- 浏览: 28933 次
- 性别:
- 来自: 哈尔滨
文章分类
最新评论
-
di1984HIT:
下次用用~
hadoop 集群调度 Azkaban2搭建 -
di1984HIT:
这特太详细了啊~
hadoop 2.0 chd4.4.0安装 -
w156445045:
3.重新启动 -clear 这个-clear是啥意思 到哪 ...
Eclipse3.8安装axis2插件 异常解决 java.lang.reflect.InvocationTargetException -
xiezhuogang:
呵呵,谢谢了
MyEclipse快捷键与插件大全 -
macrochao:
有点用,好多没用过
MyEclipse快捷键与插件大全
序号 主机IP 主机名称(root/redhat) 远程管理IP 远程管理帐号口令
1 192.168.101.120 cup-slave-4 192.168.101.150 user1/hadoop123
2 192.168.101.121 cup-slave-1 192.168.101.151 user1/hadoop123
3 192.168.101.122 cup-master-1 192.168.101.152 user1/hadoop123
4 192.168.101.123 cup-master-2 192.168.101.153 user1/hadoop123
5 192.168.101.124 cup-slave-3 192.168.101.154 user1/hadoop123
6 192.168.101.125 cup-slave-2 192.168.101.155 user1/hadoop123
临时文件目录:
C:\ProgramFilesDev\CDH4\on cup-master-1\
C:\ProgramFilesDev\CDH4\install files\
注意: 配置文件的编辑最好使用UltraEdit等工具编辑,不要使用写字板等工具,否则在linux下有可能会导致错误!!!!!!!!!
/etc/sysconfig/network: (永久修改主机名)
NETWORKING=yes
HOSTNAME=cup-master-1
GATEWAY=192.168.101.1
依次执行,GATEWAY一定要准确,可以执行$ifconfig查看Bcast属性
$source /etc/sysconfig/network
依次执行
修改hostname: ##这个步骤一定要执行,否则NN格式化的时候有可能会报UnknownHostEception:cup-master-1的错误
$hostname cup-master-1
$hostname cup-master-2
$hostname cup-slave-1
$hostname cup-slave-2
$hostname cup-slave-3
$hostname cup-slave-4
/etc/hosts中已经配置了的主机:
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.101.122 cup-master-1
192.168.101.123 cup-master-2
192.168.101.121 cup-slave-1
192.168.101.125 cup-slave-2
192.168.101.124 cup-slave-3
192.168.101.120 cup-slave-4
$source /etc/hosts
依次执行
DNS:
/etc/resolv.conf 增加
search localdomain
nameserver 192.168.101.110 ##dns ip
nameserver 8.8.8.8
依次执行
语言配置:
/etc/sysconfig/i18n
LANG=en_US
$source /etc/sysconfig/i18n
依次执行
$echo $LANG
进行查看
关闭防火墙 $sudo service iptables stop
查看防火墙 $sudo service iptables status
依次执行
永久关闭: $chkconfig iptables off
$iptables -F
$service iptables save
卸载openjdk:
1. rpm -qa|grep jdk
java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64
2. rpm -e java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64
安装jdk
1. JAVA SE 1.6以上,下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html
下载jdk-6u32-linux-x64.bin
2. cd /usr/jdk6
3. chmod 755 *.bin
4. ./jdk-6u32-linux-x64.bin
5. 配置环境变量
/etc/profile 文件末尾处添加:
/etc/profile:
#set java environment
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$CLASSPATH
JAVA_OPTS="$JAVA_OPTS -server"
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME JAVA_OPTS CLASSPATH PATH
#JAVA_OPTS="$JAVA_OPTS -server -Xms2g -Xmx12g -XX:NewSize=128m -XX:MaxNewSize=128m"
$source /etc/profile 使环境变量生效
ulimit 打开文件最大数限制设置--打开文件句柄最大数限制设置
ulimit -u
1. /etc/security/limits.conf
* soft nofile 655350
* hard nofile 655350
2. /etc/security/limits.d/90-nproc.conf
* soft nproc 10240
* hard nproc 60240
6. hadoop用户配置
/etc/sudoers 中root ALL=(ALL) ALL 下面添加
root ALL=(ALL) ALL
hadoop ALL=(ALL) ALL
$groupadd hadoop
$useradd hadoop –g hadoop
$passwd hadoop
7. root用户登录 cup-master-1 关闭防火墙 $service iptables stop 依次执行各节点
8. root-> /etc/ssh/sshd_config
#UseLogin no修改为
UseLogin yes
重启ssh: $service sshd restart
否则会报-bash: ulimit: open files: cannot modify limit: Operation not permitted
8. cup-master-1 --> 到其他节点的SSH无密码登陆配置:
hadoop用户登录 cup-master-1
$mkdir .ssh ------主节点不用建
$ssh-keygen –t rsa –f ~/.ssh/id_rsa –P ''
在cup-master-2、cup-slave-1、cup-slave-2、cup-slave-3、cup-slave-4节点新建.ssh目录:$mkdir .ssh
$scp .ssh/id_rsa.pub hadoop@cup-slave-1:/home/hadoop/.ssh/ 依次执行各节点
$scp .ssh/id_rsa.pub hadoop@cup-slave-2:/home/hadoop/sshcm1/
$scp .ssh/id_rsa.pub hadoop@cup-slave-3:/home/hadoop/sshcm1/
$scp .ssh/id_rsa.pub hadoop@cup-slave-4:/home/hadoop/sshcm1/
$scp .ssh/id_rsa.pub hadoop@cup-master-2:/home/hadoop/sshcm1/
hadoop用户登录 cup-master-1 配置本机
$cd ~/.ssh
$chmod 700 ~/.ssh
$cat id_rsa.pub >> authorized_keys
$chmod 600 .ssh/authorized_keys
hadoop用户登录 cup-slave-1 配置其他机器
$mkdir .ssh
$chmod 700 .ssh
$cd .ssh
$cat sshcm1/id_rsa.pub >> ~/.ssh/authorized_keys
$chmod 600 ~/.ssh/authorized_keys
其他节点依次用hadoop用户登录执行
hadoop用户登录 cup-master-1 测试无密码SSH登录: $ssh hadoop@cup-master-2 或者$ssh cup-master-2 其他节点依次执行
注意:
第一次连接的时候会有询问语句打出来,输入yes即可,,,
然后再~/.ssh/目录下回生成known_hosts文件,,,,,,
如果以后出现什么ssh无密码登陆的问题,可以删除该文件,重新做rsa数字签名,再重新做远程ssh登陆操作即可。
known_hosts文件:
cup-slave-1,192.168.98.225 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAr5bf6Fe2TRprWmB+RK1ZeriV+wwlwsIKLv9Y1sneLoXgPqIA9RBi9RodiWogImu5J8Ht4KZ2UyXIb/w2/NQeZKYJExpGlpXGSdKfDjDe+8wzXi01FPhkwzClhjstGNHaPwZVnDKtGERX4PE985xq9wOuyGl1AFAhYz8neCTpKqRGA+/cquulTTdwQ8mLsWumZHKNcgkGtGU6MvqbVt4mDNwEJmUizeThp/h03bCoSlg2YG9Zqf/W71WA9ZqCPB2nWBRn9buhHOvNaUTn6/6dQna8Quzg8DC9WGYgecLNUIt6LMSnQUgsONl2AiNbVN+W7DHA4BkuCIafXj7g5Hj8ow==
cup-slave-2,192.168.98.227 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAr5bf6Fe2TRprWmB+RK1ZeriV+wwlwsIKLv9Y1sneLoXgPqIA9RBi9RodiWogImu5J8Ht4KZ2UyXIb/w2/NQeZKYJExpGlpXGSdKfDjDe+8wzXi01FPhkwzClhjstGNHaPwZVnDKtGERX4PE985xq9wOuyGl1AFAhYz8neCTpKqRGA+/cquulTTdwQ8mLsWumZHKNcgkGtGU6MvqbVt4mDNwEJmUizeThp/h03bCoSlg2YG9Zqf/W71WA9ZqCPB2nWBRn9buhHOvNaUTn6/6dQna8Quzg8DC9WGYgecLNUIt6LMSnQUgsONl2AiNbVN+W7DHA4BkuCIafXj7g5Hj8ow==
9. cup-master-2 --> 到其他节点的SSH无密码登陆配置:
hadoop用户登录 cup-master-2
$mkdir .ssh
$ssh-keygen –t rsa –f ~/.ssh/id_rsa –P ''
在cup-master-1、cup-slave-1、cup-slave-2、cup-slave-3、cup-slave-4节点新建.ssh目录:$mkdir .ssh
$scp .ssh/id_rsa.pub hadoop@cup-master-1:/home/hadoop/sshcm2/ 依次执行各节点
$scp .ssh/id_rsa.pub hadoop@cup-slave-1:/home/hadoop/sshcm2/
$scp .ssh/id_rsa.pub hadoop@cup-slave-2:/home/hadoop/sshcm2/
