的技术人员,尤其是对西门子PLC编程感兴趣的工程师。 使用场景及目标:适用于希望深入了解西门子S7-1200博图平台及其SCL语言编程特点的学习者;旨在帮助读者掌握3轴伺服系统的具体实现方法,提高实际项目中的编程能力。 其他说明:文中提供的代码示例和设计理念不仅有助于理解和学习,还能直接应用于类似的实际工程项目中。

    MATLAB仿真:非线性滤波器在水下长基线定位(LBL)系统的应用与比较

    内容概要:本文详细探讨了五种非线性滤波器(卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)、粒子滤波(PF)和变维卡尔曼滤波(VDKF))在水下长基线定位(LBL)系统中的应用。通过对每种滤波器的具体实现进行MATLAB代码展示,分析了它们在不同条件下的优缺点。例如,KF适用于线性系统但在非线性环境中失效;EKF通过雅可比矩阵线性化处理非线性问题,但在剧烈机动时表现不佳;UKF利用sigma点处理非线性,精度较高但计算量大;PF采用蒙特卡罗方法,鲁棒性强但计算耗时;VDKF能够动态调整状态维度,适合信标数量变化的场景。 适合人群:从事水下机器人(AUV)导航研究的技术人员、研究生以及对非线性滤波感兴趣的科研工作者。 使用场景及目标:①理解各种非线性滤波器的工作原理及其在水下定位中的具体应用;②评估不同滤波器在特定条件下的性能,以便为实际项目选择合适的滤波器;③掌握MATLAB实现非线性滤波器的方法和技术。 其他说明:文中提供了详细的MATLAB代码片段,帮助读者更好地理解和实现这些滤波器。此外,还讨论了数值稳定性问题和一些实用技巧,如Cholesky分解失败的处理方法。

    VMware-workstation-full-14.1.3-9474260

    VMware-workstation-full-14.1.3-9474260

    DeepSeek系列-提示词工程和落地场景.pdf

    DeepSeek系列-提示词工程和落地场景.pdf

    javaSE阶段面试题

    javaSE阶段面试题

    《综合布线施工技术》第5章-综合布线工程测试.ppt

    《综合布线施工技术》第5章-综合布线工程测试.ppt

    安川机器人NX100使用说明书.pdf

    安川机器人NX100使用说明书.pdf

    S7-1200 PLC改造M7120平面磨床电气控制系统:IO分配、梯形图设计及组态画面实现

    内容概要:本文详细介绍了将M7120型平面磨床的传统继电器控制系统升级为基于西门子S7-1200 PLC的自动化控制系统的过程。主要内容涵盖IO分配、梯形图设计和组态画面实现。通过合理的IO分配,确保了系统的可靠性和可维护性;梯形图设计实现了主控制逻辑、砂轮升降控制和报警逻辑等功能;组态画面则提供了友好的人机交互界面,便于操作和监控。此次改造显著提高了设备的自动化水平、运行效率和可靠性,降低了维护成本。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和控制系统设计的专业人士。 使用场景及目标:适用于需要进行老旧设备升级改造的企业,旨在提高生产设备的自动化水平和可靠性,降低故障率和维护成本。具体应用场景包括但不限于金属加工行业中的平面磨床等设备的控制系统改造。 其他说明:文中还分享了一些实际调试中的经验和技巧,如急停逻辑的设计、信号抖动的处理方法等,有助于读者在类似项目中借鉴和应用。

    chromedriver-linux64-136.0.7103.48.zip

    chromedriver-linux64-136.0.7103.48.zip

    IMG_20250421_180507.jpg

    IMG_20250421_180507.jpg

    《网络营销策划实务》项目一-网络营销策划认知.ppt

    《网络营销策划实务》项目一-网络营销策划认知.ppt

    Lianantech_Security-Vulnerabil_1744433229.zip

    Lianantech_Security-Vulnerabil_1744433229

    MybatisCodeHelperNew2019.1-2023.1-3.4.1.zip

    MybatisCodeHelperNew2019.1-2023.1-3.4.1

Global site tag (gtag.js) - Google Analytics