http://blog.zinewow.com/catalog.asp?tags=AcheGesture
基于Starling框架的AcheGesture是为基于Adobe AIR技术的移动应用提供的一套手势识别库。设计来源于苹果iOS开发框架的UIGestureRecognizers(Cocoa-Touch UIKit)。AcheGesture主要特性:
1、提供了最基本的几种手势,包括:Tap(轻击)、Double Tap(双击) 、Pinch(缩放)、Pan(拖拽)、Swipe(滑动)、Rotate(旋转)以及Long press(长按)。
2、提供针对每种手势的自定义配置,例如Long press的判别时间阈值(timeThreshold)。
3、处理手势之间的识别依赖(requireGestureRecognizerToFail)、识别优先级(priority)、同时作用(allowSimultaneous)等相互关系。
4、使用回调的机制传出手势(离散和连续)的所有识别状态:recognized、possible、failed、began、changed、ended和cancelled。
5、可扩展性,可以针对项目需求写手势识别扩展(GestureRecognizerPlugin),并动态注入(activate)。
6、开源免费,可在任何场合和情况下使用。
为何要写AcheGesture
1、代码复用的需求:
Starling提供了Touch事件,包括了单点和多点的。但是对于某个具体的手势却没有做封装,例如常见的Swipe。对于每一种手势实现后的代码逻辑复用是最基本的封装需求。
2、手势识别复杂的依赖关系处理的需求:
第二个原因,也是非常重要的原因就是处理多种手势关系的需求。例如一个显示对象绑定了一个单击(Tap)和一个双击(Double Tap),用户轻击两下,有以下可能:1、两个Tap和一个Double Tap,2、一个Tap和一个Double Tap 3、两个Tap,4、一个Double Tap。吃惊吗?竟然有四种,而且第2种可能相对比较难理解什么情况下发生的。其实一般情况下,我们期望得到的是第3和第4种。这就出现了手势识别依赖关系的需求。也就是说,Tap手势的识别依赖于Double Tap手势识别的失败(requireGestureRecognizerToFail)。通俗的说,就是,只有识别不出来Double Tap,Tap手势才能识别。多种手势的相互依赖关系使得手势的处理上复杂度提升,使得需要封装这样的逻辑统一处理。
3、多手势同时作用的需求:
这也是一个非常常见的需求,但是如果只是一个Touch对象可能不能很方便的实现。就是例如使用Pinch手势的缩放的同时,还可能在Pan(拖拽移动)甚至还有可能使用Rotate同时进行旋转操作。
如何使用AcheGesture
Step1: 定义手势对象:
以轻击(Tap)手势为例,此手势包含了两种状态,“识别”(recognized)和“可能识别”(possible),在TapGesture配置类中定义。所以首先定义手势对象,传入每个状态的回调函数。
{
var g1:Gesture = new TapGesture(onTapRecognized, onTapPossible);
}
此处有两个回调函数,onTapRecognized和onTapPossible。对于这个手势的定义,其实也可以直接使用Object类型,这个对象需要包含各种识别状态的回调函数,例如”recognized”, “possible”等等。以刚才的那个Tap手势为例,g1可写成以下这种形式:
建议使用acheGesture.data包下面的类型来定义每一种手势,除了有强类型提示的好处以外,也可以方便或者每种手势所包含的手势状态。以轻击(Tap)手势而言,就只有“识别”(recognized)和“可能识别”(possible)两种状态。
Step2: 绑定显示对象
接下来是使用GestureManager.add方法绑定定义的手势和目标显示对象。如下所示:
{
var g1:Gesture = new TapGesture(onTapRecognized, onTapPossible);
GestureManager.add(_btn, new GestureVars().onTap(g1).vars);
}