$scp .ssh/id_rsa.pub hadoop@cup-slave-3:/home/hadoop/sshcm2/
$scp .ssh/id_rsa.pub hadoop@cup-slave-4:/home/hadoop/sshcm2/
hadoop用户登录 cup-master-2 配置本机
$cd ~/.ssh
$chmod 700 ~/.ssh
$cat id_rsa.pub >> authorized_keys
$chmod 600 .ssh/authorized_keys
hadoop用户登录 cup-slave-1 配置其他机器
$mkdir .ssh
$chmod 700 .ssh
$cd .ssh
$cat sshcm2/id_rsa.pub >> ~/.ssh/authorized_keys
$chmod 600 ~/.ssh/authorized_keys
其他节点依次用hadoop用户登录执行
hadoop用户登录 cup-master-2 测试无密码SSH登录: $ssh hadoop@cup-master-1 或者$ssh cup-master-1 其他节点依次执行
注意:
~/.ssh/authorized_keys 的权限必须为600,如果权限给的太高会报安全错误!
$cat sshcm2/id_rsa.pub >> ~/.ssh/authorized_keys意思是将sshcm2/id_rsa.pub添加到~/.ssh/authorized_keys的末尾,即追加
1. hadoop用户登录 cup-master-1
安装hadoop, 部署namenode
上传hadoop介质hadoop-2.0.0-cdh4.1.2.tar.gz
$tar zxvf hadoop-2.0.0-cdh4.1.2.tar.gz 解压缩
2. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/hadoop-env.sh
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
2.1 /home/hadoop/.bash_profile:
# User specific environment and startup programs
HADOOP_HOME=/home/cup/hadoop-2.0.0-cdh4.2.1
HADOOP_MAPRED_HOME=$HADOOP_HOME
HADOOP_COMMON_HOME=$HADOOP_HOME
HADOOP_HDFS_HOME=$HADOOP_HOME
YARN_HOME=$HADOOP_HOME
HADOOP_CONF_HOME=${HADOOP_HOME}/etc/hadoop
YARN_CONF_DIR=${HADOOP_HOME}/etc/hadoop
ANT_HOME=/home/cup/apache-ant-1.8.4
MAVEN_HOME=/home/cup/apache-maven-3.0.4
ZOOKEEPER_HOME=/home/cup/zookeeper-3.4.5-cdh4.2.1
HBASE_HOME=/home/cup/hbase-0.94.2-cdh4.2.1
HADOOP_HOME_WARN_SUPPRESS=1
HADOOP_CLASSPATH=$CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/common:${HADOOP_HOME}/share/hadoop/common/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/hdfs:${HADOOP_HOME}/share/hadoop/hdfs/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/mapreduce:${HADOOP_HOME}/share/hadoop/mapreduce/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/tools/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/yarn:${HADOOP_HOME}/share/hadoop/yarn/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=`$HBASE_HOME/bin/hbase classpath`:$HADOOP_CLASSPATH
JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$HBASE_HOME/bin:$ANT_HOME/bin:$MAVEN_HOME/bin:/home/cup/shell:$PATH
export JAVA_LIBRARY_PATH LD_LIBRARY_PATH HADOOP_CLASSPATH
export HADOOP_HOME HADOOP_MAPRED_HOME HADOOP_COMMON_HOME HADOOP_HDFS_HOME YARN_HOME
export ZOOKEEPER_HOME HBASE_HOME ANT_HOME MAVEN_HOME HADOOP_HOME_WARN_SUPPRESS PATH
# HIVE_HOME=/home/cup/hive-0.10.0-cdh4.2.1
# HADOOP_CLASSPATH=${HIVE_HOME}/lib:$HADOOP_CLASSPATH
# HIVE_CLASSPATH=$HBASE_HOME/conf
# PATH=$HIVE_HOME/bin:$PATH
# export HIVE_HOME HIVE_CLASSPATH HADOOP_CLASSPATH PATH
$source /home/hadoop/.bash_profile
Hadoop集群安装完毕后,第一件事就是修改bin/hadoop-evn.sh文件设置内存。主流节点内存配置为32GB,典型场景内存设置如下
NN: 15-25 GB
JT:2-4GB
DN:1-4 GB
TT:1-2 GB,Child VM 1-2 GB
集群的使用场景不同相关设置也有不同,如果集群有大量小文件,则要求NN内存至少要20GB,DN内存至少2GB。
3. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/core-site.xml
<property>
<name>fs.defaultFS</name>
<value>hdfs://cup-master-1:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/hadoopworkspace/tmp</value>
</property>
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>
$hadoop fs -rmr /xxx/xxx 不会被彻底删除,被你删除的数据将会mv到操作用户目录的".Trash"文件夹
value单位为分钟,开启垃圾箱后,如果希望文件直接被删除,可以在使用删除命令时添加“–skipTrash” 参数
$hadoop fs –rm –skipTrash /xxxx
4. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/hdfs-site.xml
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
5. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/mapred-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.job.tracker</name>
<value>hdfs://cup-master-1:9001</value>
<final>true</final>
</property>
<property>
<name>mapreduce.jobtracker.address</name>
<value>cup-master-1:9002</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>
<property>
<name>mapred.system.dir</name>
<value>/home/hadoop/hadoopworkspace/mapred/system</value>
<final>true</final>
</property>
<property>
<name>mapred.local.dir</name>
<value>/home/hadoop/hadoopworkspace/mapred/local</value>
<final>true</final>
</property>
6. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/yarn-site.xml
<property>
<name>yarn.resourcemanager.address</name>
<value>cup-master-1:8080</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>cup-master-1:8081</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>cup-master-1:8082</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
7. 各节点上hadoop用户登录,创建hadoop工作目录
$mkdir /home/hadoop/hadoopworkspace
6. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/slaves
cup-slave-1
cup-slave-2
cup-slave-3
cup-slave-4
/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/masters 该文件没有也可以
cup-master-1
cup-master-2
hadoop 压缩-----------------------------------------------------
7.0 拷贝native本地库文件/libhadoop/hadoop-lzo/hadoop-snappy
到 /home/hadoop/hadoop-2.0.0-cdh4.1.2/lib/native/
以及拷贝hadoop-lzo/hadoop-snappy相应的jar包
hadoop-snappy已经集成进了hadoop-common中,所以没有单独的jar包
1). snappy本身的链接库-/usr/local/lib/libsnappy*.*
2). hadoop-common的jar包-hadoop-common-2.0.0-cdh4.2.0.jar
源码在hadoop-2.0.0-cdh4.2.0\src\hadoop-common-project\hadoop-common\src\main\java\org\apache\hadoop\io\compress\snappy
3). hadoop-common的native链接库-libhadoop.a, libhadoop.so, libhadoop.so.1.0.0
源码在hadoop-2.0.0-cdh4.2.0\src\hadoop-common-project\hadoop-common\src\main\native\src\org\apache\hadoop\io\compress\snappy
snappy-1.1.0 #root用户安装
$./configure
$make
$make install
/usr/local/lib/libsnappy*.*
如果make时报
libtool: Version mismatch error. This is libtool 2.4.2 Debian-2.4.2-1ubuntu1, but the
libtool: definition of this LT_INIT comes from libtool 2.4.
