`
Josh_Persistence
  • 浏览: 1664062 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类

Esper 事件之事件上下文 - Context (五)

阅读更多

Esper 事件之事件上下文 - Context 

 

Context是Esper中的事件的上下文,从Context中,你可以获取事件的相关信息。我们也可吧Context理解成一个框,把不同的事件按照框的规则框起来,并且有可能有多个框,而框与框之间不会互相影响。

 

1.Context基本语法

语法结构如下:

 

    create context context_name partition [by] event_property [and event_property [and ...]] from stream_def   
    [, event_property [...] from stream_def] [, ...]  

 

 

说明:
context_name为context的名字,并且唯一。如果重复,会说明已存在。

 

event_property为事件的属性名,多个属性名之间用and连接,也可以用逗号连接。

 

stream_def为事件流的定义,简单的定义可以是一个事件的名称,比如之前定义了一个Map结构的事件为User,那么这里就可以写User。复杂的流定义后面会说到

 

举个例子:

 

    create context NewUser partition by id and name from User  
    // id和name是User的属性  

 

 

如果context包含多个流,例子如下:

 

 

    create context Person partition by sid from Student, tid from Teacher  
    // sid是Student的属性,tid是Teacher的属性  

 

 

多个流一定要注意,每个流的中用于context的属性的数量要一样,数据类型也要一致。比如下面这几个就是错误的:

 

 

    create context Person partition by sid from Student, tname from Teacher  
    // 错误:sid是int,tname是String,数据类型不一致  
      
    create context Person partition by sid from Student, tid,tname from Teacher  
    // 错误:Student有一个属性,Teacher有两个属性,属性数量不一致  
      
    create context Person partition by sid,sname from Student, tname,tid from Teacher  
    // 错误:sid对应tname,sname对应tid,并且sname和tname是String,sid和tid是int,属性数量一样,但是对应的数据类型不一致  

 

 

实际上可以对进入context的事件增加过滤条件,不符合条件的就被过滤掉,就像下面这样:

    create context Person partition by sid from Student(age > 20)  
    // age大于20的Student事件才能建立或者进入context  

 

看了这么多,可能只是知道context的一些基本定义方法,但是不知道什么意思。其实很简单,partition by后面的属性,就是作为context的一个约束,比如说id,如果id相等的则进入同一个context里,如果id不同,那就新建一个 context。好比根据id分组,id相同的会被分到一个组里,不同的会新建一个组并等待相同的进入。

       如果parition by后面跟着同一个流的两个属性,那么必须两个属性值一样才能进入context。比如说A事件id=1,name=a,那么会以1和a两个值建立 context,有点像数据库里的联合主键。然后B事件id=1,name=b,则又会新建一个context。接着C事件id=1,name=a,那么 会进入A事件建立的context。

 

       如果partition by后面跟着两个流的一个属性,那么两个属性值一样才能进入context。比如说Student事件sid=1,那么会新建一个context,然后来 了个Teacher事件tid=1,则会进入sid=1的那个context。多个流也一样,不用关心是什么事件,只用关心事件的属性值一样即可进入同一 个context。

 

要是说了这么多还是不懂,可以看看下面要讲的context自带属性也许就能明白一些了。

 

 

 

2. Built-In Context Properties

 

Context本身自带一些属性,最关键的是可以查看所创建的context的标识,并帮助我们理解context的语法。

 

 

如上所示,name表示context的名称,这个是不会变的。id是每个context的唯一标识,从0开始。key1和keyN表示context定义时所选择的属性的值,1和N表示属性的位置。例如:

 

    EPL: create context Person partition by sid, sname from Student  
    // key1为sid,key2为sname  

 

为了说明对这几个属性的应用,看一个比较完整的例子。

    import com.espertech.esper.client.EPAdministrator;  
    import com.espertech.esper.client.EPRuntime;  
    import com.espertech.esper.client.EPServiceProvider;  
    import com.espertech.esper.client.EPServiceProviderManager;  
    import com.espertech.esper.client.EPStatement;  
    import com.espertech.esper.client.EventBean;  
    import com.espertech.esper.client.UpdateListener;  
      
    class ESB  
    {  
      
        private int id;  
        private int price;  
      
        public int getId()  
        {  
            return id;  
        }  
      
        public void setId(int id)  
        {  
            this.id = id;  
        }  
      
        public int getPrice()  
        {  
            return price;  
        }  
      
        public void setPrice(int price)  
        {  
            this.price = price;  
        }  
      
    }  
      
    class ContextPropertiesListener2 implements UpdateListener  
    {  
      
        public void update(EventBean[] newEvents, EventBean[] oldEvents)  
        {  
            if (newEvents != null)  
            {  
                EventBean event = newEvents[0];  
                System.out.println("context.name " + event.get("name") + ", context.id " + event.get("id") + ", context.key1 " + event.get("key1")  
                        + ", context.key2 " + event.get("key2"));  
            }  
        }  
    }  
      
    public class ContextPropertiesTest2  
    {  
        public static void main(String[] args)  
        {  
            EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();  
            EPAdministrator admin = epService.getEPAdministrator();  
            EPRuntime runtime = epService.getEPRuntime();  
      
            String esb = ESB.class.getName();  
            // 创建context  
            String epl1 = "create context esbtest partition by id,price from " + esb;  
            // context.id针对不同的esb的id,price建立一个context,如果事件的id和price相同,则context.id也相同,即表明事件进入了同一个context  
            String epl2 = "context esbtest select context.id,context.name,context.key1,context.key2 from " + esb;  
      
            admin.createEPL(epl1);  
            EPStatement state = admin.createEPL(epl2);  
            state.addListener(new ContextPropertiesListener2());  
      