三个参数,第一个传入绑定的显示对象(Starling.display.DisplayObject),第二个传入的是手势识别的配置对象,第三个参数是是否允许多个手势同时作用。和定义手势对象类似,此处使用的GestureVars去对配置属性进行强类型,其实也可以使用Object直接配置,如下代码所示:
所以如果都使用Object类型就可以简化写成:
看个人喜好,建议使用acheGesture.data包下面的类型来强类型去配置手势。
Step3: 处理手势状态回调
所有的手势状态回调函数均接收一个参数,e: AcheGestureEvent,这个对象包含了手势状态回调会传出的一些属性,以Tap为例,在是否可能被识别(possible)状态,就是读取e.possible来确定如何显示按钮的状态。详细会在Tap手势的教程中介绍。
{
trace("tap gesture recognized!");
}
private function onTapPossible(e:AcheGestureEvent):void
{
trace("tap gesture onTapPossible >>>" + e.possible);
}
了解设置后的期望值。
在使用手势库完成需求之前,需要了解某种绑定方式预期得到怎样的结果。以下面三种绑定方式为例,均是绑定了单击(Tap)和双击(Double Tap)只是在细节设置上不同。
第一种,只是单单绑定了这两种手势,但是注意点是,add方法第三个参数传的是false,也就是说,同一个时刻不能多个手势同时作用,因为Tap和Double Tap都是在用户Touch Ended的时候来判断,所以,如果用户轻击两下,间隔时间符合双击,则收到一个双击,一个单击。注意是一个单击,因为第二个单击在判断的时候被双击优先判断了,所以不被识别。注意比较下面两种情况。
{
var g1:Gesture = new TapGesture(onTapRecognized);
var g2:Gesture = new DoubleTapGesture(onDoubleTapRecognized);
GestureManager.add(_btn, new GestureVars().onTap(g1).onDoubleTap(g2).vars,false);
}
第二种情况比较简单,就是,设置了add第三个参数为true,即,允许同时多个手势被识别,如果还像上一个那种操作情况,用户轻击两下,并且间隔时间符合双击的要求,则收到,两个单击和一个双击。也就是说这两种手势的识别互不干扰。各自识别各自的。
{
var g1:Gesture = new TapGesture(onTapRecognized);
var g2:Gesture = new DoubleTapGesture(onDoubleTapRecognized)
GestureManager.add(_btn, new GestureVars().onTap(g1).onDoubleTap(g2).vars, true);
}
第三种情况其实可能是我们想要的,就是设定了“依赖关系”,单机的识别依赖于双击的识别失败。还是像刚才那样操作,用户轻击两下,并且间隔时间符合双击的要求,此时收到的只是一次双击,没有单击。如果用户轻击一下,则在延迟一小段时间后收到单击。原因是,单击的识别需要等待双击识别失败(超过双击的时间间隔阈值)。
{
var g1:Gesture = new TapGesture(onTapRecognized);
var g2:Gesture = new DoubleTapGesture(onDoubleTapRecognized)
g1.requireGestureRecognizerToFail(g2);
GestureManager.add(_btn, new GestureVars().onTap(g1).onDoubleTap(g2).vars);
}
不同的设置带来不同的结果,了解自己需要的结果和对应的设置方法才能正确使用AcheGesture。
备注:
其它关于 AcheGesture 的链接(含DEMO):《Adobe AIR 移动开发:触摸、多点触控和手势输入》。
相关推荐
ABB常用机器人技术参数.pdf
