`
usenrong
  • 浏览: 522201 次
  • 性别: Icon_minigender_1
  • 来自: 南京
社区版块
存档分类
最新评论

Docker介绍以及其相关术语、底层原理和技术

 
阅读更多

Docker是啥

Docker是一个程序运行、测试、交付的开放平台,Docker被设计为能够使你快速地交付应用。在Docker中,你可以将你的程序分为不同的基础部分,对于每一个基础部分都可以当做一个应用程序来管理。Docker能够帮助你快速地测试、快速地编码、快速地交付,并且缩短你从编码到运行应用的周期。

Docker使用轻量级的容器虚拟化平台,并且结合工作流和工具,来帮助你管理、部署你的应用程序。

在其核心,Docker实现了让几乎任何程序都可以在一个安全、隔离的容器中运行。安全和隔离可以使你可以同时在机器上运行多个容器。

容器轻量级的特性,意味着你可以得到更多的硬件性能。

围绕着容器的虚拟化工具和平台,可以在以下几个方面为你提供帮助:

  • 帮助你把应用程序(包括其余的支持组件)放入到Docker容器中。
  • 分发和转移你的容器至你的团队其它成员来进行进一步的开发和测试。
  • 部署这些应用程序至你的生产环境,不论是本地的数据中心还是云平台。

我可以用Docker做啥

快速交付你的应用程序

Docker可以为你的开发过程提供完美的帮助。Docker允许开发者在本地包含了应用程序和服务的容器进行开发,之后可以集成到连续的一体化和部署工作流中。

举个例子,开发者们在本地编写代码并且使用Docker和同事分享其开发栈。当开发者们准备好了之后,他们可以将代码和开发栈推送到测试环境中,在该环境进行一切所需要的测试。从测试环境中,你可以将Docker镜像推送到服务器上进行部署。

开发和拓展更加简单

Docker的以容器为基础的平台允许高度可移植的工作。Docker容器可以在开发者机器上运行,也可以在实体或者虚拟机上运行,也可以在云平台上运行。

Docker的可移植、轻量特性同样让动态地管理负载更加简单。你可以用Docker快速地增加应用规模或者关闭应用程序和服务。Docker的快速意味着变动几乎是实时的。

达到高密度和更多负载

Docker轻巧快速,它提供了一个可行的、 符合成本效益的替代基于虚拟机管理程序的虚拟机。这在高密度的环境下尤其有用。例如,构建你自己的云平台或者PaaS,在中小的部署环境下同样可以获取到更多的资源性能。

Docker的主要组成有哪些

Docker有两个主要的部件:

  • Docker: 开源的容器虚拟化平台。
  • Docker Hub: 用于分享、管理Docker容器的Docker SaaS平台。

Docker的架构是怎样的

Docker使用客户端-服务器(client-server)架构模式。Docker客户端会与Docker守护进程进行通信。Docker守护进程会处理复杂繁重的任务,例如建立、运行、发布你的Docker容器。Docker客户端和守护进程可以运行在同一个系统上,当然你也可以使用Docker客户端去连接一个远程的Docker守护进程。Docker客户端和守护进程之间通过socket或者RESTful API进行通信。

arch

Docker守护进程

如上图所示,Docker守护进程运行在一台主机上。用户并不直接和守护进程进行交互,而是通过Docker客户端间接和其通信。

Docker客户端

Docker客户端,实际上是docker的二进制程序,是主要的用户与Docker交互方式。它接收用户指令并且与背后的Docker守护进程通信,如此来回往复。

Docker的内部

要理解Docker的内部构建,必须知道以下三种部件:

  • Docker镜像 (Docker images)。
  • Docker仓库 (Docker registeries)。
  • Docker容器(Docker containers)。

Docker镜像

Docker镜像是一个只读的模板。举个例子,一个镜像可以包含一个运行在Apache上的Web应用和其使用的Ubuntu操作系统。

镜像是用来创建容器的。Docker提供了简单的放来来建立新的镜像或者升级现有的镜像,你也可以下载别人已经创建好的镜像。Docker镜像是Docker的 构造 部分。