            ESB e1 = new ESB();  
            e1.setId(1);  
            e1.setPrice(20);  
            System.out.println("sendEvent: id=1, price=20");  
            runtime.sendEvent(e1);  
      
      
            ESB e2 = new ESB();  
            e2.setId(2);  
            e2.setPrice(30);  
            System.out.println("sendEvent: id=2, price=30");  
            runtime.sendEvent(e2);  
      
            ESB e3 = new ESB();  
            e3.setId(1);  
            e3.setPrice(20);  
            System.out.println("sendEvent: id=1, price=20");  
            runtime.sendEvent(e3);  
      
            ESB e4 = new ESB();  
            e4.setId(4);  
            e4.setPrice(20);  
            System.out.println("sendEvent: id=4, price=20");  
            runtime.sendEvent(e4);  
        }  
    }  

 

执行结果:

    sendEvent: id=1, price=20  
    context.name esbtest, context.id 0, context.key1 1, context.key2 20  
    sendEvent: id=2, price=30  
    context.name esbtest, context.id 1, context.key1 2, context.key2 30  
    sendEvent: id=1, price=20  
    context.name esbtest, context.id 0, context.key1 1, context.key2 20  
    sendEvent: id=4, price=20  
    context.name esbtest, context.id 2, context.key1 4, context.key2 20  

 

这个例子说得比较明白,针对不同的id和price,都会新建一个context,并且context.id会从0开始增加作为其标识。如果id和 price一样,事件就会进入之前已经存在的context,所以e3这个事件就会和e1一样存在于context.id=0的context里面。

 

      对于epl2这个句子,意思是在esbtest这个context限制下进行事件的计算,不过这个句子很简单,可以说没有什么计算,事件进入后就显示出来 了。实际上写成什么样都可以,但是必须以context xxx开头(xxx表示context定义时的名字),比如说:

 

// context定义  
create context esbtest2 partition by id from ESB  
  
// 每当5个id相同的ESB事件进入时,统计price的总和  
context esbtest select sum(price) from ESB.win:length_batch(5)  
  
// 根据不同的id,统计3秒内进入的事件的平均price,且price必须大于10  
context esbtest select avg(price) from ESB(price>10).win:time(3 sec) 

   也许你会发现为什么EPL的句子都会带有".win:length"或者".win:time",那是因为我们要计算的都是一堆事件,所以必须用一定条件才能 把事件聚集起来。当然并不是一个事件没法计算,只不过更多情况下计算都是以多个事件为基础的。关于这一点,学习到后面就会有更多的接触。

 

3. Hash Context

 

       前面介绍的Context语法是以事件属性来定义的,Esper提供了以Hash值为标准定义Context,通俗一点说就是提供事件属性参与hash值的计算,计算的值再对某个值(这是什么)是同余的则进入到同一个context中。详细语法如下:

    create context context_name coalesce [by]  
    hash_func_name(hash_func_param) from stream_def  
    [, hash_func_name(hash_func_param) from stream_def ]  
    [, ...]  
    granularity granularity_value  
    [preallocate]   

 

a). hash_func_name为hash函数的名称,Esper提供了CRC32或者使用Java的hashcode函数来计算hash值,分别为consistent_hash_crc32和hash_code。你也可以自己定义hash函数,不过这需要配置。

 

b). hash_func_param为参与计算的属性列表,比如之前的sid或者tname什么的。

 

c). stream_def就是事件类型,可以一个可以多个。不同于前面的Context语法要求,Hash Context不管有多个少属性作为基础来计算hash值,hash值都只有一个,并且为int型。所以就不用关心这些属性的个数以及数据类型了。

 

d). granularity是必选参数,表示为最多能创建多少个context

 

e). granularity_value就是那个用于取余的“某个值”,因为Esper为了防止内存溢出,就想出了取余这种办法来限制context创建的数 量。也就是说context.id=hash_func_name(hash_func_param)  % granularity_value。

 

f). preallocate是一个可选参数,如果使用它,那么Esper会预分配空间来创建granularity_value数量的context。比如说 granularity_value为1024,那么Esper会预创建1024个context。内存不大的话不建议使用这个参数。

 

Hash Context同样可以过滤事件,举个完整的例子:

 

// 以java的hashcode方法计算sid的值(sid必须大于5),以CRC32算法计算tid的值,然后对10取余后的值来建立context  
create context HashPerson coalesce by hash_code(sid) from Student(sid>5), consistent_hash_crc32(tid) from Teacher granularity 10 

 

Hash Context也有Built-In Context Properties,只不过只有context.id和context.name了。用法和前面说的一样,这里就不列举了。

 

小贴士:

 

1.如果用于hash计算的属性比较多,那么就不建议使用CRC32算法了,因为他会把这些属性值先序列化字节数组以后才能计算hash值。hashcode方法相对它能快很多。

 

2.如果使用preallocate参数,建议granularity_value不要超过1000

 

3.如果granularity_value超过65536,引擎查找context会比较费劲,进而影响计算速度

 

 

 

4. Category Context

 

Category Context相对之前的两类context要简单许多,也更容易理解。语法说明如下:

 

    create context context_name  
    group [by] group_expression as category_label  
    [, group [by] group_expression as category_label]  
    [, ...]  
    from stream_def  

