ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
/**
* Creates a connection object. The actual network connect doesn't get
* established until needed. The start() instance method must be called
* subsequent to construction.
*
* @param chrootPath - the chroot of this client. Should be removed from this Class in ZOOKEEPER-838
* @param hostProvider
* the list of ZooKeeper servers to connect to
* @param sessionTimeout
* the timeout for connections.
* @param zooKeeper
* the zookeeper object that this connection is related to.
* @param watcher watcher for this connection
* @param clientCnxnSocket
* the socket implementation used (e.g. NIO/Netty)
* @param sessionId session id if re-establishing session
* @param sessionPasswd session passwd if re-establishing session
* @param canBeReadOnly
* whether the connection is allowed to go to read-only
* mode in case of partitioning
* @throws IOException
*/
public ClientCnxn(String chrootPath, HostProvider hostProvider, int sessionTimeout, ZooKeeper zooKeeper,
ClientWatchManager watcher, ClientCnxnSocket clientCnxnSocket,
long sessionId, byte[] sessionPasswd, boolean canBeReadOnly) {
this.zooKeeper = zooKeeper;
this.watcher = watcher;
this.sessionId = sessionId;
this.sessionPasswd = sessionPasswd;
this.sessionTimeout = sessionTimeout;
this.hostProvider = hostProvider;
this.chrootPath = chrootPath;
//如果zookeeper集群有1000台,那么会话超时时间岂不是要设置的很大?因此,zookeeper一般不会很大,3台或者5台足亦
connectTimeout = sessionTimeout / hostProvider.size();//链接超时时间是会话超时时间除以Zookeeper集群数
//读超时是会话超时的2/3
readTimeout = sessionTimeout * 2 / 3;
readOnly = canBeReadOnly;
//读线程,在ClientCnxnd的start方法中启动
sendThread = new SendThread(clientCnxnSocket);
//会话线程,在ClientCnxnd的start方法中启动
eventThread = new EventThread();
}
对于SendThread数据传输线程包含两方面的内容,1是基于TCP/IP的Socket的数据传输,2.传输的数据内容。首先关注传输的数据内容,在TCP/IP传输的数据都是字节,因此,在SendThread发送数据之前,需要将要传输的数据结构进行序列化成字节流,服务器端会反序列化成相应的数据结构。当客户端收到服务器返回的字节流时,客户端将其反序列化为相应的数据结构。
首先看看数据的序列化和反序列化,接口定义:
package org.apache.jute //该借口不是Zookeeper原生提供的,是Apache的jute提供的
import java.io.IOException;
/**
* Interface that is implemented by generated classes.
*
*/
public interface Record {
public void serialize(OutputArchive archive, String tag) //序列化,tag在XmlInputArchive序列化器中,用作xml元素标签
throws IOException;
public void deserialize(InputArchive archive, String tag)//反序列话
throws IOException;
}
OutputArchive接口是数据结构序列化为字节流的字节流写入器,InputArchive接口是字节流反序列化为数据结构的字节流读取器。OutputArchive和InputArchive接口有三个成对使用的实现类
BinaryOutputArchive和BinaryInputArchive底层使用DataOutput和DataInput作为字节容器
XmlOutputArchive和XmlInputArchive底层使用PrintStream,XmlInputArchive使用Xml解析的方式得到相应的数据结构
CsvOutputArchive和CsvInputArchive底层使用PrintStream作为自己容器
Zookeeper客户端向服务器端发送请求,包含请求头和请求正文两部分,每个请求的请求头的类型都是一样的,而请求正文根据请求的不同,分为多种类型。
Zookeeper服务器端向客户端返回响应数据,包含响应头和响应正文两部分,每个响应的响应头的类型都是一样的,而响应正文根据请求的不同,分为多种类型。
请求头,各种请求正文,响应头和响应正文因为要在Socket上进行数据传输,所以它们应该都是可序列化和反序列话的,因此它们都是可序列化的
请求头:
public class RequestHeader implements Record {
private int xid; //请求的事务id,具体的含义和功能接下来分析
private int type; //请求类型?