Docker仓库

Docker仓库用来保存镜像。可以理解为代码控制中的代码仓库。同样的,Docker仓库也有公有和私有的概念。公有的Docker仓库名字是Docker Hub。Docker Hub提供了庞大的镜像集合供使用。这些镜像可以是你自己创建的,或者你也可以在别人的镜像基础上创建。Docker仓库是Docker的 分发 部分。

Docker容器

Docker容器和文件夹很类似。一个Docker容器包含了所有的某个应用运行所需要的环境。每一个Docker容器都是从Docker镜像创建的。Docker容器可以运行、开始、停止、移动和删除。每一个Docker容器都是独立和安全的应用平台。Docker容器是Docker的 运行 部分。

Docker的工作原理

到目前为止,我们学习到了:

  1. 我们可以建立一个容纳应用程序的容器。
  2. 我们可以从Docker镜像创建Docker容器来运行我们的应用程序。
  3. 我们可以通过Docker Hub或者我们自己的Docker仓库分享Docker镜像。

Docker镜像是如何工作的

我们已经看到了,Docker镜像是Docker容器运行时的只读模板。每一个镜像由一系列的层(layers)组成。Docker使用UnionFS1来将这些层联合到一二镜像中。Union文件系统允许独立文件系统中的文件和文件夹(称之为分支)被透明覆盖,形成一个单独连贯的文件系统。

这一段的原文:We've already seen that Docker images are read-only templates from which Docker containers are launched. Each image consists of a series of layers. Docker makes use of union file systems to combine these layers into a single image. Union file systems allow files and directories of separate file systems, known as branches, to be transparently overlaid, forming a single coherent file system.

正因为有了这些层的存在,Docker是如此的轻量。当你改变了一个Docker镜像,比如升级到某个程序到新的版本,一个新的层会被创建。因此,不用替换整个原先的镜像或者重新建立(在使用虚拟机的时候你可能会这么做),只是一个新的层被添加或升级了。现在你不用重新发布整个镜像,只需要升级。层使得奋发Docker镜像变得简单和快速。

每个镜像都是从一个基础的镜像开始的,比如ubuntu,一个基础的Ubuntu镜像,或者是fedora,一个基础的Fedora镜像。你可以使用你自己的镜像作为新镜像的基础,例如你有一个基础的安装了Apache的镜像,你可以使用该镜像来建立你的Web应用程序镜像。

注: Docker通常从Docker Hub获取基础镜像。

Docker镜像从这些基础的镜像创建,通过一种简单、具有描述性的步骤,我们称之为 指令(instructions)。 每一个指令会在镜像中创建一个新的层,指令可以包含这些动作:

  • 运行一个命令。
  • 增加文件或者文件夹。
  • 创建一个环境变量。
  • 当运行容器的时候哪些程序会运行。

这些指令存储在Dockerfile文件中。当你需要建立镜像的时候,Docker可以从Dockerfile中读取这些指令并且运行,然后返回一个最终的镜像。

Docker仓库是如何工作的

Docker仓库是Docker镜像的存储仓库。你可以推送你的镜像到你的Docker仓库中。

通过Docker客户端,你可以从Docker仓库中搜索镜像。

Docker容器是如何工作的

一个Docker容器包含了一个操作系统、用户添加的文件和元数据(meta-data)。我们可以看到,每个容器都是从镜像建立的。镜像告诉Docker容器内包含了什么,当容器启动时运行什么程序,还有许多配置数据。Docker镜像是只读的。当Docker运行一个从镜像建立的容器,它会在镜像顶部添加一个可读写的层,应用程序可以在这里运行。

当你运行docker容器时发生了什么

不论你使用docker命令或者是RESTful API,Docker客户端都会告诉Docker守护进程运行一个容器。

 

$ sudo docker run -i -t ubuntu /bin/bash

让我们来分析这个命令。Docker客户端使用docker命令来运行,run参数表名客户端要运行一个新的容器。Docker客户端要运行一个容器需要告诉Docker守护进程的最小参数信息是:

  • 这个容器从哪个镜像创建,这里是ubuntu,基础的Ubuntu镜像。
  • 在容器中要运行的命令,这里是/bin/bash,在容器中运行Bash shell。

那么运行这个命令之后在底层发生了什么?