libtool: You should recreate aclocal.m4 with macros from libtool 2.4.2 Debian-2.4.2-1ubuntu1
libtool: and run autoconf again.
则需要运行
$autoreconf -ivf
## $autoreconf --force --install
完了再$make
core-site.xml::::::::::::::::::::::::::::::::;
<property>
<name>io.compression.codecs</name> <value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.SnappyCodec,com.hadoop.compression.lzo.LzoCodec,org.apache.hadoop.io.compress.BZip2Codec</value>
</property>
<property>
<name>io.compression.codec.lzo.class</name>
<value>com.hadoop.compression.lzo.LzoCodec</value>
</property>
<property>
<name>io.compression.codec.snappy.class</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
## LzoCodec与SnappyCodec只能配置一个,按照哪个压缩配置哪个
mapred-site.xml: MR的输出使用snappy压缩:
<!-- enable snappy for MRv1 -->
<property>
<name>mapred.compress.map.output</name>
<value>true</value>
</property>
<property>
<name>mapred.map.output.compression.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapred.output.compression.type</name>
<value>BLOCK</value>
</property>
<!-- enable snappy for YARN -->
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
<name>mapred.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.type</name>
<value>BLOCK</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
7. DN节点多盘存储方案:
扩磁盘之前系统盘/几乎满了,利用率99%,
扩磁盘之后系统盘/的利用率下降为80%~90%左右,,
后面持续观察,,看看是否持续下降,,,,,,,
收回系统盘-->先停掉一个datanode,,让集群自动搬数据,,
优化方案-->
1)stop the entire cluster
2)mv /home/cup/hadoopworkspace/dfs/data/current/* /cup/d0/dfs2/data/current/
3)add /cup/d0/dfs2/data into the dfs.datanode.data.dir
4)start the entire cluster
7. 安装hadoop, 部署datanode
hadoop-->cup-master-1
$scp -rp hadoop-2.0.0-cdh4.1.2 hadoop@cup-master-2:/home/hadoop/ 依次执行各节点
8. $hdfs namenode -format 第一次需要格式化namenode
./start-dfs.sh
./start-yarn.sh
./stop-dfs.sh
./stop-yarn.sh
以上操作slave节点会被自动启动以及关闭
9. 浏览器中输入 http://192.168.101.122:8088可以查看hadoop集群状态
http://192.168.101.122:50070可以查看namenode状态
10. $jps 查看进程
NN: ResourceManager NameNode SecondaryNameNode
DN: NodeManager DataNode
1. zookeeper/hbase install
2. hadoop-->cup-master-1:
解压zookeeper-3.4.3-cdh4.1.2 hbase-0.92.1-cdh4.1.2
1. /etc/profile 文件末尾处添加:
见前述
$source /etc/profile 使环境变量生效
2. zookeeper install
/home/hadoop/zookeeper-3.4.3-cdh4.1.2/conf/zoo_sample.cfg 改名为 zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/home/hadoop/hadoopworkspace/zookeeper/data
dataLogDir=/home/hadoop/hadoopworkspace/zookeeper/log
clientPort=2181
server.1=cup-master-1:2888:3888
server.2=cup-slave-1:2888:3888
server.3=cup-slave-2:2888:3888
server.4=cup-slave-3:2888:3888
server.5=cup-slave-4:2888:3888
$mkdir /home/hadoop/hadoopworkspace/zookeeper/data 各节点依次执行,ZK不会自动创建
$mkdir /home/hadoop/hadoopworkspace/zookeeper/log 各节点依次执行,ZK不会自动创建
3. $scp -rp /home/hadoop/zookeeper-3.4.3-cdh4.1.2 hadoop@cup-slave-1:/home/hadoop/
4. create myid in dataDir 各节点依次执行
for cup-master-1, the content in myid file should be 1
for cup-slave-1, the content in myid file should be 2
4. 配置ZK自动清理策略
/home/hadoop/zookeeper-3.4.3-cdh4.1.2/conf/zoo.cfg
autopurge.purgeInterval=2
autopurge.snapRetainCount=10
5. /home/hadoop/zookeeper-3.4.3-cdh4.1.2/bin/
$ ./zkServer.sh start 各节点依次执行启动 (第一台机器启动时报大量错误,无妨,是因为还没有选出领导者的缘故)
6. $jps 进程查看
每个节点上都会多出一个 QuorumPeerMain 进程
7. hbase install
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/hbase-env.sh
export HADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
export HBASE_HOME=/home/hadoop/hbase-0.92.1-cdh4.1.2
export JAVA_HOME=/usr/jdk6/jdk1.6.0_32
export HBASE_MANAGES_ZK=false
export HBASE_HEAPSIZE=4000
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/hbase-site.xml
<property>
<name>hbase.rootdir</name>
<value>hdfs://cup-master-1:9000/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.master</name>
<value>cup-master-1:60000</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>cup-master-1,cup-slave-1,cup-slave-2,cup-slave-3,cup-slave-4</value>
</property>
<property>
<name>hbase.master.info.port</name>
<value>60010</value>
</property>
<property>
<name>hbase.master.port</name>
<value>60000</value>
</property>
<property>
<name>hbase.master.maxclockskew</name>
<value>600000</value>
<description>Time difference of regionserver from master</description>
</property>
hbase 压缩-----------------------------------------------------
hbase-site.xml===============================
<property>
<name>hbase.regionserver.codecs</name>
<value>snappy,lzo</value>
</property>
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/regionservers
cup-slave-1
cup-slave-2
cup-slave-3
cup-slave-4
8. $ scp -rp hbase-0.92.1-cdh4.1.2 hadoop@cup-slave-1:/home/hadoop/ 其他slave节点依次执行
9. 注意时间同步master与各个slave之间需要进行时间同步(包括时区),时间差不能超过30000ms,否则hbase regionserver启动报org.apache.hadoop.hbase.ClockOutOfSyncException错误