public RequestHeader() {
}
public RequestHeader(
int xid,
int type) {
this.xid=xid;
this.type=type;
}
public int getXid() {
return xid;
}
public void setXid(int m_) {
xid=m_;
}
public int getType() {
return type;
}
public void setType(int m_) {
type=m_;
}
//序列化操作,将xid和type序列化到OutputArchive中,
public void serialize(OutputArchive a_, String tag) throws java.io.IOException {
a_.startRecord(this,tag); //对于最常使用的BinaryOutputArchive,此方法空实现
a_.writeInt(xid,"xid");
a_.writeInt(type,"type");
a_.endRecord(this,tag);//对于最常使用的BinaryOutputArchive,此方法空实现
}
//序列化操作,将xid和type反序列化
public void deserialize(InputArchive a_, String tag) throws java.io.IOException {
a_.startRecord(tag);//对于最常使用的BinaryInputArchive,此方法空实现
xid=a_.readInt("xid");
type=a_.readInt("type");
a_.endRecord(tag);//对于最常使用的BinaryInputArchive,此方法空实现
}
public String toString() {
try {
java.io.ByteArrayOutputStream s =
new java.io.ByteArrayOutputStream();
CsvOutputArchive a_ =
new CsvOutputArchive(s);
a_.startRecord(this,"");//对于CsvOutputArchive,startRecord方法
a_.writeInt(xid,"xid");
a_.writeInt(type,"type");
a_.endRecord(this,"");
return new String(s.toByteArray(), "UTF-8");
} catch (Throwable ex) {
ex.printStackTrace();
}
return "ERROR";
}
public void write(java.io.DataOutput out) throws java.io.IOException {
BinaryOutputArchive archive = new BinaryOutputArchive(out);
serialize(archive, "");
}
public void readFields(java.io.DataInput in) throws java.io.IOException {
BinaryInputArchive archive = new BinaryInputArchive(in);
deserialize(archive, "");
}
public int compareTo (Object peer_) throws ClassCastException {
if (!(peer_ instanceof RequestHeader)) {
throw new ClassCastException("Comparing different types of records.");
}
RequestHeader peer = (RequestHeader) peer_;
int ret = 0;
ret = (xid == peer.xid)? 0 :((xid<peer.xid)?-1:1);
if (ret != 0) return ret;
ret = (type == peer.type)? 0 :((type<peer.type)?-1:1);
if (ret != 0) return ret;
return ret;
}
public boolean equals(Object peer_) {
if (!(peer_ instanceof RequestHeader)) {
return false;
}
if (peer_ == this) {
return true;
}
RequestHeader peer = (RequestHeader) peer_;
boolean ret = false;
ret = (xid==peer.xid);
if (!ret) return ret;
ret = (type==peer.type);
if (!ret) return ret;
return ret;
}
public int hashCode() {
int result = 17;
int ret;
ret = (int)xid;
result = 37*result + ret;
ret = (int)type;
result = 37*result + ret;
return result;
}
public static String signature() {
return "LRequestHeader(ii)";
}
}
请求正文有很多,比如
- 链接请求ConnectRequest
- 创建znode请求CreateRequest
- 节点是否存在请求ExistsRequest
- 删除znode请求DeleteRequest
- 获取child znodes请求GetChildrenRequest
- 设置znode数据SetDataRequest
- 事件WatcherEvent
以CreateRequest为例进行分析
public class CreateRequest implements Record {
private String path; //创建znode节点的path
private byte[] data; //创建znode节点时的节点数据
private java.util.List<org.apache.zookeeper.data.ACL> acl; //创建znode节点时的ACL
private int flags;//这个参数干啥的?