 

group_expression表示分组策略的表达式,category_label为策略定义一个名字,一个context可以有多个策略同时存在,但是特殊的是之能有一个stream_def。例如:

    create context CategoryByTemp  
    group temp < 5 as cold, group temp between 5 and 85 as normal, group temp > 85 as large  
    from Temperature  

 

 

 

Category Context也有它自带的属性。

 

 

label指明进入的事件所处的group是什么。完整例子如下:

 

    import com.espertech.esper.client.EPAdministrator;  
    import com.espertech.esper.client.EPRuntime;  
    import com.espertech.esper.client.EPServiceProvider;  
    import com.espertech.esper.client.EPServiceProviderManager;  
    import com.espertech.esper.client.EPStatement;  
    import com.espertech.esper.client.EventBean;  
    import com.espertech.esper.client.UpdateListener;  
      
    class ESB3  
    {  
        private int id;  
        private int price;  
      
        public int getId()  
        {  
            return id;  
        }  
      
        public void setId(int id)  
        {  
            this.id = id;  
        }  
      
        public int getPrice()  
        {  
            return price;  
        }  
      
        public void setPrice(int price)  
        {  
            this.price = price;  
        }  
    }  
      
    class ContextPropertiesListener4 implements UpdateListener  
    {  
        public void update(EventBean[] newEvents, EventBean[] oldEvents)  
        {  
            if (newEvents != null)  
            {  
                EventBean event = newEvents[0];  
                System.out.println("context.name " + event.get("name") + ", context.id " + event.get("id") + ", context.label " + event.get("label"));  
            }  
        }  
    }  
      
    public class ContextPropertiesTest4  
    {  
        public static void main(String[] args)  
        {  
            EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();  
            EPAdministrator admin = epService.getEPAdministrator();  
            EPRuntime runtime = epService.getEPRuntime();  
      
            String esb = ESB3.class.getName();  
            String epl1 = "create context esbtest group by id<0 as low, group by id>0 and id<10 as middle,group by id>10 as high from " + esb;  
            String epl2 = "context esbtest select context.id,context.name,context.label, price from " + esb;  
      
            admin.createEPL(epl1);  
            EPStatement state = admin.createEPL(epl2);  
            state.addListener(new ContextPropertiesListener4());  
      
            ESB3 e1 = new ESB3();  
            e1.setId(1);  
            e1.setPrice(20);  
            System.out.println("sendEvent: id=1, price=20");  
            runtime.sendEvent(e1);  
      
      
            ESB3 e2 = new ESB3();  
            e2.setId(0);  
            e2.setPrice(30);  
            System.out.println("sendEvent: id=0, price=30");  
            runtime.sendEvent(e2);  
      
            ESB3 e3 = new ESB3();  
            e3.setId(11);  
            e3.setPrice(20);  
            System.out.println("sendEvent: id=11, price=20");  
            runtime.sendEvent(e3);  
      
            ESB3 e4 = new ESB3();  
            e4.setId(-1);  
            e4.setPrice(40);  
            System.out.println("sendEvent: id=-1, price=40");  
            runtime.sendEvent(e4);  
        }  
    }  

 输出结果为:

    sendEvent: id=1, price=20  
    context.name esbtest, context.id 1, context.label middle  
    sendEvent: id=0, price=30  
    sendEvent: id=11, price=20  
    context.name esbtest, context.id 2, context.label high  
    sendEvent: id=-1, price=40  
    context.name esbtest, context.id 0, context.label low  

 

可以发现,id=0的事件,并没有触发监听器,那是因为context里的三个category没有包含id=0的情况,所以这个事件就被排除掉了。

 

 

 

5. Non-Overlapping Context

 

这类Context有个特点,是由开始和结束两个条件构成context。语法如下:

 

create context context_name start start_condition end end_condition  

 


       这个context有两个条件做限制,形成一个约束范围。当开始条件和结束条件都没被触发时,引擎会观察事件的进入是否会触发开始条件。如果开始条件被触 发了,那么就新建一个context,并且观察结束条件是否被触发。如果结束条件被触发,那么context结束,引擎继续观察开始条件何时被触发。所以 说这类Context的另一个特点是,要么context存在并且只有一个,要么条件都没被触发,也就一个context都没有了。

 

start_condition和end_condition可以是时间,或者是事件类型。比如说:

 

    create context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *)  
    //  9点到17点此context才可用(以引擎的时间为准)。如果事件进入的事件不在此范围内,则不受该context影响  

 一个完整的例子,以某类事件开始,以某类事件结束

    import com.espertech.esper.client.EPAdministrator;  
    import com.espertech.esper.client.EPRuntime;  
    import com.espertech.esper.client.EPServiceProvider;  
    import com.espertech.esper.client.EPServiceProviderManager;  
    import com.espertech.esper.client.EPStatement;  
    import com.espertech.esper.client.EventBean;  
    import com.espertech.esper.client.UpdateListener;  
      
    class StartEvent  
    {  
    }  
      
    class EndEvent  
    {  
    }  
      
    class OtherEvent  
    {  
        private int id;  
      
        public int getId()  
        {  
            return id;  
        }  
      
        public void setId(int id)  
        {  
            this.id = id;  
        }  
    }  
      
    class NoOverLappingContextTest3 implements UpdateListener  
    {  
      
        public void update(EventBean[] newEvents, EventBean[] oldEvents)  
        {  
            if (newEvents != null)  
            {  
                EventBean event = newEvents[0];  
                System.out.println("Class:" + event.getUnderlying().getClass().getName() + ", id:" + event.get("id"));  
            }  
        }  
    }  
      
    public class NoOverLappingContextTest  
    {  
        public static void main(String[] args)  
        {  
            EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();  
            EPAdministrator admin = epService.getEPAdministrator();  
            EPRuntime runtime = epService.getEPRuntime();  
      