内容概要:本文详细介绍了如何利用西门子1200 PLC及其FB284功能块实现对3台V90伺服电机、相机角度调整以及FANUC机器人的控制。主要内容涵盖FB284功能块的基础参数设置、多台伺服电机的具体控制方法、相机角度调整的实现、DP通讯配置FANUC机器人控制,以及PLC程序注解和触摸屏程序的设计。通过具体代码示例和实际操作步骤,帮助读者理解和掌握这一系列控制技术。 适合人群:具备一定PLC基础知识的工控初学者和技术人员。 使用场景及目标:① 学习并掌握FB284功能块的使用方法;② 实现多台V90伺服电机的协同控制;③ 掌握相机角度调整的技术细节;④ 完成FANUC机器人通过DP通讯的控制配置;⑤ 提高PLC程序的可读性和易维护性。 其他说明:文中提供了丰富的代码片段和配置示例,便于读者实践操作。此外,还分享了一些实际项目中的经验和技巧,有助于提高项目的稳定性和效率。
《计算机常用工具软件(第3版)》第6章--图形图像工具.ppt
内容概要:本文由《未来产业新赛道研究报告》整理而成,涵盖了未来产业在全球范围内的发展态势和竞争形势。报告指出,引领型国家通过全方位体制机制创新,在先进制造、人工智能、量子科技、新一代通信等领域建立了全面领先优势。文中引用了麦肯锡和GVR的数据,预测了人工智能和人形机器人等未来产业的巨大经济潜力。报告还详细介绍了国外和国内对未来产业赛道的重点布局,如量子科技、人工智能、先进网络和通信技术、氢能与储能、生物技术等。此外,报告列举了中国重点省市如北京、上海等的具体发展方向,以及知名研究机构对未来产业热点的分析。最后,报告提出了构建我国未来产业重点赛道目录的建议,包括通用人工智能、高级别自动驾驶、商业航天、人形机器人、新型储能、低空经济、清洁氢、算力芯片、细胞与基因治疗和元宇宙等十大重点赛道。 适用人群:对科技趋势和未来产业发展感兴趣的政策制定者、投资者、企业家和研究人员。 使用场景及目标:①帮助政策制定者了解全球未来产业发展动态,为政策制定提供参考;②为企业提供未来产业布局的方向和重点领域;③为投资者提供投资决策依据,识别未来的投资机会;④为研究人员提供未来科技发展趋势的全景图。 其他说明:报告强调了未来产业在全球经济中的重要性,指出了中国在未来产业布局中的战略定位和发展路径。同时,报告呼吁加强国家顶层设计和行业系统谋划,探索建立未来产业技术预见机制,深化央地联动,推动未来产业高质量发展。
《网络设备安装与调试(神码版)》2交换机的配置.pptx
内容概要:本文详细介绍了自动驾驶路径规划中Lattice算法的基础部分,主要包括三个关键概念和技术实现:参考线生成、Frenet坐标系转换和五次多项式拟合。首先解释了参考线的作用及其生成方法,如三次样条插值和平滑曲线生成。其次探讨了Frenet坐标系的优势,展示了如何将笛卡尔坐标系下的车辆位置投影到参考线上,从而简化路径规划问题。最后讨论了五次多项式的应用,强调其能够确保轨迹的光滑性和舒适性,并提供了详细的Matlab和C++代码实现。 适合人群:对自动驾驶技术感兴趣的开发者、研究人员以及有一定编程基础并希望深入了解路径规划算法的人群。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是进行路径规划模块的设计与实现。主要目标是帮助读者掌握Lattice规划的基本原理和技术细节,以便应用于实际工程项目中。 其他说明:文中不仅有理论讲解,还附带了大量的代码实例,便于读者理解和实践。此外,作者提醒了一些常见的陷阱和注意事项,如避免过拟合、选择合适的插值算法等。
《网络操作系统(Linux)》项目4-磁盘管理.pptx
《计算机应用基础实训指导》实训十八-PowerPoint-2010的动画和切换.pptx
安川机器人DX100使用说明书.1.pdf
《计算机专业英语》Unit-3-What-is-Hardware.ppt
内容概要:本文详细介绍了汇川H5U-A16自动贴布网胶机的PLC控制系统及其与威纶通触摸屏的集成方法。主要内容涵盖伺服轴控制、气缸动作、矩阵托盘管理、OEE统计等方面的编程技巧和优化措施。文中展示了如何将复杂的硬件动作抽象为可复用的功能块(FB),并通过参数配置实现灵活的系统控制。此外,还讨论了如何利用威纶通触摸屏进行实时监控和数据分析,以及如何通过合理的IO表管理和注释提高系统的可维护性和扩展性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和触摸屏应用的专业人士。 使用场景及目标:适用于需要开发或优化自动贴布网胶机及其他类似自动化设备的企业。主要目标是提升设备的可靠性和效率,降低维护成本,缩短开发周期。 其他说明:本文不仅提供了具体的编程示例,还分享了许多实战经验和技巧,如如何避免常见的错误和陷阱,如何应对特定硬件特性的挑战等。这些内容对于理解和掌握工业自动化系统的开发非常有价值。