9.1 手动同步时间
root用户登录
$date -s 20130219
$date -s 14:37:00
$ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
9.2 hbase-site.xml中增加
<property>
<name>hbase.master.maxclockskew</name>
<value>180000</value>
<description>Time difference of regionserver from master</description>
</property>
10. /home/hadoop/hbase-0.92.1-cdh4.1.2/bin/
$ ./start-hbase.sh slave节点会自动被启动
$ ./stop-hbase.sh slave节点会自动被关闭
11. http://192.168.101.122:50070可以查看namenode状态以及hdfs上的/hbase目录
http://192.168.101.122:60010可以查看hbase状态
12. 进程查看
NN:
13326 ResourceManager
18617 QuorumPeerMain
19630 Jps
12980 NameNode
13190 SecondaryNameNode
19411 HMaster
DN:
30404 Jps
30181 HRegionServer
27489 QuorumPeerMain
14014 DataNode
14148 NodeManager
HBASE测试snappy压缩:
$hbase org.apache.hadoop.hbase.util.CompressionTest /home/cup/kv.txt snappy
HBASE优化参数:
/etc/profile:
JAVA_OPTS="$JAVA_OPTS -server -Xms2g -Xmx12g -XX:NewSize=128m -XX:MaxNewSize=128m"
hbase-env.sh:
export HBASE_HEAPSIZE=4000
export HBASE_OPTS="$HBASE_OPTS -XX:NewSize=128m -XX:MaxNewSize=128m -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-master-$(hostname).log"
export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -Xmx12g -Xms12g -XX:NewSize=256m -XX:MaxNewSize=256m -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-regionserver-$(hostname).log"
export HBASE_OPTS="$HBASE_OPTS -Xms4g -Xmx4g -XX:NewSize=1g -XX:MaxNewSize=1g -XX:NewRatio=3 -XX:SurvivorRatio=6 -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=73 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-master-$(hostname).log"
export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -Xms12g -Xmx12g -XX:NewSize=3g -XX:MaxNewSize=3g -XX:NewRatio=3 -XX:SurvivorRatio=6 -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=73 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-regionserver-$(hostname).log"
hbase-site.xml
hbase.client.write.buffer: 20MB
hbase.regionserver.handler.count: 100
hbase.hregion.memstore.flush.size: 384MB
hbase.hregion.max.filesize: 2GB
hbase.hstore.compactionThreshold: 3
hbase.hstore.blockingStoreFiles: 10
hbase.hstore.flush.thread: 20
hbase.hstore.compaction.thread: 15
hbase.master.distributed.log.splitting: false
zoo.cfg:
# The number of milliseconds of each tick
tickTime=30000
hbase的各种时间参数设置在[2*tickTime, 20*tickTime]范围之内
1. 集群中新增加一台机器,现有的集群节点不用重启,
首先做NN到新增加机器的SSH无密码登陆等基础安装配置,
再将新机器的主机名添加到
/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/slaves
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/regionservers
中,再对hadoop以及hbase执行启动命令,现有节点上的进程不会被影响
2. Hadoop Balancer 可以使DataNode节点上选择策略重新平衡DataNode上的数据块的分布
/home/hadoop/hadoop-2.0.0-cdh4.1.2/sbin/start-balancer.sh –t 10%
这个命令中-t参数后面跟的是HDFS达到平衡状态的磁盘使用率偏差值。
如果机器与机器之间磁盘使用率偏差小于10%,那么我们就认为HDFS集群已经达到了平衡的状态。
1. Oozie install
/etc/profile:
OOZIE_HOME=/home/hadoop/oozie-3.2.0-cdh4.1.2
$OOZIE_HOME//oozie-server/bin/catalina.sh:
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
CATALINA_HOME=/home/cup/oozie-3.3.0-cdh4.2.1/oozie-server
$OOZIE_HOME/bin/oozie-setup.sh:
$oozie-setup.sh -extjs /home/hadoop/ext-2.2.zip -hadoop 0.20.200 $HADOOP_HOME
$oozie-setup.sh -extjs /home/hadoop/ext-2.2.zip -hadoop 2.0 $HADOOP_HOME
2. $OOZIE_HOME/bin/oozie-run.sh 启动oozie
5. oozie启动报找不到org/apache/hadoop/utils/ReflectionUtils类
将/home/hadoop/oozie-3.2.0-cdh4.1.2/libtools/*.jar copy to /home/hadoop/oozie-3.2.0-cdh4.1.2/oozie-server/webapps/oozie/WEB-INF/lib下
6. oozie启动报
REASON: org.apache.oozie.service.ServiceException: E0103: Could not load service classes, Schema 'SA' does not exist {SELECT t0.bean_type, t0.conf, t0.console_url, t0.cred, t0.data, t0.error_code, t0.error_message, t0.external_child_ids, t0.external_id, t0.external_status, t0.name, t0.retries, t0.stats, t0.tracker_uri, t0.transition, t0.type, t0.user_retry_count, t0.user_retry_interval, t0.user_retry_max, t0.end_time, t0.execution_path, t0.last_check_time, t0.log_token, t0.pending, t0.pending_age, t0.signal_value, t0.sla_xml, t0.start_time, t0.status, t0.wf_id FROM WF_ACTIONS t0 WHERE t0.bean_type = ? AND t0.id = ?} [code=30000, state=42Y07]
7. $OOZIE_HOME/bin/ooziedb.sh create -sqlfile oozie.sql -run
Validate DB Connection
DONE
Check DB schema does not exist
DONE
Check OOZIE_SYS table does not exist
DONE
Create SQL schema
DONE
Create OOZIE_SYS table
DONE
Oozie DB has been created for Oozie version '3.2.0-cdh4.1.2'
The SQL commands have been written to: oozie.sql
sql脚本保存到$OOZIE_HOME/bin/oozie.sql文件中.
8. oozie-site.xml:
<!-- Default proxyuser configuration for Hue -->
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.cup.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.cup.groups</name>
<value>*</value>
</property>
8.