            String start = StartEvent.class.getName();  
            String end = EndEvent.class.getName();  
            String other = OtherEvent.class.getName();  
            // 以StartEvent事件作为开始条件,EndEvent事件作为结束条件  
            String epl1 = "create context NoOverLapping start " + start + " end " + end;  
            String epl2 = "context NoOverLapping select * from " + other;  
      
            admin.createEPL(epl1);  
            EPStatement state = admin.createEPL(epl2);  
            state.addListener(new NoOverLappingContextTest3());  
      
            StartEvent s = new StartEvent();  
            System.out.println("sendEvent: StartEvent");  
            runtime.sendEvent(s);  
      
            OtherEvent o = new OtherEvent();  
            o.setId(2);  
            System.out.println("sendEvent: OtherEvent");  
            runtime.sendEvent(o);  
      
            EndEvent e = new EndEvent();  
            System.out.println("sendEvent: EndEvent");  
            runtime.sendEvent(e);  
      
            OtherEvent o2 = new OtherEvent();  
            o2.setId(4);  
            System.out.println("sendEvent: OtherEvent");  
            runtime.sendEvent(o2);  
        }  
    }  

 

执行结果:

sendEvent: StartEvent  
sendEvent: OtherEvent  
Class:blog.OtherEvent, id:2  
sendEvent: EndEvent  
sendEvent: OtherEvent 

 

由此可以看出,在NoOverLapping这个Context下监控OtherEvent,必须是在StartEvent被触发才能监控到,所以在EndEvent发送后,再发送一个OtherEvent是不会触发Listener的。

 

6. OverLapping

 

OverLapping和NoOverLapping一样都有两个条件限制,但是区别在于OverLapping的初始条件可以被触发多次,并且只要被触发就会新建一个context,但是当终结条件被触发时,之前建立的所有context都会被销毁。他的语法也很简单:

 

create context context_name initiated [by] initiating_condition terminated [by] terminating_condition 

 

initiating_condition和terminating_condition可以为事件类型,事件或者别的条件表达式。下面给出了一个完整的例子。

    import com.espertech.esper.client.EPAdministrator;  
    import com.espertech.esper.client.EPRuntime;  
    import com.espertech.esper.client.EPServiceProvider;  
    import com.espertech.esper.client.EPServiceProviderManager;  
    import com.espertech.esper.client.EPStatement;  
    import com.espertech.esper.client.EventBean;  
    import com.espertech.esper.client.UpdateListener;  
      
    class InitialEvent{}  
      
    class TerminateEvent{}  
      
    class SomeEvent  
    {  
        private int id;  
      
        public int getId()  
        {  
            return id;  
        }  
      
        public void setId(int id)  
        {  
            this.id = id;  
        }  
    }  
      
    class OverLappingContextListener implements UpdateListener  
    {  
      
        public void update(EventBean[] newEvents, EventBean[] oldEvents)  
        {  
            if (newEvents != null)  
            {  
                EventBean event = newEvents[0];  
                System.out.println("context.id:" + event.get("id") + ", id:" + event.get("id"));  
            }  
        }  
    }  
      
    class OverLappingContextListener2 implements UpdateListener  
    {  
      
        public void update(EventBean[] newEvents, EventBean[] oldEvents)  
        {  
            if (newEvents != null)  
            {  
                EventBean event = newEvents[0];  
                System.out.println("Class:" + event.getUnderlying().getClass().getName() + ", id:" + event.get("id"));  
            }  
        }  
    }  
      
    public class OverLappingContextTest  
    {  
        public static void main(String[] args)  
        {  
            EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();  
            EPAdministrator admin = epService.getEPAdministrator();  
            EPRuntime runtime = epService.getEPRuntime();  
      
            String initial = InitialEvent.class.getName();  
            String terminate = TerminateEvent.class.getName();  
            String some = SomeEvent.class.getName();  
            // 以InitialEvent事件作为初始事件,TerminateEvent事件作为终结事件  
            String epl1 = "create context OverLapping initiated " + initial + " terminated " + terminate;  
            String epl2 = "context OverLapping select context.id from " + initial;  
            String epl3 = "context OverLapping select * from " + some;  
      
            admin.createEPL(epl1);  
            EPStatement state = admin.createEPL(epl2);  
            state.addListener(new OverLappingContextListener());  
            EPStatement state1 = admin.createEPL(epl3);  
            state1.addListener(new OverLappingContextListener2());  
      
            InitialEvent i = new InitialEvent();  
            System.out.println("sendEvent: InitialEvent");  
            runtime.sendEvent(i);  
      
            SomeEvent s = new SomeEvent();  
            s.setId(2);  
            System.out.println("sendEvent: SomeEvent");  
            runtime.sendEvent(s);  
      
            InitialEvent i2 = new InitialEvent();  
            System.out.println("sendEvent: InitialEvent");  
            runtime.sendEvent(i2);  
      
            TerminateEvent t = new TerminateEvent();  
            System.out.println("sendEvent: TerminateEvent");  
            runtime.sendEvent(t);  
      
            SomeEvent s2 = new SomeEvent();  
            s2.setId(4);  
            System.out.println("sendEvent: SomeEvent");  
            runtime.sendEvent(s2);  
        }  
    }  

