在使用UUID作为数据库主键时,当数据量达到一定数量的时候(上亿条),性能比序列差很很明显。为了提升性能,可以考虑把UUID的长度降低(数据库本身有字节存储UUID类型的可以无视)。
经研究,发现JDK自带的UUID类中toString方法其实是把128位字节转换为16进制数值,这里考虑使用62进制,既0-9a-zA-Z,为此,专门编写了一个UUID字符串生成法。
首先,需要一个将long型值转换为62进制的工具类,代码如下:
public class Numbers {
final static char[] digits = { '0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y',
'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y',
'Z' };
final static Map<Character, Integer> digitMap = new HashMap<Character, Integer>();
static {
for (int i = 0; i < digits.length; i++) {
digitMap.put(digits[i], (int) i);
}
}
/**
* 支持的最大进制数
*/
public static final int MAX_RADIX = digits.length;
/**
* 支持的最小进制数
*/
public static final int MIN_RADIX = 2;
/**
* 将长整型数值转换为指定的进制数(最大支持62进制,字母数字已经用尽)
*
* @param i
* @param radix
* @return
*/
public static String toString(long i, int radix) {
if (radix < MIN_RADIX || radix > MAX_RADIX)
radix = 10;
if (radix == 10)
return Long.toString(i);
final int size = 65;
int charPos = 64;
char[] buf = new char[size];
boolean negative = (i < 0);
if (!negative) {
i = -i;
}
while (i <= -radix) {
buf[charPos--] = digits[(int) (-(i % radix))];
i = i / radix;
}
buf[charPos] = digits[(int) (-i)];
if (negative) {
buf[--charPos] = '-';
}
return new String(buf, charPos, (size - charPos));
}
static NumberFormatException forInputString(String s) {
return new NumberFormatException("For input string: \"" + s + "\"");
}
/**
* 将字符串转换为长整型数字
*
* @param s
* 数字字符串
* @param radix
* 进制数
* @return
*/
public static long toNumber(String s, int radix) {
if (s == null) {
throw new NumberFormatException("null");
}
if (radix < MIN_RADIX) {
throw new NumberFormatException("radix " + radix
+ " less than Numbers.MIN_RADIX");
}
if (radix > MAX_RADIX) {
throw new NumberFormatException("radix " + radix
+ " greater than Numbers.MAX_RADIX");
}
long result = 0;
boolean negative = false;
int i = 0, len = s.length();
long limit = -Long.MAX_VALUE;
long multmin;
Integer digit;
if (len > 0) {
char firstChar = s.charAt(0);
if (firstChar < '0') {
if (firstChar == '-') {
negative = true;
limit = Long.MIN_VALUE;
} else if (firstChar != '+')
throw forInputString(s);
if (len == 1) {
throw forInputString(s);
}
i++;
}
multmin = limit / radix;
while (i < len) {
digit = digitMap.get(s.charAt(i++));
if (digit == null) {