内容概要:本文详细介绍了利用Matlab和Simulink进行电力系统暂态稳定性分析的方法和技术。首先构建了一个单机无穷大系统的仿真模型,涵盖了同步电机、无穷大电网、输电线路等基础模块的搭建。接着深入探讨了不同类型故障(如短路、断线)的配置方法及其对系统稳定性的影响。针对常见的暂态问题,提出了多种解决方案,包括并联补偿器的应用、自动重合闸的设计以及仿真加速技巧。同时,通过具体案例展示了如何调整关键参数来优化系统性能,确保暂态过程中系统的稳定性和可靠性。 适合人群:从事电力系统研究与开发的技术人员,尤其是对电力系统暂态稳定性感兴趣的工程师和研究人员。 使用场景及目标:适用于需要评估电力系统在突发故障情况下的稳定性的场合,帮助用户掌握故障仿真技术,优化系统设计,提高电力系统的可靠性和安全性。 其他说明:文中提供的代码片段和仿真技巧均经过实际验证,能够显著提升仿真的效率和准确性。建议读者结合自己的项目需求灵活应用相关技术和方法。
内容概要:本文详细介绍了利用FPGA实现永磁同步电机(SPM)的SVPWM控制系统的具体实现方法。系统采用Verilog进行底层硬件时序控制,包括SVPWM模块中的扇区判断、PWM生成以及死区时间控制等;Nios2软核处理器则用于执行控制算法,如磁场定向控制(FOC)、Clarke变换和PID调节器。两者通过Avalon总线连接,实现高效的软硬件协同工作。此外,文中还讨论了一些常见的调试技巧和优化方法,如定点数运算、硬件CRC校验模块的应用等。 适合人群:具备一定FPGA开发经验和电机控制理论基础的技术人员,尤其是从事嵌入式系统开发、自动化控制领域的工程师。 使用场景及目标:适用于需要高精度、高性能电机控制的应用场合,如工业自动化设备、机器人关节控制等。目标是通过软硬件协同设计提高系统的实时性和可靠性,降低电流谐波失真,增强抗干扰能力。 其他说明:文中提供了完整的工程源码和技术细节,有助于读者深入理解和实践。同时,作者分享了许多实用的经验教训,帮助读者避开常见陷阱,提高开发效率。
《移动商务网页设计与制作》第11章--Web-Worker-处理线程.ppt
chromedriver-win64-135.0.7049.114.zip
《计算机系统维护》第14章--硬盘分区的调整.ppt
内容概要:本文深入研究了交错并联Buck变换器的工作原理、性能优势及其具体实现。文章首先介绍了交错并联Buck变换器相较于传统Buck变换器的优势,包括减小输出电流和电压纹波、降低开关管和二极管的电流应力、减小输出滤波电容容量等。接着,文章详细展示了如何通过MATLAB/Simulink建立该变换器的仿真模型,包括参数设置、电路元件添加、PWM信号生成及连接、电压电流测量模块的添加等。此外,还探讨了PID控制器的设计与实现,通过理论分析和仿真验证了其有效性。最后,文章通过多个仿真实验验证了交错并联Buck变换器在纹波性能、器件应力等方面的优势,并分析了不同控制策略的效果,如P、PI、PID控制等。 适合人群:具备一定电力电子基础,对DC-DC变换器特别是交错并联Buck变换器感兴趣的工程师和技术人员。 使用场景及目标:①理解交错并联Buck变换器的工作原理及其相对于传统Buck变换器的优势;②掌握使用MATLAB/Simulink搭建交错并联Buck变换器仿真模型的方法;③学习PID控制器的设计与实现,了解其在电源系统中的应用;④通过仿真实验验证交错并联Buck变换器的性能,评估不同控制策略的效果。 其他说明:本文不仅提供了详细的理论分析,还给出了大量可运行的MATLAB代码,帮助读者更好地理解和实践交错并联Buck变换器的设计与实现。同时,通过对不同控制策略的对比分析,为实际工程应用提供了有价值的参考。
包括:源程序工程文件、Proteus仿真工程文件、电路原理图文件、配套技术手册 1、采用51/52单片机(通用)作为主控芯片; 2、数码管前两位显示分钟,后两位显示秒; 3、可以切换正计时/倒计时; 4、可设置倒计时时间,倒计时结束蜂鸣器报警; 5、计时过程中可记录时刻点 (存储十组记录数据),可翻看记录的数据。
《计算机应用基础实训指导》实训一-文字录入.pptx
《计算机录入技术》第十八章-常用外文输入法.pptx