由于spark提供的hbaseTest是scala版本,并没有提供java版。我将scala版本改为java版本,并根据数据做了些计算操作。
程序目的:查询出hbase满足条件的用户,统计各个等级个数。
代码如下,注释已经写详细:
package com.sdyc.ndspark.sys;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.util.Base64;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.Serializable;
import java.util.List;
/**
* <pre>
*
* spark hbase 测试
*
* Created with IntelliJ IDEA.
* User: zhangdonghao
* Date: 14-1-26
* Time: 上午9:24
* To change this template use File | Settings | File Templates.
* </pre>
*
* @author zhangdonghao
*/
public class HbaseTest implements Serializable {
public Log log = LogFactory.getLog(HbaseTest.class);
/**
* 将scan编码,该方法copy自 org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil
*
* @param scan
* @return
* @throws IOException
*/
static String convertScanToString(Scan scan) throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(out);
scan.write(dos);
return Base64.encodeBytes(out.toByteArray());
}
public void start() {
//初始化sparkContext,这里必须在jars参数里面放上Hbase的jar,
// 否则会报unread block data异常
JavaSparkContext sc = new JavaSparkContext("spark://nowledgedata-n3:7077", "hbaseTest",
"/home/hadoop/software/spark-0.8.1",
new String[]{"target/ndspark.jar", "target\\dependency\\hbase-0.94.6.jar"});
//使用HBaseConfiguration.create()生成Configuration
// 必须在项目classpath下放上hadoop以及hbase的配置文件。
Configuration conf = HBaseConfiguration.create();
//设置查询条件,这里值返回用户的等级
Scan scan = new Scan();
scan.setStartRow(Bytes.toBytes("195861-1035177490"));
scan.setStopRow(Bytes.toBytes("195861-1072173147"));
scan.addFamily(Bytes.toBytes("info"));
scan.addColumn(Bytes.toBytes("info"), Bytes.toBytes("levelCode"));
try {
//需要读取的hbase表名
String tableName = "usertable";
conf.set(TableInputFormat.INPUT_TABLE, tableName);
conf.set(TableInputFormat.SCAN, convertScanToString(scan));
//获得hbase查询结果Result
JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD = sc.newAPIHadoopRDD(conf,
TableInputFormat.class, ImmutableBytesWritable.class,
Result.class);
//从result中取出用户的等级,并且每一个算一次
JavaPairRDD<Integer, Integer> levels = hBaseRDD.map(
new PairFunction<Tuple2<ImmutableBytesWritable, Result>, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(
Tuple2<ImmutableBytesWritable, Result> immutableBytesWritableResultTuple2)
throws Exception {
byte[] o = immutableBytesWritableResultTuple2._2().getValue(
Bytes.toBytes("info"), Bytes.toBytes("levelCode"));
if (o != null) {
return new Tuple2<Integer, Integer>(Bytes.toInt(o), 1);
}
return null;
}
});
//数据累加
JavaPairRDD<Integer, Integer> counts = levels.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
//打印出最终结果
List<Tuple2<Integer, Integer>> output = counts.collect();
for (Tuple2 tuple : output) {
System.out.println(tuple._1 + ": " + tuple._2);
}
} catch (Exception e) {
log.warn(e);
}
}
/**
* spark如果计算没写在main里面,实现的类必须继承Serializable接口,<br>
* </>否则会报 Task not serializable: java.io.NotSerializableException 异常
*/
public static void main(String[] args) throws InterruptedException {
new HbaseTest().start();
System.exit(0);
}
}
运行结果如下:
0: 28528
11: 708
4: 28656
2: 36315
6: 23848
8: 19802
10: 6913
9: 15988
3: 31950
1: 38872
7: 21600
5: 27190
12: 17
分享到:
相关推荐
python学习资源
jfinal-undertow 用于开发、部署由 jfinal 开发的 web 项目
基于Andorid的音乐播放器项目设计(国外开源)实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
python学习资源
python学习资源
python学习一些项目和资源
【毕业设计】java-springboot+vue家具销售平台实现源码(完整前后端+mysql+说明文档+LunW).zip
HTML+CSS+JavaScarip开发的前端网页源代码
python学习资源
【毕业设计】java-springboot-vue健身房信息管理系统源码(完整前后端+mysql+说明文档+LunW).zip
成绩管理系统C/Go。大学生期末小作业,指针实现,C语言版本(ANSI C)和Go语言版本
1_基于大数据的智能菜品个性化推荐与点餐系统的设计与实现.docx
【毕业设计】java-springboot-vue交流互动平台实现源码(完整前后端+mysql+说明文档+LunW).zip
内容概要:本文主要探讨了在高并发情况下如何设计并优化火车票秒杀系统,确保系统的高性能与稳定性。通过对比分析三种库存管理模式(下单减库存、支付减库存、预扣库存),强调了预扣库存结合本地缓存及远程Redis统一库存的优势,同时介绍了如何利用Nginx的加权轮询策略、MQ消息队列异步处理等方式降低系统压力,保障交易完整性和数据一致性,防止超卖现象。 适用人群:具有一定互联网应用开发经验的研发人员和技术管理人员。 使用场景及目标:适用于电商、票务等行业需要处理大量瞬时并发请求的业务场景。其目标在于通过合理的架构规划,实现在高峰期保持平台的稳定运行,保证用户体验的同时最大化销售额。 其他说明:文中提及的技术细节如Epoll I/O多路复用模型以及分布式系统中的容错措施等内容,对于深入理解大规模并发系统的构建有着重要指导意义。
基于 OpenCV 和 PyTorch 的深度车牌识别
【毕业设计-java】springboot-vue教学资料管理系统实现源码(完整前后端+mysql+说明文档+LunW).zip
此数据集包含有关出租车行程的详细信息,包括乘客人数、行程距离、付款类型、车费金额和行程时长。它可用于各种数据分析和机器学习应用程序,例如票价预测和乘车模式分析。
把代码放到Word中,通过开发工具——Visual Basic——插入模块,粘贴在里在,把在硅基流动中申请的API放到VBA代码中。在Word中,选择一个问题,运行这个DeepSeekV3的宏就可以实现在线问答
【毕业设计】java-springboot+vue机动车号牌管理系统实现源码(完整前后端+mysql+说明文档+LunW).zip
【毕业设计】java-springboot-vue交通管理在线服务系统的开发源码(完整前后端+mysql+说明文档+LunW).zip