本文是董西成的Hadoop技术内幕一书的读书章节总结。
第八章 Task运行过程分析
所有Task需要周期性地向TaskTracker汇报最新进度和计数器值,而这正是由Reporter组件实现的,其中Reporter汇报的信息中包含两个部分:任务执行进度以及任务计数器值。
任务执行进度
hadoop采用简单的线性模型计算每个阶段的进度值,对于Map Task而言,作为一个大阶段不再分解,一般实用RecordReader中的getProgress()方法划定执行进度;对于Reduce Task而言,可以分成三个阶段:Shuffle,Sort和Reduce,每个阶段占任务总进度的1/3。
对于任务的Reporter而言,并不会总是每隔一段时间汇报进度和计数器值,而是仅当发现以下两种情况之一时才会汇报:
- 任务执行进度发生变化;
- 任务的某个计数器值发生变化;
某个时间间隔内,如果任务执行进度和计数器值均未发生变化,则Task只会RPC调用ping函数探测TaskTracker是否alive,如果一直发生这种情况,TaskTracker认为这个任务处于悬挂状态,直接kill掉。因此我怀疑我们的任务被杀,也是因为这个原因:
AttemptID:attempt_1412848624484_2765_m_000032_0 Timed out after 1200 secsContainer killed by the ApplicationMaster. Container killed on request. Exit code is 143
为了避免这个问题,可以采用下面两种方法:
- 每隔一段时间调用一次TaskReporter.progress()函数,告诉TaskTracker自己仍然活着;
- 增大任务超时参数mapreduce.task.timeout参数(默认10分钟,用毫秒表示)。
任务计数器
任务计数器(Counter)是hadoop提供的,用于实现跟踪任务运行进度的全局计数功能,用户可以在自己的应用程序中添加计数器,计数器包括两个部分<name, value>,name表示计数器名称,value表示计数器值,hadoop规定一个作业最多包含120个计数器(修改mapreduce.job.counters.limit),50个计数器组。
Job的计数器分成两类:内置计数器和用户自定义计数器。
用户可以自定义计数器来进行MR程序的一些数据的统计,在老版本中需要自定义一个枚举,新版本中只需要提供对应的字符串变量即可:
reporter.getCounter(groupName, counterName).increment(1); reporter.incrCounter(groupName, counterName, 1);
Map Task整体流程
Map Task总共分成5个阶段:
- Read阶段:通过用户编写的RecordReader,从输入InputSplit中解析出一个key/value;
- Map阶段:将解析出来的key/value交给用户编写的map函数处理,并产生一系列新的key/value;
- Collect阶段:当Map阶段处理完数据之后,一般会调用OutputCollector.collect()输出结果,该函数内部会将生成的key/value通过Partitioner分片,写入一个环形缓冲区中;
- Spill阶段:当缓冲区满之后,MapReduce会将数据写到本地磁盘中,生成临时文件,在将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并,压缩等操作;
- Combine阶段:当所有的数据处理完成后,Map Task会对所有临时文件进行一次合并,确保最终只会生成一个数据文件。
Reduce Task整体流程
Reduce Task也分为5个阶段:
- Shuffle阶段:也称为Copy阶段,Reduce Task从各个Map Task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一点阈值,写到磁盘上,否则直接在内存中操作;
- Merge阶段:在远程拷贝数据的同时,Reduce Task启动了两个后台线程对内存和磁盘上的文件进行合并,防止内存实用过多或磁盘上的文件过多;
- Sort阶段:用户编写的Reduce函数输入数据是按照key进行聚集的一组数据,与Map的数据有所不同。为了将key相同的数据聚集在一起,hadoop会先进行排序。由于事先在Map Task中的输出数据已经局部有序,因此Reduce Task只需要再对所有数据进行一次归并排序即可;