public CreateRequest() {
}
public CreateRequest(
String path,
byte[] data,
java.util.List<org.apache.zookeeper.data.ACL> acl,
int flags) {
this.path=path;
this.data=data;
this.acl=acl;
this.flags=flags;
}
public String getPath() {
return path;
}
public void setPath(String m_) {
path=m_;
}
public byte[] getData() {
return data;
}
public void setData(byte[] m_) {
data=m_;
}
public java.util.List<org.apache.zookeeper.data.ACL> getAcl() {
return acl;
}
public void setAcl(java.util.List<org.apache.zookeeper.data.ACL> m_) {
acl=m_;
}
public int getFlags() {
return flags;
}
public void setFlags(int m_) {
flags=m_;
}
public void serialize(OutputArchive a_, String tag) throws java.io.IOException {
a_.startRecord(this,tag);
a_.writeString(path,"path");//写入path
a_.writeBuffer(data,"data");//写入data字节数组
{
a_.startVector(acl,"acl");//写入acl,acl是List类型
if (acl!= null) {
int len1 = acl.size();
for(int vidx1 = 0; vidx1<len1; vidx1++) {
org.apache.zookeeper.data.ACL e1 = (org.apache.zookeeper.data.ACL) acl.get(vidx1);
a_.writeRecord(e1,"e1");//ACL也是一个Record
}
}
a_.endVector(acl,"acl");
}
a_.writeInt(flags,"flags");//写入flags
a_.endRecord(this,tag);
}
public void deserialize(InputArchive a_, String tag) throws java.io.IOException {
a_.startRecord(tag);
path=a_.readString("path");
data=a_.readBuffer("data");
{
Index vidx1 = a_.startVector("acl");
if (vidx1!= null) { acl=new java.util.ArrayList<org.apache.zookeeper.data.ACL>();
for (; !vidx1.done(); vidx1.incr()) {
org.apache.zookeeper.data.ACL e1;
e1= new org.apache.zookeeper.data.ACL();
a_.readRecord(e1,"e1");
acl.add(e1);
}
}
a_.endVector("acl");
}
flags=a_.readInt("flags");
a_.endRecord(tag);
}
public String toString() {
try {
java.io.ByteArrayOutputStream s =
new java.io.ByteArrayOutputStream();
CsvOutputArchive a_ =
new CsvOutputArchive(s);
a_.startRecord(this,"");
a_.writeString(path,"path");
a_.writeBuffer(data,"data");
{
a_.startVector(acl,"acl");
if (acl!= null) { int len1 = acl.size();
for(int vidx1 = 0; vidx1<len1; vidx1++) {
org.apache.zookeeper.data.ACL e1 = (org.apache.zookeeper.data.ACL) acl.get(vidx1);
a_.writeRecord(e1,"e1");
}
}
a_.endVector(acl,"acl");
}
a_.writeInt(flags,"flags");
a_.endRecord(this,"");
return new String(s.toByteArray(), "UTF-8");
} catch (Throwable ex) {
ex.printStackTrace();
}
return "ERROR";
}
public void write(java.io.DataOutput out) throws java.io.IOException {
BinaryOutputArchive archive = new BinaryOutputArchive(out);
serialize(archive, "");
}
public void readFields(java.io.DataInput in) throws java.io.IOException {
BinaryInputArchive archive = new BinaryInputArchive(in);
deserialize(archive, "");
}
public int compareTo (Object peer_) throws ClassCastException {
throw new UnsupportedOperationException("comparing CreateRequest is unimplemented");
}
public boolean equals(Object peer_) {
if (!(peer_ instanceof CreateRequest)) {
return false;
}
if (peer_ == this) {
return true;
}
CreateRequest peer = (CreateRequest) peer_;
boolean ret = false;
ret = path.equals(peer.path);
if (!ret) return ret;
ret = org.apache.jute.Utils.bufEquals(data,peer.data);
if (!ret) return ret;
ret = acl.equals(peer.acl);
if (!ret) return ret;
ret = (flags==peer.flags);
if (!ret) return ret;
return ret;
}
public int hashCode() {
int result = 17;
int ret;
ret = path.hashCode();
result = 37*result + ret;
ret = java.util.Arrays.toString(data).hashCode();
result = 37*result + ret;
ret = acl.hashCode();
result = 37*result + ret;
ret = (int)flags;
result = 37*result + ret;
return result;
}
public static String signature() {
return "LCreateRequest(sB[LACL(iLId(ss))]i)";
}
}
ConnectRequest的请求数据:
private int protocolVersion;
private long lastZxidSeen; //客户端保存的Zxid最近时间,zxid有什么用呢?
