在上一篇文章里忽略了一点。
CAP 定理有一个缺陷,这个缺陷可以帮助我们“部分”摆脱 分布式困境。
总的来说,CAP 定理本身是完备的,但它并没有描述一个分布式系统何时产生分区,以及分区会持续多长时间。理论其实只限制:在分区发生的 时间内,系统只能在一致性(C)和可用性(A)之间二选一。
因此,分布式系统完全可以在没有出现分区时保证 C 和 A,而在出现分区后,放弃一些 A 或者 C 然后通过人工操作消除分区,让系统恢复到分区前的状况。
这样说太复杂了。用 说人话 的方式就是:
※ 当没有故障时,系统正常处理请求并且返回一致的结果。
※ 出现故障后,首先把所有请求切换到正常机器,故障机器下线。
※ 接着人工恢复故障机器上的数据,保证数据一致性。
※ 最后让机器重新上线,恢复系统正常容量。
基本上(请忽略一些细节),这就是主备同步的数据库集群在故障恢复时的做法。
这里的思路是,既然 CAP 特性在一个时间点不可能同时满足,那我们可以在这个时间点暂时放弃 A 或者 C,然后在另一个时间点再设法恢复。只要恢复的速度足够快,用户就能够忍受暂时的不一致或者不可用。

“Twitter 只是暂时不可用,最终会恢复可用。”
沿着这个思路,业界产生了一些理论,其中最著名的是 BASE。
BASE, 最终一致性
这个理论由 Basically Available, Soft state, Eventual consistency 组成。核心的概念是 Eventual consistency ——最终一致性。它局部的放弃了 CAP 理论中的“完全”一致性,提供了更好的可用性和分区容忍度。
Basically Available
基本可用, 或者说部分可用。由于分布式系统的节点故障是常见的,业务必须接受这种不可用,并且做出选择:是访问另一个节点忍受数据的临时不一致,还是等待节点恢复并忍受业务上的部分不可用。
Soft state
把所有节点的数据 (数据 = 状态) 都看作是缓存(Cache)。适当的调整业务,使业务可以忍受数据的临时不一致,并保证这种不一致是无害的,可以被最终用户理解。
Eventual consistency
放弃在任何时刻、从任何节点都能读到完全一致的数据。允许数据的临时不一致,并通过异步复制、重试和合并消除数据的临时不一致。
注意 在分布式系统中,写入和读取可能发生在不同的节点上。最终一致带来的问题是,业务在写入后立即读取,很可能读不到刚刚写入的数据。因此需要一个附加约束:
RYW (Read-Your-Writes) consistency
RYW consistency 是弱化的因果一致性(Causal consistency),它保证业务在会话中一定能读到上一次写入的数据。会话可以看作是同一个连接,或者是同一个 HTTP Session。例如:用户刚刚创建了一个订单,在提交后他可以立刻查看这个订单,这就是 RYW 一致性。
ACID 与 BASE

BASE 这个缩写有些拼凑的痕迹。那是因为作者认为它的含义与 ACID 恰好相反。
在英文词典里,ACID 代表 酸(Acid),而 BASE 代表 碱(Base)。就像这两个单词在化学中的含义一样 —— ACID 与 BASE 位于 CAP 理论的两端,代表了分布式系统的两种选择。
传统数据库用 ACID 保护业务数据的一致性。它明确的要求:事务必须保证数据从上一个一致性状态进入下一个一致性状态,事务的结束和数据的一致性之间没有时差。
从 CAP 定理我们可以知道:正是 ACID 要求的这种“强”一致性,使得事务系统只能选择 C-A 或者 C-P。第一个选择实际上是单机的传统数据库,第二个选择是后面将要介绍的强一致性的数据复制集群。
而 BASE 代表了另一种选择:放弃一致性 来保证分布式系统的高可用。与 ACID 的做法相反:业务需要接受和处理数据的不一致,并且保证这些不一致不会破坏业务约束 —— 这需要设计者对可能产生的数据不一致和业务约束非常了解,并且带来了更高的复杂度。
选择 高可用 的价值在于:很多场景下系统不可用就意味着对外停止服务,对用户的影响和商业风险远远比“系统仍然可用但是要过一会才能看到数据”来得严重。在一些场景下,用户或许根本不在乎过一会才能看到数据,例如 银行跨行转账。但是,如果银行告诉用户无法进行跨行转账,那么就会有很多用户质疑或投诉银行的服务了。
上面的 CAP 拼图里还剩下一个区域。前面讨论过的 ACID 理论占据了 C-A 区域,代表根本无法容忍分区的传统单机数据库。本文介绍的 BASE 理论位于 A-P 区域,代表部分放弃一致性、追求高可用的现代业务系统。
因此在这幅拼图里还剩下 C-P:能够在分布式环境下 保证数据一致性 的理论。
下一篇准备介绍这一部分理论。敬请期待。
相关推荐
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC
Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法
STM32F103C8T6 USB寄存器开发详解(12)-键盘设备
科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量
Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用
基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务
1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;
altermanager的企业微信告警服务
MyAgent测试版本在线下载
Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用
C++学生成绩管理系统源码
基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略
scratch介绍(scratch说明).zip
内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。
该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。
这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。
主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日
运行GUI版本,可二开