throw forInputString(s);
}
if (digit < 0) {
throw forInputString(s);
}
if (result < multmin) {
throw forInputString(s);
}
result *= radix;
if (result < limit + digit) {
throw forInputString(s);
}
result -= digit;
}
} else {
throw forInputString(s);
}
return negative ? result : -result;
}
}
其次,编写uuid生成工具方法,代码如下:
private static String digits(long val, int digits) {
long hi = 1L << (digits * 4);
return Numbers.toString(hi | (val & (hi - 1)), Numbers.MAX_RADIX)
.substring(1);
}
/**
* 以62进制(字母加数字)生成19位UUID,最短的UUID
*
* @return
*/
public static String uuid() {
UUID uuid = UUID.randomUUID();
StringBuilder sb = new StringBuilder();
sb.append(digits(uuid.getMostSignificantBits() >> 32, 8));
sb.append(digits(uuid.getMostSignificantBits() >> 16, 4));
sb.append(digits(uuid.getMostSignificantBits(), 4));
sb.append(digits(uuid.getLeastSignificantBits() >> 48, 4));
sb.append(digits(uuid.getLeastSignificantBits(), 12));
return sb.toString();
}
如此一来,把原来32位或者36位的原始UUID缩短为19位,且不丢失精度。生成的UUID大概类似:
wcea4ucWUxPx0g8ahel
PCDoWJMPwloLBrsoGrt
S2hYVN4q32kBkIlxfAj
wFxuUfs8iBt83vK7i4Q
9kH63UK4BXx1S62Lzyk
dLo0JUu0OqLemJGxixo
n7Fw32kRj1bMSKFfTLb
xV9FV0d4g1Xj7feODwd
ajNbLuj3jGTobCKt7V4
t7laXKUe2uSDLQmWKKM
最后,如果在digits追加一些字符,甚至可以达到七八十进制的水平,可再缩短一两位UUID长度,但鉴于UUID可读性不建议这么做。
分享到:
相关推荐
VS集成C#开发ABB机器人二次开发:实时变量刷新与程序修改上位机系统,vs对ABB机器人二次开发C#集成PC SDK开发ABB机器人上位机开发 变量实时刷新,实时修改 io刷新修改, 在线程序修改实时刷新 上位机移动机械手 ,vs;ABB机器人二次开发;C#集成PC SDK;实时刷新;实时修改;io刷新修改;在线程序修改;上位机移动机械手,C#集成PC SDK开发ABB机器人上位机系统:实时刷新与修改功能
分布式系统与SCADA系统
,电机控制资料-- 注:本驱动器适合于直流有感无刷电机 功能特点 支持电压9V~36V,额定输出电流5A 支持电位器、开关、0~3.3V模拟信号范围、0 3.3 5 24V逻辑电平、PWM 频率 脉冲信号、RS485多种输入信号 支持占空比调速(调压)、速度闭环控制(稳速)、电流控制(稳流)多种调速方式 支持按键控制正反转速度,启停 特色功能 1. 霍尔自学习 电机的三相线和三霍尔信号线可不按顺序连接,驱动器可自动对电机霍尔顺序进行学习。 2. 稳速控制响应时间短 稳速控制时电机由正转2000RPM切为反转2000RPM,用时约1.0s,电机切过程平稳 3. 极低速稳速控制 电机进行极低速稳速控制,电机稳速控制均匀,无忽快忽慢现象。
欧姆龙CX-Programmer CP系列PLC功能块详解:伺服、步进、气缸及普通电机控制应用解析,欧姆龙cx-programmer CP系列PLC做的功能块,包括伺服,步进,气缸普通电机的控制。 ,欧姆龙CX-Programmer; CP系列PLC; 伺服控制; 步进控制; 电机控制; 气缸控制,欧姆龙CX-Programmer PLC:CP系列功能块与多种电机控制
基于comsol电弧与熔池热物理交互现象的研究,comsol电弧熔池耦合 ,comsol; 电弧熔池; 耦合,COMSOL电弧与熔池的耦合技术
,自动泊车APA开发,超声波算法开发
nodejs010-nodejs-config-chain-1.1.8-2.el6.centos.alt.noarch.rpm