按照顺序,Docker做了这些事情:

  • 拉取ubuntu镜像: Docker检查ubuntu镜像是否存在,如果在本地没有该镜像,Docker会从Docker Hub下载。如果镜像已经存在,Docker会使用它来创建新的容器。
  • 创建新的容器: 当Docker有了这个镜像之后,Docker会用它来创建一个新的容器。
  • 分配文件系统并且挂载一个可读写的层: 容器会在这个文件系统中创建,并且一个可读写的层被添加到镜像中。
  • 分配网络/桥接接口: 创建一个允许容器与本地主机通信的网络接口。
  • 设置一个IP地址: 从池中寻找一个可用的IP地址并且服加到容器上。
  • 运行你指定的程序: 运行指定的程序。
  • 捕获并且提供应用输出: 连接并且记录标准输出、输入和错误让你可以看到你的程序是如何运行的。

你现在拥有了一个运行着的容器!从这里开始你可以管理你的容器,与应用交互,应用完成之后,可以停止或者删除你的容器。

底层技术

Docker使用Go语言编写,并且使用了一系列Linux内核提供的性能来实现我们已经看到的这些功能。

命名空间(Namespaces)

Docker充分利用了一项称为namespaces的技术来提供隔离的工作空间,我们称之为 container(容器)。当你运行一个容器的时候,Docker为该容器创建了一个命名空间集合。

这样提供了一个隔离层,每一个应用在它们自己的命名空间中运行而且不会访问到命名空间之外。

一些Docker使用到的命名空间有:

  • pid命名空间: 使用在进程隔离(PID: Process ID)。
  • net命名空间: 使用在管理网络接口(NET: Networking)。
  • ipc命名空间: 使用在管理进程间通信资源 (IPC: InterProcess Communication)。
  • mnt命名空间: 使用在管理挂载点 (MNT: Mount)。
  • uts命名空间: 使用在隔离内核和版本标识 (UTS: Unix Timesharing System)。

群组控制

Docker还使用到了cgroups技术来管理群组。使应用隔离运行的关键是让它们只使用你想要的资源。这样可以确保在机器上运行的容器都是良民(good multi-tenant citizens)。群组控制允许Docker分享或者限制容器使用硬件资源。例如,限制指定的容器的内容使用。

联合文件系统

联合文件系统(UnionFS)是用来操作创建层的,使它们轻巧快速。Docker使用UnionFS提供容器的构造块。Docker可以使用很多种类的UnionFS包括AUFS, btrfs, vfs, and DeviceMapper。

容器格式

Docker连接这些组建到一个包装中,称为一个 container format(容器格式)。默认的容器格式是libcontainer。Docker同样支持传统的Linux容器使用LXC。在未来,Docker也许会支持其它的容器格式,例如与BSD Jails 或 Solaris Zone集成。

接下来。。。

可以实践一些Docker命令使用:

Docker介绍及命令 Docker工程分为两个部分 服务器守护进程,管理所有的容器(containers) 客户端,用户控制远程的守护进程 机器上安装好docker之后,可以使用docker命令来查看docker支持的参数和使用方法。 $ docker Usage: docker [OPTIONS] COMMAND [arg...] -H=[unix:///var/run/docker.sock]: tcp://host:port to bind/connect to or unix://path/to/socket to use A self-sufficient runtime for linux containers. Commands: attach Attach to a running container build Build an image from a Dockerfile commit Create a new image from a container's changes cp …
 