- Reduce阶段:该阶段中,Reduce Task将每组数据依次交给用户编写的reduce函数处理;
- Write阶段:OutputCollector.collect(key, value)会将计算结果写到HDFS上。
MapReduce的排序
排序是MapReduce框架中最重要的操作之一,Map Task和Reduce Task均会对数据按照key进行排序,这种排序操作属于Hadoop的默认行为,任何应用程序中的数据均会被排序。
Map Task会讲处理的结果暂时放到一个缓冲区中,当缓冲区使用率达到一定的阀值之后,对数据进行一次排序(内存中),并将这些数据以IFile的文件形式写到磁盘上。当全部的数据处理完成后,会对磁盘上的所有文件进行一次合并并排序成一个大的有序文件。
Reduce Task从每个Map Task上远程拷贝相应的数据文件,如果文件大小超过一定的阈值,放到磁盘上,否则暂时放到内存中,如果磁盘上的文件数目达到一定阈值,进行一次合并以声称一个更大的文件。当所有的数据都拷贝完成后,Reduce Task会统一对内存和磁盘上的所有数据进行一次合并。
Hadoop中的文件合并采用了多轮递归合并的方法,每轮选取最小的前io.sort.factor个文件进行合并,并将产生的文件重新加入待合并列表中,直到剩下的文件数量小于io.sort.factor。
在合并的过程中,采用的方式为小顶堆,在小顶堆中选取io.sort.factor,在排序完成后,将结果继续放到该小顶堆中,继续直到剩下的数量小于io.sort.factor,排序到只剩下一个文件。
Reduce端的Shuffle和Merge阶段
Reduce Task中Shuffle阶段和Merge阶段是并行进行的,当远程拷贝数据量达到一定的阈值后,便会出发相应的合并线程对数据进行合并,这个阶段也可以进一步划分为三个子阶段:
- 准备运行完成的Map Task列表,GetMapEventsThread线程周期性地通过RPC从TaskTracker获取已完成的Map Task列表,为防止网络热点,Reduce Task通过对所有TaskTracker Host进行混洗操作以打乱数据拷贝顺序,并将调整后的Map Task输出数据位置保存到scheduleCopies列表中。
- 远程拷贝数据,Reduce Task同时启动多个MapOutputCopier线程,这些线程从scheduleCopies列表中获取Map Task输出位置,并通过HTTP Get远程拷贝数据,对于获取的数据分片,如果大小超过一定阈值,则存放到磁盘上,否则直接放到内存中。
- 合并内存文件和磁盘文件,为了防止内存或者磁盘上的文件过多,Reduce Task启动两个线程分别对磁盘和内存中的文件进行合并。
Reduce端的Sort和Reduce阶段
所有的数据拷贝完成后,数据可能放在内存中或者磁盘上,还不能将数据直接交给用户编写的reduce函数处理,根据MapReduce的语义,Reduce Task需将key值相同的数据聚集在一起,并按组将数据交给reduce函数处理。
为此,Hadoop采用了基于排序的数据聚集策略,各个Map Task已经事先对自己的输出分派呢进行了局部排序,因此,Reduce Task只需要进行一次归并排序即可保证数据整体有序。为了提高效率,Hadoop将Sort阶段和Reduce阶段并行化。
在Sort阶段,Reduce Task为内存和磁盘中的文件建立了小顶堆,保存了指向该小顶堆节点的迭代器,且该迭代器保证了磁盘上的文件数目小于io.sort.factor, 当Reduce阶段开始时,内存中数据量小于最大可用内存(JVM MaxHeapSize)的mapred.job.reduce.input.buffer.precent。
在Reduce阶段,Reduce Task不断地移动迭代器,以将key相同的数据顺次地交给reduce函数处理,期间移动迭代器的过程实际上就是不断调整小顶堆的过程,这样Sort,Reduce就可以并行执行。
相关推荐
阅读《Hadoop技术内幕》的这两部分,不仅可以让你深入了解Hadoop的三大核心组件,还能帮助你在实际项目中更好地优化Hadoop集群的性能,解决可能出现的问题。无论是对大数据分析师、数据科学家还是Hadoop开发者来说,...
hadoop技术内幕,权威资料,内容全面,讲解通透!!!