FLAC3D蠕变命令流详解:博格斯本构模型的时间步长自动调整实践与应用,附图一至图三竖向位移云图变化及图四拱顶沉降趋势分析。,flac3d蠕变命令流,蠕变本构模型采用博格斯本构,时间步长自动调整,5.0和6.0命令均有,配有文字和视频解释。 图一至图三为不同蠕变时间下的竖向位移云图,图四为拱顶沉降随时间的变化趋势。 ,flac3d;蠕变命令流;博格斯本构;时间步长自动调整;5.0和6.0命令;文字解释;视频解释;竖向位移云图;拱顶沉降随时间变化趋势。,FLAC3D蠕变命令流:博格斯本构自动调整时间步长解释
免费JAVA毕业设计 2024成品源码+论文+数据库+启动教程 启动教程:https://www.bilibili.com/video/BV1SzbFe7EGZ 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
超导电机性能及波形特征分析,某超导电机性能及其波形 ,超导电机性能; 波形; 性能指标; 波形分析,超导电机性能与波形分析
逆磁致伸缩效应:应变与磁导率互变之效应解析,逆磁致伸缩效应,应变造成磁导率改变 ,逆磁致伸缩效应; 磁导率变化; 应变影响; 磁性材料响应,逆磁致伸缩效应:磁导率随应变变化
基于VS2015+Qt5.9+Halcon20的多个相机缺陷检测源码,可稳定运行并支持多种相机缺陷检测功能,多个相机缺陷检测源码 vs2015+qt5.9+halcon20 可正常运行 ,多个相机;缺陷检测;源码;VS2015;Qt5.9;Halcon20;可正常运行,"Halcon源码检测系统,基于VS2015与Qt5.9,相机缺陷检测"
内容概要:本文旨在作为GitHub平台针对初学者的实用教程,涵盖从GitHub账号注册、仓库创建、代码管理、提交以及团队协作等全过程。文章详述了GitHub的基础使用方法,包括如何创建和配置代码仓库、使用Git命令进行代码的上传和变更处理、参与到开源项目的步骤,以及创建团队和管理权限的方式。还介绍了几个重要的Git命令及其作用,有助于用户理解版本控制系统的核心思想。通过这些指导,能够使开发者更快地适应这一流行工具,从而提升编码效率,提高协作效能。此外,也推荐使用者多多练习并投身实际操作,以此来累积更多的使用技巧。 适用人群:面向所有初次接触或正在初步探索GitHub使用方法的新用户,无论是独立工作者还是软件工程专业的学生均能从中受益。 使用场景及目标:主要目的是为了让新手能迅速熟悉并掌握GitHub的各项基本技能,以便更好地应用于日常的代码开发过程中。无论你是想要将自己的作品分享出来获取反馈,或是加入某个开源社区贡献自己的一份力量,本文都能提供完整的路径指引。 其他说明:虽然本指南涵盖了GitHub最常用的特性介绍,但对于高级设置及更复杂的用例则有所省略,若想深入了解相关进阶知识点,请参阅官方文档或者进一步研究其他权威资料。
deepseek部署教程.md
"Comsol电力变压器内部热源计算与热流耦合分析模型:温度场与流体场数值计算方法研究",comsol电力变压器温度场和流体场数值计算模型,通过变压器电磁场计算得到热源大小,最后通过热流耦合计算得到变压器内部温度场和流体场分布, ,核心关键词:Comsol模型; 电力变压器; 温度场; 流体场; 数值计算; 电磁场计算; 热流耦合计算; 内部温度场分布; 流体场分布。,"电力变压器温度场与流体场数值计算模型研究"
免费JAVA毕业设计 2024成品源码+论文+数据库+启动教程 启动教程:https://www.bilibili.com/video/BV1SzbFe7EGZ 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
1、文件内容:publican-redhat-2.7-6.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/publican-redhat-2.7-6.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、安装指导:私信博主,全程指导安装
S7-200 Smart V3.0 固件升级包_测试版2025.02
免费JAVA毕业设计 2024成品源码+论文+数据库+启动教程 启动教程:https://www.bilibili.com/video/BV1SzbFe7EGZ 项目讲解视频:https://www.bilibili.com/video/BV1Tb421n72S 二次开发教程:https://www.bilibili.com/video/BV18i421i7Dx
基于深度强化学习的微电网能量管理策略优化——双深度期望Q网络算法的应用与实践,python代码-基于深度期望Q网络算法的微电网能量管理策略-002 关键词:光伏发电、微电网能量管理、深度强化学习、双深度期望 Q 网络 内容:随着光伏发电在微电网中的渗透率不断提高,其发电出力的不确定性和时变性为微电网的经济运行带来了挑战。 在构建经济调度模型时,就需要适当模拟不确定变量并相应地发展高效求解算法。 在此背景下,文中提出能够有效计及不确定性因素的深度强化学习算法,以实时求解微电网的优化运行问题。 为此,提出双深度期望Q网络算法,通过考虑状态转移的随机性,优化一般深度Q网络算法的Q迭代规则,显著提高算法的收敛速度。 ,关键词:光伏发电; 微电网能量管理; 深度强化学习; 双深度期望Q网络; 优化运行; 随机性; 收敛速度,基于双深度期望Q网络的微电网能量管理策略研究