原文: https://docs.docker.com/userguide/dockerizing/ Docker允许你在容器中运行一个程序。在Docker容器中运行一个程序所使用的命令是:docker run。 Hello Wolrd 让我们来试一试。 $ sudo docker run ubuntu:14.04 /bin/echo 'Hello world' Hello world 这样你就启动了一个Docker容器。 所以刚才发生了什么?我们一步一步来看看docker run命令做了哪些事情。 首先我们指定了我们想要运行docker这个程序。run选项表示我们想要运行一个容器。 下一步我们指定了一个镜像:ubuntu:14.04。这是我们运行的容器的模板,Docker里面称之为镜像。在我们刚才的命令中我们使用的是Ubuntu14.04操作系统的镜像。 当你在命令中指定了一个镜像名称,Docker首先在你的机器上寻找该镜像,如果没有找到,Docker会从Docker仓库, Docker Hub上面需找公开的镜像。 下一步我们告诉Docker我们…
 
Docker化应用: 一个Hello World中,我们运行了我们的第一个容器,并且我们使用了两次docker run命令。 第一次我们启动了一个前台运行的可交互容器。 第二次我们启动了一个在后台运行的守护容器。 在这个过程中我们学到了以下命令: docker ps - 列出容器列表。 docker logs - 观察容器内部的输出。 docker stops - 停止一个正在运行的容器。 Tip: 另外一个学习docker命令的地方Docker入门使用教程 docker客户端非常简单,每个你能和Docker进行交互的行为都是一个命令,每个命令可以带上一系列的参数。 # Usage: [sudo] docker [flags] [command] [arguments] .. # Example: sudodockerrunitubuntu/bin/bash使dockerversiondockersudo docker version 这个命令不仅仅是列…
分享到:
评论
3 楼 buxin_2008 2016-01-10  
qkjava 写道
安装了 boot2docker
https://github.com/boot2docker

镜像安装很慢 估计要用VPN才能下下来。

现在官方建议使用DockerToolbox,并且默认下载也是这个了。
2 楼 usenrong 2014-11-17  
qkjava 写道
安装了 boot2docker
https://github.com/boot2docker

镜像安装很慢 估计要用VPN才能下下来。

要自己做个代理
1 楼 qkjava 2014-11-15  
安装了 boot2docker
https://github.com/boot2docker

镜像安装很慢 估计要用VPN才能下下来。

相关推荐

    .NET管方文档

    .NET程序集文件格式、泛型类型、委托和lambda表达式、以及元数据和自描述组件等知识点都帮助开发者更好地理解和掌握.NET平台的底层工作原理。 在应用程序开发方面,官方文档涵盖了如何生成控制台应用程序、并行处理...

    linux内核设计的艺术 中文

    需要注意的是,实际的Linux内核设计包含了非常复杂的编程和系统工程实践,每一方面都有大量的技术细节和专业术语。对于想要深入理解Linux内核的读者,建议阅读相关的专业书籍和文档,并且尝试结合源代码进行学习。

    web前端月刊-20期(201912)

    总的来说,这些知识点涵盖了前端开发的多个方面,从基础的JavaScript数据结构到高级的Docker和Kubernetes容器技术,再到新兴的Serverless架构,以及Web性能优化和浏览器原理。对于前端工程师来说,不断学习和掌握...

    C++与Comsol联合仿真的锂电池枝晶生长多物理场耦合模型研究

    内容概要:本文详细介绍了利用C++编程和Comsol软件进行锂电池内部枝晶生长过程的多物理场耦合仿真。首先探讨了枝晶生长对浓度场、电场、温度场以及应力场的敏感性,并展示了相应的数学模型和C++代码实现。接着讨论了采用元胞自动机(CA)和格子玻尔兹曼方法(LBM)来模拟枝晶的非均匀生长特性,特别是通过引入偏心正方算法改进了传统CA模型的方向局限性。此外,文中还涉及了如何将多种物理场(如浓度场、电场、温度场、应力场和流场)耦合在一起,形成完整的多物理场仿真系统。最后,作者分享了一些实用的经验和技术细节,比如参数调整技巧、避免常见错误的方法等。 适合人群:从事锂电池研究的专业人士,尤其是对电池安全性和性能优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于希望深入了解锂电池内部枝晶生长机制的研究人员,旨在帮助他们构建更加精确的仿真模型,从而更好地理解和解决枝晶引起的电池安全隐患。 其他说明:文章不仅提供了理论分析,还包括具体的代码实例,便于读者动手实践。同时强调了多物理场耦合的重要性,指出这是提高仿真精度的关键因素之一。