Hadoop技术内幕深入解析YARN架构设计与实现原理
《Hadoop技术内幕》系列书籍包含了MapReduce、YARN和HDFS三个核心组件的深入解析,是理解Hadoop生态系统不可或缺的资源。以下是这些主题的详细概述: **Hadoop MapReduce** MapReduce是Hadoop处理大数据的主要计算...
《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》由Hadoop领域资深的实践者亲自执笔,首先介绍了MapReduce的设计理念和编程模型,然后从源代码的角度深入分析了RPC框架、客户端、JobTracker、TaskTracker和...
《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》由Hadoop领域资深的实践者亲自执笔,首先介绍了MapReduce的设计理念和编程模型,然后从源代码的角度深入分析了RPC框架、客户端、JobTracker、TaskTracker和...
《Hadoop技术内幕:深入解析YARN架构设计与实现原理》是一本专注于Hadoop生态系统中资源管理和调度核心组件——YARN(Yet Another Resource Negotiator)的专著。这本书全面介绍了YARN的架构、设计思想以及实际操作...
《Hadoop技术内幕深入解析YARN架构设计与实现原理》.(董西成).PDF
### Hadoop技术内幕:深入解析MapReduce架构设计与实现原理 #### 一、Hadoop及其重要性 Hadoop是一个开放源代码的分布式计算框架,它能够处理大量的数据集,并通过集群提供高性能的数据处理能力。随着大数据时代的...
根据提供的文件信息,本文将深入解析《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》这本书中的关键知识点,主要包括Hadoop的核心组件——MapReduce的设计理念、架构组成及其具体的实现原理。 ### Hadoop...
Hadoop课程实验和报告——Hadoop安装实验报告 Hadoop是一个开源的大数据处理框架,由Apache基金会开发和维护。它提供了一种可靠、可扩展、可高效的方法来存储和处理大规模数据。在本实验报告中,我们将介绍Hadoop的...
Hadoop技术内幕 深入解析
《Hadoop技术内幕深入解析YARN架构设计与实现原理》这本书深入探讨了Hadoop生态系统中的核心组件YARN(Yet Another Resource Negotiator),它是Hadoop 2.x版本中的关键改进,旨在解决早期Hadoop MapReduce的资源...
《Hadoop技术内幕》这本书深入剖析了Hadoop这一大数据处理框架的核心组件——MapReduce的架构设计与实现原理。Hadoop是Apache基金会的一个开源项目,它为海量数据的存储和处理提供了一个分布式计算平台,是大数据...
Hadoop技术内幕(三册 手动制作完整目录) 1.Hadoop技术内幕:深入解析HADOOP COMMON和HDFS架构设计与实现原理; 2.Hadoop技术内幕:深入解析MapReduce架构设计与实现原理; 3.Hadoop技术内幕:深入解析YARN架构设计...
Hadoop技术内幕,适合新手阅读,容易上手,共同赏阅。
《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》由Hadoop领域资深的实践者亲自执笔,首先介绍了MapReduce的设计理念和编程模型,然后从源代码的角度深入分析了RPC框架、客户端、JobTracker、TaskTracker和...
通过阅读《Hadoop技术内幕深入解析YARN架构设计与实现原理》这本书,读者可以深入了解YARN的工作原理,学习如何优化YARN配置,以及如何解决实际操作中遇到的问题,从而更好地利用Hadoop集群资源,提升大数据处理的...
通过深入学习《Hadoop技术内幕》中的HDFS和MapReduce,开发者可以掌握大数据处理的关键技术,从而在实际项目中有效地存储、管理和分析海量数据。无论是对大数据初学者还是经验丰富的工程师,这些书籍都提供了宝贵的...