 

    sendEvent: InitialEvent  
    context.id:0, id:0  
    sendEvent: SomeEvent  
    Class:blog.SomeEvent, id:2  
    sendEvent: InitialEvent  
    context.id:1, id:1  
    context.id:0, id:0  
    sendEvent: TerminateEvent  
    sendEvent: SomeEvent  

 

从结果可以看得出来,每发送一个InitialEvent,都会新建一个context,以至于context.id=0和1。并且当发送TerminateEvent后,再发送SomeEvent监听器也不会被触发了。

 

另外,context.id是每一种Context都会有的自带属性,而且针对OverLapping,还增加了startTime和endTime两种属性,表明context的开始时间和结束时间。

 

7. Context Condition

 

Context Condition主要包含Filter,Pattern,Crontab以及Time Period

 

A). Filter主要就是对属性值的过滤,比如:

create context NewUser partition by id from User(id > 10)  

 

B). Pattern是复杂事件流的代表,比如说“A事件到达后跟着B事件到达”这是一个完整的Pattern。Pattern是Esper里面很特别的东西,并且用它描述复杂的事件流是最合适不过的了。这里暂且不展开说,后面会有专门好几篇来讲解Pattern。

 

C). Crontab是定时任务,主要用于NoOverLapping,就像前面提到的(0, 9, *, *, *),括号里的五项代表分,时,天,月,年。关于这个后面也会有讲解。

D). Time Period在这里只有一种表达式,就是after time_period_expression。例如:after 1 minute,after 5 sec。结合Context的例子如下:

// 以0秒为时间初始点,新建一个context,于10秒后开始,1分钟后结束。下一个context从1分20秒开始  
create context NonOverlap10SecFor1Min start after 10 seconds end after 1 minute 

 

8. Context Nesting

Context也可以嵌套,意义就是多个Context联合在一起组成一个大的Context,以满足复杂的限制需求。语法结构:

 

    create context context_name  
    context nested_context_name [as] nested_context_definition ,  
    context nested_context_name [as] nested_context_definition [, ...]  

 

举个例子:

 

    create context NineToFiveSegmented  
    context NineToFive start (0, 9, *, *, *) end (0, 17, *, *, *),  
    context SegmentedByUser partition by userId from User  

 

应用和普通的Context没区别,在此就不举例了。另外针对嵌套Context,其自带的属性使用方式会有些变化。比如针对上面这个,若想查看NineToFive的startTime和SegmentedByUser的第一个属性值,要按照下面这样写:

    context NineToFiveSegmented select  
     context.NineToFive.startTime,  
     context.SegmentedByUser.key1  
     from User  

 


9. Output When Context Partition Ends

当Context销毁时,如果你想同时查看此时Context里的东西,那么Esper提供了一种办法来输出其内容。例如:

    create context OverLapping initiated InitialEvent terminated TerminateEvent  
    context OverLapping select * from User output snapshot when terminated  

 

那么当终结事件发送到引擎后,会立刻输出OverLapping的快照。

如果你想以固定的频率查看Context的内容,Esper也支持。例如

context OverLapping select * from User output snapshot every 2 minute // 每两分钟输出OverLapping的事件  

 

关于output表达式,后面也会有详解。

 

10、Group by和Context的区别:

 

       其实如果只是很简单的用Context,没太大区别,无非是在Context下select可以不包含group by修饰的属性。

      但是Group by明显没有Context强大,很多复杂的分组Group by是没法做到的。不过在能达到同样效果的情况下,我还是建议使用Group by,毕竟Context的名字是不能重复的,而且在高并发的情况下Context会短时间锁住。后面的博客也会涉及这方面的内容。

1
0
分享到:
评论

相关推荐

    esper_esper_

    5. 上下文(Context):上下文是事件发生时的相关环境信息,如时间、地点等。 在使用 Esper 进行操作时,通常会涉及以下步骤: 1. 创建 Esper 实例(EPService):这是 Esper 的入口点,通过 `EPServiceProvider` ...

    运动控制领域8轴插补运动控制源码:双DMA实现高频率脉冲输出与加减速控制

    内容概要:本文详细介绍了8轴插补运动控制系统的实现,重点探讨了双DMA技术的应用,实现了高频率脉冲输出(最高可达500kHz)。文中首先解释了双DMA的工作原理及其相对于传统脉冲输出方式的优势,即减少CPU负载并提高数据传输速率。接着阐述了8轴插补算法的设计思想,包括基于时间分割的方法来确定各轴在特定时间段内的脉冲数。此外,还讨论了加减速控制策略,尤其是S型加减速算法的应用,以确保运动的平顺性。最后,文章展示了具体的代码实现细节,涵盖DMA配置、插补算法、加减速控制等方面。 适合人群:从事运动控制系统开发的技术人员,尤其是对嵌入式系统有一定了解的研发人员。 使用场景及目标:适用于需要高精度、高频脉冲输出的工业应用场景,如工业机器人、3D打印、激光切割等。目标是帮助开发者理解和掌握8轴插补运动控制的关键技术和实现方法,从而应用于实际项目中。 其他说明:文中提供的代码示例主要基于STM32系列单片机,但相关概念和技术可以迁移至其他平台。同时,强调了硬件细节处理的重要性,如RC滤波电路的应用,以应对实际工程中的常见问题。