    (源码)基于STM32F10x微控制器的综合驱动库.zip

    # 基于STM32F10x微控制器的综合驱动库 ## 项目简介 本项目是一个基于STM32F10x系列微控制器的综合驱动库,旨在为开发者提供一套全面、易于使用的API,用于快速搭建和配置硬件资源,实现高效、稳定的系统功能。项目包含了STM32F10x系列微控制器的基本驱动和常用外设(如GPIO、SPI、Timer、RTC、ADC、CAN、DMA等)的驱动程序。 ## 项目的主要特性和功能 1. 丰富的外设驱动支持支持GPIO、SPI、Timer、RTC、ADC、CAN、DMA等外设的初始化、配置、读写操作和中断处理。 2. 易于使用的API接口提供统一的API接口,简化外设操作和配置,使开发者能够专注于应用程序逻辑开发。 3. 全面的时钟管理功能支持系统时钟、AHB时钟、APB时钟的生成和配置,以及时钟源的选择和配置。 4. 电源管理功能支持低功耗模式、电源检测和备份寄存器访问,帮助实现节能和延长电池寿命。

    (源码)基于Python和TensorFlow的甲骨文识别系统.zip

    # 基于Python和TensorFlow的甲骨文识别系统 ## 项目简介 本项目是一个基于Python和TensorFlow的甲骨文识别系统,旨在利用深度学习技术,尤其是胶囊网络(Capsule Network)来识别甲骨文图像。项目包括数据集准备、模型构建、训练、测试以及评估等关键步骤。 ## 主要特性和功能 1. 数据准备项目提供了数据集的下载、预处理以及分割为训练集、验证集和测试集的功能。 2. 模型构建实现了基于胶囊网络的甲骨文识别模型,包括基本的CapsNet模型、分布式CapsNet模型以及支持多任务学习的CapsNet模型。 3. 训练与测试提供了训练模型、评估模型性能以及可视化训练过程的功能。 4. 性能评估通过测试集评估模型的识别准确率,并提供了测试结果的详细分析。 ## 安装使用步骤 1. 环境准备安装Python和TensorFlow,以及相关的依赖库。 2. 数据准备 下载MNIST或CIFAR数据集

    (源码)基于C++的Arduino BLE设备交互库.zip

    # 基于C++的Arduino BLE设备交互库 ## 项目简介 本项目是一个用于与BLE(蓝牙低能耗)设备交互的Arduino库。它为使用Arduino平台的开发者提供了与BLE设备通信所需的功能,能让开发者更轻松地将BLE设备集成到自己的项目中。 ## 项目的主要特性和功能 1. 初始化BLE设备调用begin()方法,可初始化BLE设备并启动通信。 2. 扫描和连接设备利用scan()方法扫描附近的BLE设备,通过connect()方法连接特定设备。 3. 读取和写入数据使用read()和write()方法,实现从BLE设备读取数据或向其写入数据。 4. 处理事件通过setEventHandler()方法注册回调函数,处理BLE事件,如连接成功、断开连接等。 5. 控制广播和广告使用advertise()和stopAdvertise()方法,控制BLE设备的广播和广告功能。

    基于ANSYS Fluent的增材制造激光熔覆同轴送粉熔池演变模拟及UDF应用

    内容概要:本文详细探讨了利用ANSYS Fluent对增材制造中激光熔覆同轴送粉技术的熔池演变进行模拟的方法。文中介绍了几个关键技术模块,包括高斯旋转体热源、VOF梯度计算、反冲压力和表面张力的UDF(用户自定义函数)实现。通过这些模块,可以精确模拟激光能量输入、熔池内的多相流行为以及各种物理现象如表面张力和反冲压力的作用。此外,文章展示了如何通过调整参数(如激光功率)来优化制造工艺,并提供了具体的代码示例,帮助读者理解和实现这些复杂的物理过程。 适合人群:从事增材制造领域的研究人员和技术人员,尤其是那些希望深入了解激光熔覆同轴送粉技术背后的物理机制并掌握相应模拟工具的人群。 使用场景及目标:适用于需要对增材制造过程中的熔池演变进行深入研究的情景,旨在提高制造质量和效率。具体目标包括但不限于:理解熔池内部的温度场和流场分布规律,评估不同参数对熔池形态的影响,预测可能出现的问题并提出解决方案。 其他说明:文章不仅提供了详细的理论背景介绍,还包括了大量的代码片段和实例解析,使读者能够在实践中更好地应用所学知识。同时,通过对实际案例的讨论,揭示了增材制造过程中的一些常见挑战及其应对策略。