Error occurred during initialization of VM
Incompatible minimum and maximum heap sizes specified
oozie-env.sh:
export CATALINA_OPTS="$CATALINA_OPTS -Xms2g -Xmx4g"
8. $OOZIE_HOME/bin/oozie-run.sh 启动oozie
$OOZIE_HOME/bin/oozie-run.sh & 后台启动oozie
最新:
$oozied.sh run
$ jps
28945 Bootstrap
9. $OOZIE_HOME/bin/oozie admin -oozie http://192.168.101.122:11000/oozie -status
System mode: NORMAL 则表示已经成功
http://192.168.101.122:11000/oozie就能看到Oozie的管理界面
重启机器hostname变了,集群启动不起来:
2. hostname变了,需要修改 /etc/sysconfig/network
/etc/sysconfig/network: (永久修改主机名)
NETWORKING=yes
HOSTNAME=cup-master-1
GATEWAY=192.168.101.1
依次执行
$source /etc/sysconfig/network
依次执行
3. /etc/profile 环境变量挪到hadoop用户下
5. 关闭防火墙 $sudo service iptables stop
查看防火墙 $sudo service iptables status
6. /etc/hosts:
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.101.122 cup-master-1
192.168.101.123 cup-master-2
192.168.101.121 cup-slave-1
192.168.101.125 cup-slave-2
192.168.101.124 cup-slave-3
192.168.101.120 cup-slave-4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
这一行不注释掉, hbase起不来,,,,,
7. 时间同步 date -s
HBASE启动不起来:
ERROR org.apache.hadoop.hbase.zookeeper.RecoverableZooKeeper: ZooKeeper exists failed after 3 retries
WARN org.apache.zookeeper.ClientCnxn: Session 0x0 for server null, unexpected error, closing socket connection and attempting reconnect
a. 关闭防火墙 $sudo service iptables stop
b. /etc/hosts 注释掉 ::1 localhost 这一行, 即禁用ipv6
c. 集群中节点时间同步
mysql5.1.67
8. $ sudo /etc/init.d/mysqld start 启动mysql $service mysqld start
$ sudo service mysqld status
$ mysql 进入mysql服务模式
mysql>
mysql>exit 退出进入bash shell命令行模式
$ /usr/bin/mysqladmin -u root password '123' 设置root用户密码
$ /usr/bin/mysqladmin -u root -h cup-master-1 password '123'
1. Hive Install
1.1 .bash_profile
HIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
export HIVE_HOME
HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/home/hadoop/hive-0.9.0-cdh4.1.2/lib:$CLASSPATH:$HADOOP_HOME/bin
1.2 $ cd /home/hadoop/hive-0.9.0-cdh4.1.2/conf
1.3 $ cp hive-default.xml.template hive-site.xml
1.4 hive-site.xml:
最上面添加:
<property>
<name>hive.aux.jars.path</name>
<value>file:///root/hive-0.10.0-cdh4.2.0/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/hbase-0.94.2-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/zookeeper-3.4.5-cdh4.2.0.jar</value>
</property>
hive.metastore.warehouse.dir: /home/hadoop/hive-0.9.0-cdh4.1.2/warehouse
hive.exec.scratchdir: /home/hadoop/hive-0.9.0-cdh4.1.2/hive-${user.name}
javax.jdo.option.ConnectionURL: jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true
javax.jdo.option.ConnectionDriverName: com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName: hive
javax.jdo.option.ConnectionPassword: hive
以下两处的description标签有语法错误,需要补上</description>:
1) hive.optimize.union.remove at line474
2) hive.mapred.supports.subdirectories at line 489
以下三处的partition-dir标签有语法错误,需要补上</partition-dir>:
1) hive.exec.list.bucketing.default.dir at line561
2) hive.exec.list.bucketing.default.dir at line562
3) hive.exec.list.bucketing.default.dir at line563
hive-env.sh:
export HADOOP_HOME=/home/cup/hadoop-2.0.0-cdh4.2.1
export HBASE_HOME=/home/cup/hbase-0.94.2-cdh4.2.1
export JAVA_HOME=/usr/jdk6/jdk1.6.0_32
export HIVE_CLASSPATH=$HBASE_HOME/conf
####export HIVE_AUX_JARS_PATH=/home/cup/hive-0.10.0-cdh4.2.1/lib:$HADOOP_CLASSPATH
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
注释掉HIVE_AUX_JARS_PATH的原因:
因为hive提交mr任务的时候调用hive.aux.jars.path变量,
该变量的值应该为file:///root/hive-0.10.0-cdh4.2.0/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/hbase-0.94.2-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/zookeeper-3.4.5-cdh4.2.0.jar
这个是在hive-site.xml中配置,而
hive-env.sh中的export HIVE_AUX_JARS_PATH需要注释,
否则报java.io.FileNotFoundException: File file:/home/hadoop/hive-0.10.0-cdh4.4.0/lib:***** does not exist
就算不注释掉,也得修改为
export HIVE_AUX_JARS_PATH=file:///home/cup/hive-0.10.0-cdh4.2.1/lib
##使用HIVE脚本往外部表(映射到hbase的snappy压缩表)中insert数据时HIVE需要通过HIVE_AUX_JARS_PATH找到以下jar包:
hive-hbase-handler-0.10.0-cdh4.2.0.jar
hbase-0.94.2-cdh4.2.0.jar
zookeeper-3.4.5-cdh4.2.0.jar
所以此处需要配置为HIVE_AUX_JARS_PATH=/root/hive-0.10.0-cdh4.2.0/lib/:$HADOOP_CLASSPATH
添加$HADOOP_CLASSPATH是因为在HIVE里面添加外部表(与HBASE的snappy压缩表关联)时找不到snappy的类
将hadoop-common的jar包拷贝到/home/cup/hive-0.10.0-cdh4.2.1/lib下,
否则
Failed with exception java.io.IOException:java.io.IOException:
Cannot create an instance of InputFormat class org.apache.hadoop.mapred.TextInputFormat as specified in mapredWork!
或者
Caused by: java.lang.IllegalArgumentException: Compression codec org.apache.hadoop.io.compress.Sna
ppyCodec not found.
at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:134)
at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:174)
at org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:45)
... 23 more
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.io.compress.Sna
ppyCodec not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1493)
at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:127)
... 25 more
hive-log4j.properties:
hive.log.dir=/home/cup/hive-0.10.0-cdh4.2.1/logs
hive.log.file=hive.log
重新启动mysql
$ mysql -u root -p 输入密码123
mysql>
mysql> create database hive;
## grant select on 数据库.* to 用户名@登录主机 identified by "密码"
mysql> grant all on hive.* to 'hive'@'localhost' identified by 'hive';
mysql> grant all on hive.* to 'hive'@'%' identified by 'hive';
mysql-connector-java-5.1.22-bin.jar 拷贝到/home/hadoop/hive-0.9.0-cdh4.1.2/lib下
1.5
hive --service hwi &
http://192.168.98.20:9999/hwi
hive --service hiveserver &
[hadoop@cup-master-1 bin]$ Starting Hive Thrift Server
$ jps
29082 RunJar
$nohup hive --service hiveserver &
[hadoop@cup-master-1 bin]$ nohup: ignoring input and appending output to `nohup.out'
或者可以按照完HUE后由HUE进行统一启动。
HIVE 集成 HBASE:
hive>create external table snappy_hive(key int, value string)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping"=":key,cf:value")
tblproperties ("hbase.table.name"="snappy_table");
hive>create table hive (key int,value string) row format delimited fields terminated by ',';
hive>load data local inpath '/home/cup/kv.txt' into table hive;
hive>insert overwrite table snappy_hive select * from hive;
snappy --- HIVE
To enable Snappy compression for Hive output when creating SequenceFile outputs, use the following settings:
SET hive.exec.compress.output=true;
SET hive.exec.compress.intermediate=true;
SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
SET mapred.output.compression.type=BLOCK;
SET hive.cli.print.header=true;
SET hive.cli.print.current.db=true;
# JVM reuse
Hadoop will typically launch map or reduce tasks in a forked JVM.
the JVM startup may create significant overhead, especially when launching
jobs with hundreds or thousands of tasks, most which have short execution times.