private int timeOut;//会话超时时间
private long sessionId;
private byte[] passwd;
ClientCnxn的内部类Packet类封装了请求头,响应头,请求正文和响应征正文
static class Packet { RequestHeader requestHeader;//请求头 ReplyHeader replyHeader; //响应头 Record request;//请求正文 Record response; //响应正文 ByteBuffer bb;//上面四部分序列化的字节流 /** Client's view of the path (may differ due to chroot) **/ String clientPath; /** Servers's view of the path (may differ due to chroot) **/ String serverPath; boolean finished; AsyncCallback cb;//异步请求的响应Callback Object ctx; WatchRegistration watchRegistration; public boolean readOnly; /** Convenience ctor */ Packet(RequestHeader requestHeader, ReplyHeader replyHeader, Record request, Record response, WatchRegistration watchRegistration) { this(requestHeader, replyHeader, request, response, watchRegistration, false); } Packet(RequestHeader requestHeader, ReplyHeader replyHeader, Record request, Record response, WatchRegistration watchRegistration, boolean readOnly) { this.requestHeader = requestHeader; this.replyHeader = replyHeader; this.request = request; this.response = response; this.readOnly = readOnly; this.watchRegistration = watchRegistration; } public void createBB() { try { ByteArrayOutputStream baos = new ByteArrayOutputStream(); BinaryOutputArchive boa = BinaryOutputArchive.getArchive(baos);//序列化字节流容器 boa.writeInt(-1, "len"); // We'll fill this in later if (requestHeader != null) { requestHeader.serialize(boa, "header"); } if (request instanceof ConnectRequest) { request.serialize(boa, "connect"); // append "am-I-allowed-to-be-readonly" flag boa.writeBool(readOnly, "readOnly"); } else if (request != null) { request.serialize(boa, "request"); } baos.close(); this.bb = ByteBuffer.wrap(baos.toByteArray());//将字节流容器中的字节流复制给bb this.bb.putInt(this.bb.capacity() - 4); this.bb.rewind(); } catch (IOException e) { LOG.warn("Ignoring unexpected exception", e); } } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("clientPath:" + clientPath); sb.append(" serverPath:" + serverPath); sb.append(" finished:" + finished); sb.append(" header:: " + requestHeader); sb.append(" replyHeader:: " + replyHeader); sb.append(" request:: " + request); sb.append(" response:: " + response); // jute toString is horrible, remove unnecessary newlines return sb.toString().replaceAll("\r*\n+", " "); } }
ClientCnxn类包含两个队列(LinkedList),队列中的元素都是Packet类型,pengdingQueue表示请求已经发送,等待响应结果;outgoingQueue表示等待发送请求的请求序列
/** * These are the packets that have been sent and are waiting for a response. */ private final LinkedList<Packet> pendingQueue = new LinkedList<Packet>(); /** * These are the packets that need to be sent. */ private final LinkedList<Packet> outgoingQueue = new LinkedList<Packet>();
ClientCnxn的Socket的数据传输,将另外一篇进行单独分析
相关推荐
4. **序列化**:在ZooKeeper中,存储的数据需要进行序列化。可以使用Java内置的序列化,或者自定义序列化方式,例如JSON、protobuf等,将对象转换为字节流以便在网络间传输和存储。 5. **ACL权限**:ZooKeeper提供...
这种自定义的序列化机制优化了数据在网络传输过程中的效率,减少了序列化和反序列化带来的开销,对于提高MapReduce任务的执行速度具有重要意义。 通过以上分析,我们可以看出Hadoop的设计理念和架构复杂性,同时也...
### Hadoop源代码分析知识点详解 #### 一、Hadoop背景与关键技术介绍 Hadoop作为一款开源的大数据处理框架,其设计灵感源自Google的一系列核心论文。这些论文详细阐述了Google构建其基础设施的方法论和技术原理,...