    COMSOL中三维激光切割热流耦合模型:水平集、流体传热及层流分析的应用与优化

    内容概要:本文详细介绍了在COMSOL中构建三维激光切割过程中涉及的热流耦合模型的方法和技术要点。主要内容涵盖水平集物理场用于追踪材料界面变形、流体传热用于描述熔池流动和热传导的相互作用以及层流分析用于处理熔融金属流动。文中提供了具体的MATLAB代码片段,展示了如何设置材料属性、热源加载、熔融金属流动方程、求解器配置及后处理步骤。此外,还讨论了常见问题及其解决方案,如界面过渡区厚度的选择、热源加载的技术细节、表面张力系数的设置、求解器配置的技巧等。 适合人群:从事激光切割工艺研究、仿真建模的研究人员和工程师,尤其是熟悉COMSOL Multiphysics平台的用户。 使用场景及目标:适用于希望深入了解并优化激光切割过程中的热流耦合仿真的研究人员和工程师。主要目标是提高仿真精度,优化切割参数,改善切割质量和效率。 其他说明:文章不仅提供理论指导,还包括大量实用的操作建议和调试技巧,帮助用户更好地理解和应用COMSOL进行复杂物理现象的模拟。

    (源码)基于PythonDjango和Vue的美多电商平台.zip

    # 基于PythonDjango和Vue的美多电商平台 ## 项目简介 本项目是一个基于PythonDjango和Vue的B2C电商平台,名为美多商城,专注于销售自营商品。系统前台具备商品列表展示、商品详情查看、商品搜索、购物车管理、订单支付、评论功能以及用户中心等核心业务功能系统后台涵盖商品管理、运营管理、用户管理和系统设置等系统管理功能。同时,项目新增了统一异常处理、状态码枚举类等设计,避免使用魔法值,提升了项目的可扩展性和可维护性。 ## 项目的主要特性和功能 ### 前台功能 1. 商品相关提供商品列表展示、商品详情查看以及商品搜索功能,方便用户查找心仪商品。 2. 购物车支持用户添加、管理商品,方便集中结算。 3. 订单支付集成阿里支付,支持订单创建、支付及支付结果处理。 4. 评论用户可对商品进行评价,分享购物体验。 5. 用户中心支持用户注册、登录、密码修改、邮箱验证、地址管理等操作。 ### 后台功能

    目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛

    目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛 目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛~ 目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛 目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛 目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛,目前最火的C/C++和Java蓝桥杯竞赛练习题,充分备战竞赛

    (源码)基于Python和Nonebot框架的HoshinoBot.zip

    # 基于Python和Nonebot框架的HoshinoBot ## 项目简介 HoshinoBot是一个基于Python和Nonebot框架的开源QQ机器人项目,专为公主连结Re:Dive(PCR)和舰队收藏(KanColle)玩家设计。它提供了丰富的功能,旨在增强玩家的游戏体验和社区互动。 ## 项目的主要特性和功能 转蛋模拟支持单抽、十连抽和抽一井功能,模拟游戏中的抽卡体验。 竞技场解法查询提供竞技场解法查询,支持按服务器过滤,并允许用户反馈点赞或点踩。 竞技场结算提醒自动提醒竞技场结算时间,帮助玩家及时参与。 公会战管理提供详细的公会战管理功能,包括成员管理、战斗记录等。 Rank推荐表搬运自动搬运和更新Rank推荐表,帮助玩家选择最佳角色。 常用网址速查提供常用游戏网址的快速查询,方便玩家访问。 官方推特转发自动转发官方推特消息,确保玩家不会错过任何重要更新。 官方四格推送定期推送官方四格漫画,增加玩家的娱乐性。