Reuse allows a JVM instance to be reused up to N times for the same job.
in mapred-site.xml:
<property>
<name>mapred.job.reuse.jvm.num.tasks</name>
<value>10</value>
</property>
hive.exec.scratchdir:
/home/cup/hive-0.10.0-cdh4.2.1/hive-${user.name}
hive.metastore.warehouse.dir:
/home/cup/hive-0.10.0-cdh4.2.1/warehouse
HIVE元数据库使用ORACLE:
1) 手动oracle版本的hive元数据库脚本 hive-0.10.0-cdh4.2.1\scripts\metastore\upgrade\oracle\hive-schema-0.10.0.oracle.sql
2) 修改hive-site.xml--jdbc连接
3) nohup hive --service hiveserver &
HIVE用户权限:
其他用户想执行HIVE需要配置以下几项:
.bash_profile
/home/hadoop/cdh42/cdhworkspace/tmp chmod 777
/home/hadoop/cdh42/hive-0.10.0-cdh4.2.0/logs chmod 777
hive>grant create/all on database default to user xhyt;
hive>show grant user xhyt on databaase default;
hive>grant select on table hive_t to user xhyt;
hive>grant select on table hive_t to group xhyt;
hbase-env.sh里面加了export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
hadoop-env.sh里面也加了export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
root用户下/etc/profile:
#set java environment
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$CLASSPATH
JAVA_OPTS="$JAVA_OPTS -server -Xms1024m -Xmx4096m"
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME JAVA_OPTS CLASSPATH PATH
hadoop用户下/home/hadoop/.bash_profile:
# User specific environment and startup programs
HADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
HADOOP_MAPRED_HOME=$HADOOP_HOME
HADOOP_COMMON_HOME=$HADOOP_HOME
HADOOP_HDFS_HOME=$HADOOP_HOME
YARN_HOME=$HADOOP_HOME
ZOOKEEPER_HOME=/home/hadoop/zookeeper-3.4.3-cdh4.1.2
HBASE_HOME=/home/hadoop/hbase-0.92.1-cdh4.1.2
OOZIE_HOME=/home/hadoop/oozie-3.2.0-cdh4.1.2
CATALINA_HOME=$OOZIE_HOME/oozie-server
ANT_HOME=/home/hadoop/apache-ant-1.8.4
MAVEN_HOME=/home/hadoop/apache-maven-3.0.4
HADOOP_CLASSPATH=`$HBASE_HOME/bin/hbase classpath`
PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$HBASE_HOME/bin:$OOZIE_HOME/bin:$CATALINA_HOME/bin:$ANT_HOME/bin:$MAVEN_HOME/bin:$PATH
export HADOOP_CLASSPATH HADOOP_HOME HADOOP_MAPRED_HOME HADOOP_COMMON_HOME HADOOP_HDFS_HOME YARN_HOME ZOOKEEPER_HOME HBASE_HOME OOZIE_HOME CATALINA_HOME ANT_HOME MAVEN_HOME PATH
3. jdk内存调整大小 /etc/profile
export JAVA_OPTS="$JAVA_OPTS -server -Xms1024m -Xmx4096m"
$source /etc/profile
各节点依次执行
HADOOP机架感知-提高网络性能
core-site.xml:
<property>
<name>topology.script.file.name</name>
<value>/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop/rackaware.sh</value>
</property>
/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop/rackaware.sh
#!/bin/bash
HADOOP_CONF=/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop
while [ $# -gt 0 ] ; do
nodeArg=$1
exec< ${HADOOP_CONF}/topology.data
result=""
while read line ; do
ar=( $line )
if [ "${ar[0]}" = "$nodeArg" ] ; then
result="${ar[1]}"
fi
done
shift
if [ -z "$result" ] ; then
echo -n "/default/rack "
else
echo -n "$result "
fi
done
$chmod 755 rackaware.sh
/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop/topology.data
cup-master-1 /default/rack1
cup-master-2 /default/rack1
cup-slave-1 /default/rack1
cup-slave-2 /default/rack1
cup-slave-3 /default/rack1
cup-slave-4 /default/rack1
cup-slave-5 /default/rack1
cup-slave-6 /default/rack1
cup-slave-7 /default/rack2
cup-slave-8 /default/rack2
cup-slave-9 /default/rack2
cup-slave-10 /default/rack2
cup-slave-11 /default/rack2
cup-slave-12 /default/rack2
10.204.193.10 /default/rack1
10.204.193.11 /default/rack1
10.204.193.20 /default/rack1
10.204.193.21 /default/rack1
10.204.193.22 /default/rack1
10.204.193.23 /default/rack1
10.204.193.24 /default/rack1
10.204.193.25 /default/rack1
10.204.193.26 /default/rack2
10.204.193.27 /default/rack2
10.204.193.28 /default/rack2
10.204.193.29 /default/rack2
10.204.193.30 /default/rack2
10.204.193.31 /default/rack2
1. hue install (hadoop user experience)
$python 进入python解释器
ctrl+z退出python解释器
Required Dependencies:
gcc, g++,
libgcrypt-devel, libxml2-devel, libxslt-devel,
cyrus-sasl-devel, cyrus-sasl-gssapi,
mysql-devel, python-devel, python-setuptools, python-simplejson,
sqlite-devel, openldap-devel,
ant
libgcrypt-devel-1.4.5-9.el6.x86_64
libxslt-devel-1.1.26-2.el6.x86_64
cyrus-sasl-devel-2.1.23-13.el6.x86_64
mysql-devel-5.1.52.el6_0.1.x86_64
openldap-devel-2.4.23-20.el6.x86_64
install ant
install maven
$make
/home/hadoop/hue-2.1.0-cdh4.1.2/Makefile.vars:42: *** "Error: must have python development packages for 2.4, 2.5, 2.6 or 2.7. Could not find Python.h. Please install python2.4-devel, python2.5-devel, python2.6-devel or python2.7-devel". Stop.
/usr/include/python2.6/下只有pyconfig-64.h,没有Python.h文件
/home/hadoop/hue-2.1.0-cdh4.1.2/Makefile.vars中会进行判断
这是因为没有安装python-devel模块的原因
5. $ cd /home/hadoop/hue-2.1.0-cdh4.1.2
$ PREFIX=/home/hadoop/hue-2.1.0-cdh4.1.2-bin make install
$ sudo chmod 4750 apps/shell/src/shell/build/setuid
2. hadoop config
hdfs-site.xml:
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
core-site.xml:
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hue.groups</name>
<value>*</value>
</property>
httpfs-site.xml:
<property>
<name>httpfs.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>httpfs.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>httpfs.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>httpfs.proxyuser.hue.groups</name>
<value>*</value>
</property>
mapred-site.xml:
<property>
<name>jobtracker.thrift.address</name>
<value>0.0.0.0:9290</value>
</property>
<property>
<name>mapred.jobtracker.plugins</name>
<value>org.apache.hadoop.thriftfs.ThriftJobTrackerPlugin</value>
<description>Comma-separated list of jobtracker plug-ins to be activated.</description>
</property>
3. $ cd /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue
$ cp desktop/libs/hadoop/java-lib/hue-plugins-*.jar /home/hadoop/hadoop-2.0.0-cdh4.1.2/share/hadoop/mapreduce/lib
如果HUE安装主机和hadoop集群master主机不再同一个主机上,那么需要使用scp命令进行拷贝
HUE使用这个插件jar文件来与JobTracker通信
4. 重启hadoop集群
5. config oozie for hue
oozie-site.xml:
<property>
<name>oozie.service.ProxyUserService.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
<value>*</value>
</property>
<property>
<name>oozie.service.AuthorizationService.security.enabled</name>
<value>true</value>
</property>
6. 重启oozie
7. 确认关闭防火墙(HUE SERVER对外提供服务使用默认8888端口)
9. /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/desktop/conf/hue.ini
[desktop]
http_host=0.0.0.0
http_port=8888
[[database]]
engine=mysql
host=cup-master-1
port=3306
user=hue
password=hue
name=hue
[[hdfs_clusters]]
fs_defaultfs=hdfs://cup-master-1:9000
webhdfs_url=http://cup-master-1:50070/webhdfs/v1
hadoop_hdfs_home=/home/hadoop/hadoop-2.0.0-cdh4.1.2
hadoop_bin=/home/hadoop/hadoop-2.0.0-cdh4.1.2/bin/hadoop
hadoop_conf_dir=/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop
[[mapred_clusters]]
jobtracker_host=cup-master-1
jobtracker_port=8021
thrift_port=9290
hadoop_mapred_home=/home/hadoop/hadoop-2.0.0-cdh4.1.2
hadoop_bin=/home/hadoop/hadoop-2.0.0-cdh4.1.2/bin/hadoop
hadoop_conf_dir=/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop
[[yarn_clusters]]
resourcemanager_host=cup-master-1
resourcemanager_port=8032
hadoop_mapred_home=/home/hadoop/hadoop-2.0.0-cdh4.1.2
hadoop_bin=/home/hadoop/hadoop-2.0.0-cdh4.1.2/bin/hadoop
hadoop_conf_dir=/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop
[liboozie]
oozie_url=http://cup-master-1:11000/oozie
[beeswax]
hive_home_dir=/home/hadoop/hive-0.9.0-cdh4.1.2
hive_conf_dir=/home/hadoop/hive-0.9.0-cdh4.1.2/conf
HUE默认使用sqlite库,,,,
[[database]]