    2303040222橡胶232熊文栋(苯乙烯悬浮聚合)副本.pdf

    2303040222橡胶232熊文栋(苯乙烯悬浮聚合)副本.pdf

    音乐喷泉控制系统设计:基于Altium Designer的原理图与代码实现

    内容概要:本文详细介绍了音乐喷泉的设计与制作过程,涵盖了从原理图绘制到具体代码实现的各个方面。首先介绍了Altium Designer这款强大的电子设计软件,接着展示了如何利用现有文件进行设计,包括水泵控制、灯光效果和音乐解析三大核心模块的具体实现方法。文中提供了多个代码片段,如单片机控制喷头升降、PWM调速控制水泵以及灯光效果同步音乐节奏等。同时,强调了在实际制作过程中需要注意的问题,如焊接温度、布线规划、元件选择等。此外,还分享了一些实用技巧和经验教训,帮助读者更好地理解和应用相关知识。 适合人群:对电子设计感兴趣的爱好者、初学者以及有一定基础的电子工程师。 使用场景及目标:适用于希望深入了解音乐喷泉工作原理和技术实现的人群,目标是掌握如何使用Altium Designer完成音乐喷泉的电路设计,并能够编写相应的控制代码。 其他说明:文章不仅提供了详细的理论讲解,还包括了许多实战经验和技巧,有助于读者在实践中少走弯路。

    汽车主动悬架系统参数仿真与控制算法解析

    内容概要:本文详细介绍了汽车主动悬架系统的工作原理及其参数仿真的方法。首先解释了主动悬架的基本概念,即它可以根据车辆行驶状态和路面情况进行实时调整,提高行车安全性和舒适度。接着展示了如何利用简化的单自由度模型进行参数设置并进行仿真,具体涉及到了动力学方程、状态空间模型以及PID控制器的设计。此外还提到了更高级别的LQR控制器的应用,并强调了实际应用中需要注意的问题,如执行器响应延迟、物理限制等。文中通过实例演示了被动悬架与主动悬架在面对相同路面输入时的不同表现,突出了主动控制系统的优势。同时,针对传感器噪声处理、卡尔曼滤波器的使用、PWM信号生成等方面进行了深入探讨,揭示了主动悬架背后的复杂技术和工程挑战。 适用人群:对汽车工程特别是悬架系统感兴趣的研究人员和技术爱好者。 使用场景及目标:帮助读者理解主动悬架的工作机制,掌握基本的建模和仿真技能,为进一步开展相关领域的研究提供理论支持和技术指导。 其他说明:文中不仅提供了详细的数学推导和代码片段,还分享了许多实践经验,使读者能够全面地了解主动悬架系统的各个方面。

    Operating System 实验五 进程管理编程实验

    (3)请修改代码,解决临界区问题。解决后,无论如何运行,counter值均输出0

    少儿编程scratch项目源代码文件案例素材-Mc v2.zip

    少儿编程scratch项目源代码文件案例素材-Mc v2.zip

    车辆动力学联合仿真:基于Carsim和Simulink的十四自由度模型验证与优化

    内容概要:本文详细介绍了将Carsim与Simulink联合用于十四自由度车辆动力学模型的构建与验证过程。文中首先概述了整车架构的模块化分解方法,接着深入探讨了各个子系统的具体实现细节,如转向系统、轮胎模型、悬架子系统以及PI驾驶员控制器的设计与调优。针对联合仿真过程中遇到的关键问题,如采样率同步、参数调优、模型验证等进行了详细的讨论,并提供了具体的解决方案和技术技巧。通过对多种典型工况(如阶跃转向、正弦油门、双移线等)的仿真测试,验证了所建立模型的有效性和准确性。 适合人群:从事车辆动力学研究、汽车仿真领域的工程师和技术人员,尤其是那些希望深入了解Carsim与Simulink联合仿真的从业者。 使用场景及目标:适用于需要进行复杂车辆动力学仿真和模型验证的研究机构或企业。主要目标是提高仿真精度,缩短开发周期,确保模型能够准确反映实际车辆行为。此外,还可以作为教学材料帮助学生掌握先进的车辆建模技术和仿真工具。 其他说明:文中不仅分享了大量的实战经验和技巧,还附带了完整的源代码和详细的调试记录,对于想要深入理解和应用这一技术的人来说非常有价值。

    基于雨流计数法的源-荷-储双层协同优化配置及其Python实现

    内容概要:本文探讨了基于雨流计数法的源-荷-储双层协同优化配置,旨在提高能源系统的效率和经济性。文中介绍了双层优化架构,即外层优化储能系统的功率和容量,内层优化储能系统的充放电曲线并评估其寿命。通过Python代码示例展示了具体的实现过程,包括外层和内层优化的具体步骤以及雨流计数法的应用。此外,文章还讨论了常见的调试问题及解决方案,强调了内外层变量之间的相互影响。 适合人群:从事能源系统优化的研究人员和技术人员,尤其是对储能系统优化感兴趣的读者。 使用场景及目标:适用于需要进行源-荷-储系统优化的实际工程项目,如光伏电站、风力发电站等。目标是通过合理的储能配置,延长储能系统的使用寿命,降低成本,提高经济效益。 其他说明:文章提供了详细的代码示例和理论解释,帮助读者更好地理解和应用这一优化方法。同时提醒读者,在实际应用中需要注意数据的准确性以及参数的选择。