    图书管理小项目完结(完善新增页面)

    图书管理小项目完结(完善新增页面)

    (源码)基于Arduino的超声波距离测量系统.zip

    # 基于Arduino的超声波距离测量系统 ## 项目简介 本项目是一个基于Arduino平台的超声波距离测量系统。系统包含四个超声波传感器(SPS)模块,用于测量与前方不同方向物体的距离,并通过蜂鸣器(Buzz)模块根据距离范围给出不同的反应。 ## 项目的主要特性和功能 1. 超声波传感器(SPS)模块每个模块包括一个超声波传感器和一个蜂鸣器。传感器用于发送超声波并接收回波,通过计算超声波旅行时间来确定与物体的距离。 2. 蜂鸣器(Buzz)模块根据超声波传感器测量的距离,蜂鸣器会给出不同的反应,如延时发声。 3. 主控制器(Arduino)负责控制和管理所有传感器和蜂鸣器模块,通过串行通信接收和发送数据。 4. 任务管理通过主控制器(Arduino)的 loop() 函数持续执行传感器任务(Task),包括测距、数据处理和蜂鸣器反应。 ## 安装使用步骤 1. 硬件连接

    YTBK2802 基于单片机的幼儿安全监控报警系统设计 20250322

    题目:基于单片机的幼儿安全监控报警系统设计 主控:STM32F103C8T6 显示:OLED ESP32 红外对管 火焰传感器 烟雾传感器 按键 继电器+水泵 蜂鸣器+led小灯 电源 1.实时监控:系统能够实时监控幼儿的活动区域,了解幼儿的活动情况。 2.入侵检测:系统可以设置安全区域,当有陌生人或动物进入该区域时, 系统会立即发出警报。 3.紧急呼叫:幼儿在遇到紧急情况时,可以通过按下紧急呼叫按钮触发声光报警, 通知教师或监护人。 4.远程监控与通知:教师或监护人可以通过手机远程监控幼儿的安全状况 5.火灾报警:当检测到着火点且烟雾浓度高于阈值,启动声光报警并自动打开水泵抽水进行灭火

    毕业设计源码【机器人动力学】基于MATLAB的多自由度机器人运动状态模拟:动力学模型与数值求解方法

    内容概要:该MATLAB函数 `robot_calc.m` 实现了一个12维机器人系统的动力学模型计算,主要用于模拟机器人的运动状态。它基于拉格朗日动力学方程,通过质量矩阵 `M`、科里奥利力/向心力矩阵 `N`、约束矩阵 `C` 和输入矩阵 `E` 描述机器人的运动方程。函数接收当前时间和状态向量作为输入,输出状态导数,包括速度和加速度。控制输入通过外部扭矩 `tau` 模拟,数值求解采用伪逆方法确保稳定性。核心步骤包括参数定义、矩阵计算、动力学方程求解和状态导数输出。; 适合人群:具备一定MATLAB编程基础和机器人动力学理论知识的研究人员、工程师和高校学生。; 使用场景及目标:①机器人控制仿真,测试控制算法(如PID、轨迹跟踪)的表现;②运动规划,模拟机器人在给定扭矩下的运动轨迹;③参数优化,通过调整物理参数优化机器人动态性能。; 其他说明:需要注意的是,当前扭矩 `tau` 是硬编码的,实际应用中应替换为控制器的输出。此外,代码中部分参数单位不一致,需确保单位统一。建议改进方面包括动态输入扭矩、添加可视化功能和参数化管理物理参数。