# Database engine is typically one of:
# postgresql_psycopg2, mysql, or sqlite3
#
# Note that for sqlite3, 'name', below is a filename;
# for other backends, it is the database name.
engine=sqlite3
## host=
## port=
## user=
## password=
name=/home/cup/hue-2.2.0-cdh4.2.1-bin/hue/desktop/desktop.db
10. 初始化
重新启动mysql
$ mysql -u root -p 输入密码123
mysql>
mysql> create database hue;
## grant select on 数据库.* to 用户名@登录主机 identified by "密码"
mysql> grant all on hue.* to 'hue'@'localhost' identified by 'hue';
备份已有数据文件 /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/hue_dump.json
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/hue dumpdata > /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/hue_dump.json
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/hue syncdb --noinput
$ mysql -u hue -p hue -e "DELETE FROM hue.django_content_type;"
migrate之前备份的数据:
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/hue loaddata /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/hue_dump.json
11. .bash_profile:
HIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
HADOOP_CLASSPATH=`$HBASE_HOME/bin/hbase classpath`
HADOOP_CLASSPATH=/home/hadoop/hive-0.9.0-cdh4.1.2/lib:$HADOOP_CLASSPATH:$CLASSPATH:$HADOOP_HOME/bin
12. 启动
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/supervisor
HUE会把HIVE一并启动
***停的时候需要使用root用户kill掉Runjar进程,,否则cup用户kill的时候
总是会自动重新启动
13. 查看
http://192.168.101.122:8888 hue/hue hadoop/hadoop
5. HUE shell配置
HUE supervisor进程查询 $ps -f -u cup
[cup@cup-master-1 ~]$ ps -f -u cup
UID PID PPID C STIME TTY TIME CMD
cup 7597 7594 0 17:18 ? 00:00:00 sshd: cup@pts/1
cup 7598 7597 0 17:18 pts/1 00:00:00 -bash
cup 7777 7598 0 17:19 pts/1 00:00:00 vim hive-site.xml
cup 7943 7940 0 17:21 ? 00:00:00 sshd: cup@pts/5
cup 7944 7943 0 17:21 pts/5 00:00:00 -bash
cup 9860 9857 0 17:32 ? 00:00:00 sshd: cup@pts/9
cup 9861 9860 0 17:32 pts/9 00:00:00 -bash
cup 10560 10558 0 17:36 ? 00:00:01 sshd: cup@pts/2
cup 10561 10560 0 17:36 pts/2 00:00:00 -bash
cup 10780 10560 0 17:38 ? 00:00:00 /usr/libexec/openssh/sftp-server
cup 11683 10561 0 17:47 pts/2 00:00:00 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 ./supervisor
cup 11687 11683 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/hue runspawningserver
cup 11689 11683 2 17:47 pts/2 00:00:17 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 11743 11687 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 -c import sys; from spawning import spawning_child; spawning_child.main() 11687 3 15 s
cup 11874 11873 0 17:49 pts/1 00:00:00 bash
cup 11896 7944 9 17:49 pts/5 00:00:44 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 12147 11874 4 17:50 pts/1 00:00:21 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 12351 11874 0 17:54 pts/1 00:00:00 vim hive-site.xml
cup 12748 10561 4 17:57 pts/2 00:00:00 ps -f -u cup
cup 24208 1 2 Jul09 ? 00:30:54 /usr/jdk6/jdk1.6.0_32/bin/java -Dproc_namenode -Xmx2000m -Djava.net.preferIPv4Stack=true -Xmx128m -Xmx128m -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-
cup 24660 1 0 Jul09 ? 00:02:07 /usr/jdk6/jdk1.6.0_32/bin/java -Dproc_zkfc -Xmx2000m -Djava.net.preferIPv4Stack=true -Xmx128m -Xmx128m -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4
cup 24842 1 0 Jul09 ? 00:11:10 /usr/jdk6/jdk1.6.0_32/bin/java -Dproc_resourcemanager -Xmx1000m -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dyarn.log.dir=/home/cup/hado
cup 25394 1 1 Jul09 ? 00:14:32 /usr/jdk6/jdk1.6.0_32/bin/java -XX:OnOutOfMemoryError=kill -9 %p -Xmx24000m -Xms24g -Xmx32g -XX:NewSize=1g -XX:MaxNewSize=1g -XX:NewRatio=3 -XX:Sur
cup 41822 41819 0 13:45 ? 00:00:00 sshd: cup
cup 51570 51568 0 Jul08 ? 00:00:00 sshd: cup@pts/3
cup 51571 51570 0 Jul08 pts/3 00:00:00 -bash
cup 56534 56531 0 Jul08 ? 00:00:01 sshd: cup@notty
cup 56535 56534 0 Jul08 ? 00:00:00 /usr/libexec/openssh/sftp-server
cup 58691 58688 0 09:46 ? 00:00:00 sshd: cup@pts/0
cup 58692 58691 0 09:46 pts/0 00:00:00 -bash
其中的
cup 11683 10561 0 17:47 pts/2 00:00:00 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 ./supervisor
cup 11687 11683 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/hue runspawningserver
cup 11689 11683 2 17:47 pts/2 00:00:17 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 11743 11687 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 -c import sys; from spawning import spawning_child; spawning_child.main() 11687 3 15 s
是HUE相关的进程,,
想要停掉HUE需要先kill -9 11689,即RunJar进程,,
再停掉11687(runspawningserver)以及11683(supervisor)
否则不停掉11689(hue runjar)下次启动hue时会报8002,8003端口的socket无法创建
HBASE优化参数:
hbase-env.sh:
export HBASE_HEAPSIZE=4000
hbase-site.xml:
hbase.client.write.buffer: 20MB
hbase.regionserver.handler.count: 100
hbase.hregion.memstore.flush.size: 384MB
hbase.hregion.max.filesize: 2GB
hbase.hstore.compactionThreshold: 3
hbase.hstore.blockingStoreFiles: 10
hbase.hstore.flush.thread: 20
hbase.hstore.compaction.thread: 15
zoo.cfg:
# The number of milliseconds of each tick
tickTime=30000
hbase的各种时间参数设置在[2*tickTime, 20*tickTime]范围之内
hbase-site.xml:
<property>
<name>hbase.rootdir</name>
<value>hdfs://cup-master-1:9000/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.master</name>
<value>cup-master-1:60000</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>cup-master-1,cup-slave-1,cup-slave-2,cup-slave-3,cup-slave-4</value>
</property>
<property>
<name>hbase.master.info.port</name>
<value>60010</value>
</property>
<property>
<name>hbase.master.port</name>
<value>60000</value>
</property>
<property>
<name>hbase.master.maxclockskew</name>
<value>180000</value>
<description>Time difference of regionserver from master</description>
</property>
<property>
<name>hbase.rpc.timeout</name>
<value>540000</value>
<description></description>
</property>
<property>
<name>ipc.socket.timeout</name>
<value>540000</value>
<description></description>
</property>
<property>
<name>hbase.regionserver.lease.period</name>
<value>540000</value>
<description>HRegion server lease period in milliseconds. Default is
60 seconds. Clients must report in within this period else they are
considered dead.