    维宏数控雕刻机 维宏3D卡驱动 Ncstudio V5.449

    很多盗版PCI卡都在用的雕刻机控制程序

    基于Matlab的三机并联风光储混合系统仿真及关键技术解析

    内容概要:本文详细介绍了三机并联的风光储混合系统在Matlab中的仿真方法及其关键技术。首先,针对光伏阵列模型,讨论了其核心二极管方程以及MPPT(最大功率点跟踪)算法的应用,强调了环境参数对输出特性的影响。接着,探讨了永磁同步风机的矢量控制,尤其是转速追踪和MPPT控制策略。对于混合储能系统,则深入讲解了超级电容和蓄电池的充放电策略,以及它们之间的协调机制。此外,还涉及了PQ控制的具体实现,包括双闭环结构的设计和锁相环的优化。最后,提供了仿真过程中常见的问题及解决方案,如求解器选择、参数敏感性和系统稳定性等。 适合人群:从事电力电子、新能源系统设计与仿真的工程师和技术人员,以及相关专业的研究生。 使用场景及目标:适用于希望深入了解风光储混合系统工作原理的研究人员,旨在帮助他们掌握Matlab仿真技巧,提高系统设计和优化的能力。 其他说明:文中不仅提供了详细的理论推导和代码示例,还分享了许多实践经验,有助于读者更好地理解和应用所学知识。

    基于NGSIM数据的Wiedemann99跟驰模型Matlab实现及其IPSO算法优化

    内容概要:本文详细介绍了基于NGSIM数据对Wiedemann99跟驰模型进行参数标定的过程。作者使用Matlab编写代码,实现了数据读取与预处理、Wiedemann99模型定义、拟合优度函数(RMSPE)计算以及改进粒子群算法(IPSO)。通过这些步骤,成功地对标定了Wiedemann99模型的关键参数,并对其进行了性能评估。文中不仅展示了具体的代码实现细节,还探讨了参数选择、算法改进等方面的经验教训。 适合人群:从事交通工程、智能交通系统研究的专业人士,尤其是那些对车辆跟驰行为建模感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要精确模拟车辆跟驰行为的研究项目,如交通流量仿真、自动驾驶测试等。目标是提高模型的准确性和可靠性,以便更好地理解和预测真实的道路交通状况。 其他说明:文章提供了详细的代码片段和理论背景介绍,有助于读者深入理解整个标定流程。同时,作者分享了一些实用的小技巧,如参数敏感度分析、适应度函数设计等,对于相关领域的研究人员具有较高的参考价值。

    大模型落地路线图研究报告(2024年)

    内容概要:本文为中国信息通信研究院发布的《2024年大模型落地路线图研究报告》,旨在梳理大模型应用落地的共性需求和关键要素,为大模型赋能各行业提供参考。报告重点介绍了大模型应用落地的四个重要阶段——现状诊断、能力建设、应用部署、运营管理,归纳了八个关键步骤,包括能力分析、需求挖掘、方案设计、研发测试、应用开发、效能评估、运维监测和运营管理。报告详细分析了大模型在基础设施、数据资源、算法模型、应用服务、安全可信五个层面应重点关注的发展要素和亟待解决的问题。此外,报告还探讨了大模型在金融、工业、教育、医疗、政务等行业的具体应用场景及其带来的降本增效、提质增效等优势。最后,报告展望了大模型的发展趋势,强调了架构优化、行业数字化转型和可信发展的必要性。 适合人群:具备一定技术背景,特别是从事人工智能、大数据、云计算等领域工作的研发人员、管理人员和技术决策者。 使用场景及目标:①帮助企业和机构评估自身大模型应用的基础条件,明确业务转型需求;②指导大模型建设方案的设计和实施,确保技术选型的科学性和合理性;③提供应用部署和效能评估的具体方法,确保大模型在实际应用中的稳定性和高效性;④建立健全大模型的运营管理体系,保障业务的高效稳定开展。 其他说明:报告强调了大模型在推动各行业数字化转型中的重要作用,提出了未来大模型发展的重点方向,如架构优化、技术应用和可信发展。报告还呼吁社会各界共同关注大模型的安全可信问题,确保其与人类价值观的对齐,推动大模型的健康发展。

    少儿编程scratch项目源代码文件案例素材-Scratch泡泡龙.zip

    少儿编程scratch项目源代码文件案例素材-Scratch泡泡龙.zip

    软考初级程序员09-18年真题及答案解析

    软考初级程序员是中国计算机技术与软件专业技术资格(水平)考试中的一个重要级别,主要面向打算进入IT行业的初学者或初级程序员。这个级别的考试旨在测试考生的基础编程能力、计算机基础知识以及解决问题的能力。历年真题是备考的重要参考资料,可以帮助考生了解考试的题型、难度以及考点。 在"软考初级程序员09-18年真题及答案解析"的压缩包中,包含了从2009年至2018年上半年的所有程序员考试真题。这些真题涵盖了多个方面,包括但不限于: 1. **基础编程语言**:如C语言、Java、Python等,主要考察基本语法、数据类型、控制结构、函数使用等方面。 2. **数据结构与算法**:如数组、链表、栈、队列、树、图等,以及排序算法(冒泡、选择、插入、快速、归并等)和查找算法(线性查找、二分查找等)。 3. **计算机系统知识**:包括计算机组成原理、操作系统、网络基础知识,例如CPU结构、内存管理、进程与线程、网络协议等。 4. **数据库基础**:SQL语言的基本操作,如增删改查、子查询、联接操作、索引等。 5. **软件工程与项目管理**:软件生命周期、需求分析、设计原则、测试方法、版本控制等。 6. **法律法规与职业道德**:涉及知识产权、合同法、信息安全与隐私保护等。 每份真题后的答案解析部分,是对题目答案的详细解释,通常包括解题思路、关键步骤以及知识点的扩展。通过阅读解析,考生不仅能知道自己答案的正确与否,还能深入理解相关知识点,提高自己的分析和解决问题的能力。 在准备软考初级程序员考试时,考生应充分利用这些真题资源,进行模拟练习,掌握各类题目的解答技巧。同时,考生还需要广泛阅读教材,补充相关知识,提高对理论的理解。此外,多做编程实践,提高实际编程能力,也是非常重要的。 总结来说,这个压缩包是备考软考初级程序员的宝贵资料,它能帮助考生熟悉考试形式,了解重