    基于CPO-Transformer-LSTM的光伏数据分类预测Matlab实现及优化

    内容概要:本文介绍了一种创新的光伏数据分类预测方法,采用CPO(冠豪猪优化算法)、Transformer和LSTM三种技术相结合的方式。首先进行数据预处理,包括数据加载、标准化和构建数据迭代器。然后详细介绍了模型架构,包括Transformer编码器捕捉特征间的关系,LSTM处理时间序列模式,以及CPO用于优化关键参数如隐藏层节点数、学习率等。实验结果显示,该模型在处理突变数据方面表现出色,特别是在光伏功率预测和异常检测任务中,相比传统LSTM模型有显著提升。 适合人群:具有一定机器学习基础的研究人员和技术开发者,尤其是关注光伏预测和时序数据分析的人士。 使用场景及目标:适用于需要处理复杂时序数据的任务,如光伏功率预测、电力负荷预测、故障诊断等。主要目标是提高预测准确性,尤其是在面对突变数据时的表现。 其他说明:文中提供了详细的代码示例和优化技巧,如数据预处理、模型结构调整、早停机制等。此外,还给出了可视化工具和一些实用的避坑指南,帮助初学者更好地理解和应用这一模型。

    基于Matlab的改进人工势场法路径规划算法:斥力函数优化与模拟退火应用

    内容概要:本文详细介绍了如何利用Matlab对传统人工势场法(APF)进行改进,以解决其在路径规划中存在的局部极小值和目标不可达问题。主要改进措施包括重构斥力函数,在靠近目标时使斥力随目标距离衰减,以及引入模拟退火算法用于跳出局部极小值。文中提供了详细的代码示例,展示了传统APF与改进版APF在不同障碍物布局下的表现对比,验证了改进算法的有效性和鲁棒性。 适合人群:具有一定编程基础并熟悉Matlab环境的研究人员、工程师和技术爱好者。 使用场景及目标:适用于需要进行路径规划的机器人导航系统或其他自动化设备,旨在提高路径规划的成功率和效率,特别是在复杂环境中。 其他说明:文章不仅提供了理论解释,还有具体的代码实现和测试案例,帮助读者更好地理解和应用改进后的APF算法。同时,附带的场力可视化工具使得势场分布更加直观易懂。

    Simulink模型自动化转换为PDF文档的全流程脚本工具

    内容概要:本文介绍了一款用于将Simulink模型自动转换为PDF文档的脚本工具。该工具能够自动化生成文档,提取模型中各模块的注释并转化为PDF中的说明文字,整合来自Excel的数据并生成表格,分模块分层打印模型图片,最终生成结构清晰的PDF文档。通过递归遍历模型结构,确保文档的章节结构与模型层次保持一致。此外,还包括自动检测未注释模块等功能,极大提高了文档生成效率和准确性。 适合人群:从事Simulink模型开发和维护的工程师,尤其是那些需要频繁编写和更新模型文档的人员。 使用场景及目标:适用于需要快速生成高质量模型文档的场合,如项目交付、技术评审等。主要目标是提高文档编写效率,减少手动操作带来的错误,确保文档与模型的一致性。 其他说明:该工具采用MATLAB和Python混合开发,支持Windows和Linux平台,可通过持续集成(CI/CD)管道自动化运行,进一步提升工作效率。

    (源码)基于Python和树莓派的智能语音闹钟.zip

    # 基于Python和树莓派的智能语音闹钟 ## 项目简介 “RaspberryClock”是一个基于树莓派4B的智能语音闹钟项目,使用Python 3.8开发。该项目集成了时间显示、温湿度监测、天气查询、语音提醒以及与图灵机器人对话等功能,旨在为用户提供一个功能丰富且易于使用的智能闹钟解决方案。 ## 项目的主要特性和功能 1. 时间显示实时显示当前时间。 2. 温湿度监测通过DHT11温湿度传感器读取并显示环境温湿度数据。 3. 天气查询通过API查询并显示当前天气信息。 4. 语音提醒支持语音播放和录音功能,用户可以设置语音提醒。 5. 与图灵机器人对话支持语音输入并与图灵机器人进行对话。 6. 用户界面使用Qt库创建友好的用户界面,操作便捷。 ## 安装使用步骤 假设用户已经安装了树莓派和Python环境,以下是项目的安装和使用步骤 1. 下载项目将项目文件下载并解压到树莓派的指定目录。

Global site tag (gtag.js) - Google Analytics