### Hadoop源代码分析知识点概览 #### 一、Hadoop背景与关键技术 - **Google核心技术**:Google凭借其先进的计算平台在业界确立了领先地位,其中主要包括以下几项关键技术: - **Google Cluster**:提供了关于...
第2章 ZooKeeper之序列化组件源码解析【透视现象,直击本质】 第4章 持久化【高手过招必备】 第6章 服务器启动 【由浅入深,先学好单机版,才能掌握集群版】 第7章 会话管理 【无处不在的会话其实没那么难】 第8章 ...
源码中包含了这些功能的实现,如`org.apache.zookeeper.server`包下的`PackedDataInputStream`和`PackedDataOutputStream`用于数据序列化和反序列化,`org.apache.zookeeper.server.quorum`包下的类则涉及到了集群中...
为了提高Zookeeper的性能,可以从网络通信优化、数据序列化方式、硬件配置等方面入手。例如,合理设置`tickTime`参数以优化心跳检测,选择高效的序列化库,以及使用SSD硬盘来提升磁盘I/O速度。 通过以上对Zookeeper...
- **性能提升**:包括更高效的网络通信库和优化的数据序列化,使得数据读写速度更快。 - **稳定性增强**:对并发控制和错误处理进行了改进,降低了服务中断的风险。 - **安全增强**:支持 SASL 认证和 ACL 策略,...
Zookeeper内部使用了Java的序列化机制,但同时也提供了自定义序列化器的接口,用户可以根据需求定制数据的序列化和反序列化策略。这使得Zookeeper能够适应各种复杂的数据结构和格式。 在运维方面,Zookeeper提供了...
7. **数据序列化与反序列化**:Zookeeper不处理数据的序列化,因此在存储和读取数据时,开发者需要自己处理这个问题。 在实际应用中,Zookeeper常用于分布式锁、配置管理、集群管理等场景,其C库为非Java应用提供了...
vulhub靶机里的这个漏洞里缺少了curl或者wget这些命令
Hadoop源代码分析涉及多个方面,包括包依赖关系、配置管理、文件系统抽象、分布式文件系统(HDFS)、IPC(进程间通信)、序列化机制、网络功能、安全性和数据描述语言(DDL)。 Hadoop的包依赖关系复杂,HDFS作为一...
5. **lib** 目录:存放 ZooKeeper 运行所需的依赖库,这些库支持 ZooKeeper 的网络通信、序列化和其他功能。 6. **build** 目录(可能有):包含构建 ZooKeeper 的输出结果,比如编译后的 JAR 文件。 7. **LICENSE...
任何实现了Writable接口的类,都需要定义`write(DataOutput out)`和`readFields(DataInput in)`方法,来实现序列化和反序列化的逻辑。 以上内容为根据提供的文件部分描述的Hadoop源代码分析的知识点。该文件内容...
### Hadoop源代码分析 #### 一、Hadoop与Google的核心技术 Hadoop是一个开源的分布式计算框架,其设计初衷是为了模拟Google所采用的核心技术。Google通过一系列文章介绍了自己的技术栈,包括分布式集群管理...
1. **序列化与反序列化**:RPC通信过程中,对象需要转换成网络传输的字节流,再在接收端还原为对象,这就需要序列化和反序列化机制。 2. **网络通信**:RPC框架通常使用HTTP、TCP或自定义协议进行网络通信,如gRPC...
为了实现这个过程,我们需要设计一套序列化和反序列化机制,以便将对象转换为网络传输的数据格式,如JSON或protobuf。 在源码层面,我们可以采用Java的反射机制来动态生成代理类,使得客户端可以直接调用远程服务的...
Avro是一个跨语言的远程过程调用(RPC)和数据序列化系统。ZooKeeper是一个分布式协调服务,用于解决分布式系统中的一致性问题。HBase是一个基于列的分布式数据库,提供快速随机访问和大规模数据分析。HDFS是一个高...