    基于FPGA和W5500的TCP网络通信:Zynq扩展口开发测试平台(使用Vivado 2019.2纯Verilog实现)

    内容概要:本文详细介绍了如何在Zynq扩展口上使用FPGA和W5500实现稳定的TCP网络通信。作者通过一系列实验和技术手段,解决了多个实际问题,最终实现了零丢包的数据回环处理。主要内容包括:硬件搭建(SPI接口配置)、数据回环处理(双时钟域流水线)、压力测试(信号抓波形和防抖处理)、多路复用扩展以及上位机测试脚本的编写。文中提供了大量Verilog代码片段,展示了具体实现细节。 适合人群:具备一定FPGA开发经验的工程师,尤其是对TCP/IP协议栈感兴趣的嵌入式系统开发者。 使用场景及目标:适用于需要高性能、低延迟网络通信的应用场景,如工业控制系统、实时数据采集等。目标是帮助读者掌握在FPGA上实现高效TCP通信的方法和技术。 其他说明:文章不仅提供了详细的代码实现,还分享了许多实践经验,如SPI时钟优化、CS信号防抖、FIFO深度选择等。此外,作者还讨论了未来可能的改进方向,如UDP组播和QoS优先级控制。

    基于Matlab/Simulink的UKF/EKF实现路面附着系数估计

    内容概要:本文探讨了在汽车动力学研究和自动驾驶领域中,使用无迹扩展卡尔曼滤波(UKF/EKF)在Matlab/Simulink环境中对路面附着系数进行估计的方法。文中介绍了选择Matlab/Simulink的原因及其强大功能,详细解析了7自由度整车模型的构建,以及UKF和EKF的具体实现方式。UKF通过非线性处理和sigma点传播概率分布,适用于复杂工况;EKF则通过线性化处理,更适合计算资源有限的场景。两者在不同路面条件下表现出各自的优劣,如UKF在突变路面下表现更好,而EKF在不变路面上效率更高。此外,还讨论了调参技巧、工程实现细节及实际测试结果。 适用人群:从事汽车动力学研究、自动驾驶技术研发的专业人士,尤其是对非线性滤波算法感兴趣的研究人员和技术开发者。 使用场景及目标:①用于车辆稳定性控制系统中,提高行驶安全性;②优化滤波算法性能,平衡精度与实时性;③为复杂工况下的路面附着系数估计提供解决方案。 其他说明:文章不仅提供了理论分析,还包括大量代码示例和实践经验分享,有助于读者深入理解和实际应用。

    基于三菱PLC与触摸屏的定长送料系统:点动、相对定位与绝对定位的实现

    内容概要:本文详细介绍了如何使用三菱PLC(以FX3U为例)和显控触摸屏实现定长送料系统的三种核心功能:点动、相对定位和绝对定位。文章从硬件连接开始,逐步讲解了每种功能的具体实现方法,包括梯形图编程、参数设置以及触摸屏交互设计。特别强调了伺服和步进电机的应用,并提供了调试技巧和注意事项,确保系统稳定可靠。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些需要掌握PLC编程和伺服/步进电机控制的人群。 使用场景及目标:适用于各类需要精确控制物料输送的生产设备,如包装机、裁切设备等。目标是帮助工程师快速搭建稳定的定长送料系统,提高生产效率和产品质量。 其他说明:文中还分享了一些实战经验,如软限位设置、急停回路设计、电子齿轮比计算等,有助于解决实际应用中的常见问题。

    51单片机开发音乐盒:程序源码、原理图与Protues仿真的详细解析

    内容概要:本文详细介绍了一个基于51单片机的音乐盒项目,涵盖从原理到实践的全过程。首先解释了音乐产生的基本原理,即通过控制I/O口输出不同频率的方波驱动蜂鸣器发声。接着介绍了原理图设计,重点描述了51单片机与其他组件如蜂鸣器、按键等的连接方式。然后讲解了Protues仿真工具的应用,强调其在硬件电路搭建前进行验证的重要性。最后深入剖析了程序源码,包括音符频率表、节拍编码、延时函数、播放音符和音乐的函数以及主函数的具体实现。 适合人群:对单片机开发感兴趣的初学者或有一定经验的研发人员。 使用场景及目标:适用于希望深入了解51单片机工作原理及其应用的人群,特别是那些想要亲手制作一个能够播放多首曲目的音乐盒爱好者。通过该项目的学习,不仅可以掌握单片机的基本编程技能,还可以提高解决实际问题的能力。 其他说明:文中提供了详细的代码注释和技术细节,帮助读者更好地理解和实现项目。此外,还分享了一些实用的小贴士,如如何避免常见错误、优化性能等。

    子查询练习题,多练习总没有坏处,不知道凑没凑够十一个字

    子查询练习题,多练习总没有坏处,不知道凑没凑够十一个字

Global site tag (gtag.js) - Google Analytics