</description>
</property>
<property>
<name>zookeeper.session.timeout</name>
<value>540000</value>
<description>ZooKeeper session timeout.
HBase passes this to the zk quorum as suggested maximum time for a
session. See http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions
"The client sends a requested timeout, the server responds with the
timeout that it can give the client. "
In milliseconds.
</description>
</property>
<property>
<name>hbase.regionserver.restart.on.zk.expire</name>
<value>true</value>
<description>when timeout occurs, regionserver will be restarted but not to shut down</description>
</property>
<property>
<name>hbase.client.write.buffer</name>
<value>20971520</value> <!--20MB-->
<description>Default size of the HTable client write buffer in bytes.
A bigger buffer takes more memory -- on both the client and server
side since server instantiates the passed write buffer to process
it -- but a larger buffer size reduces the number of RPCs made.
For an estimate of server-side memory-used, evaluate
hbase.client.write.buffer * hbase.regionserver.handler.count
</description>
</property>
<property>
<name>hbase.regionserver.handler.count</name>
<value>100</value>
<description>Count of RPC Server instances spun up on RegionServers
Same property is used by the Master for count of master handlers.
Default is 10.
</description>
</property>
<property>
<name>hbase.hregion.memstore.flush.size</name>
<value>402653184</value> <!--384MB-->
<description>
Memstore will be flushed to disk if size of the memstore
exceeds this number of bytes. Value is checked by a thread that runs
every hbase.server.thread.wakefrequency.
</description>
</property>
<property>
<name>hbase.hregion.max.filesize</name>
<value>2147483648</value> <!--2GB-->
<description>
Maximum HStoreFile size. If any one of a column families' HStoreFiles has
grown to exceed this value, the hosting HRegion is split in two.
Default: 256M.
</description>
</property>
<property>
<name>hbase.hstore.compactionThreshold</name>
<value>3</value>
<description>
If more than this number of HStoreFiles in any one HStore
(one HStoreFile is written per flush of memstore) then a compaction
is run to rewrite all HStoreFiles files as one. Larger numbers
put off compaction but when it runs, it takes longer to complete.
</description>
</property>
<property>
<name>hbase.hstore.blockingStoreFiles</name>
<value>10</value>
<description>
If more than this number of StoreFiles in any one Store
(one StoreFile is written per flush of MemStore) then updates are
blocked for this HRegion until a compaction is completed, or
until hbase.hstore.blockingWaitTime has been exceeded.
</description>
</property>
<property>
<name>hbase.hstore.flush.thread</name>
<value>20</value>
</property>
<property>
<name>hbase.hstore.compaction.thread</name>
<value>15</value>
</property>
HADOOP2.0 HA (NO NN Federation)
1. SSH无密码登陆配置
2. 修改hadoop配置文件(cup-master-1,cup-slave-1,cup-slave-2,cup-slave-3,cup-slave-4)
配置文件如下:
vi core-site.xml:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value> <!--hdfs://cup-master-1:9000-->
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>cup-master-1:2181,cup-slave-1:2181,cup-slave-2:2181,cup-slave-3:2181,cup-slave-4:2181</value>
</property>
</configuration>
vi hdfs-site.xml
<configuration>
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>cup-master-1:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>cup-master-2:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>cup-master-1:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>cup-master-2:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://cup-master-1:8485;cup-slave-1:8485;cup-slave-2:8485;cup-slave-3:8485;cup-slave-4:8485/mycluster</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/jn</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>shell(/bin/true)</value>
</property>
或者是
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/exampleuser/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
<description>
SSH connection timeout, in milliseconds, to use with the builtin
sshfence fencer.
</description>
</property>
<property>
<name>dfs.datanode.max.transfer.threads</name>
<value>4096</value>
<description>
Specifies the maximum number of threads to use for transferring data
in and out of the DN.
</description>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/data</value
</property>
</configuration>
[root@HA2kerberos conf]# vim slaves
cup-slave-1
cup-slave-2
cup-slave-3
cup-slave-4
3. master-1上的hadoop拷贝到master-2上 scp
4. 把各个zookeeper起来
5. 然后在某一个主节点执行hdfs zkfc -formatZK,创建命名空间
6. 在dfs.namenode.shared.edits.dir指定的各个节点
(qjournal://cup-master-1:8485;cup-slave-1:8485;cup-slave-2:8485;cup-slave-3:8485;cup-slave-4:8485/mycluster)
用./hadoop-daemon.sh start journalnode启日志程序
7. 在主namenode节点用hadoop namenode -format格式化namenode和journalnode目录
8. 在主namenode节点启动./hadoop-daemon.sh start namenode进程 ./start-dfs.sh
9. 在备namenode节点执行hdfs namenode -bootstrapStandby,
这个是把主namenode节点的目录格式化并把数据从主namenode节点的元数据拷本过来
然后用./hadoop-daemon.sh start namenode启动namenode进程!
6. ./hadoop-daemon.sh start zkfc 主备namenode两个节点都做
7. ./hadoop-daemon.sh start datanode所有datanode节点都做
先起namenode在起zkfc你会发现namenode无法active状态,当你把zkfc启动后就可以了!!!
以上的顺序不能变,我在做的过程就因为先把zkfc启动了,导到namenode起不来!!!
自动启动的时候能看出来,zkfc是最后才启动的!!
[hadoop@ClouderaHA1 sbin]$ ./start-dfs.sh
Starting namenodes on [ClouderaHA1 ClouderaHA2]
ClouderaHA1: starting namenode, logging to /app/hadoop/logs/hadoop-hadoop-namenode-ClouderaHA1.out
ClouderaHA2: starting namenode, logging to /app/hadoop/logs/hadoop-hadoop-namenode-ClouderaHA2.out
ClouderaHA3: starting datanode, logging to /app/hadoop/logs/hadoop-hadoop-datanode-ClouderaHA3.out
ClouderaHA1: starting datanode, logging to /app/hadoop/logs/hadoop-hadoop-datanode-ClouderaHA1.out
ClouderaHA2: starting datanode, logging to /app/hadoop/logs/hadoop-hadoop-datanode-ClouderaHA2.out
Starting ZK Failover Controllers on NN hosts [ClouderaHA1 ClouderaHA2]
ClouderaHA1: starting zkfc, logging to /app/hadoop/logs/hadoop-hadoop-zkfc-ClouderaHA1.out
ClouderaHA2: starting zkfc, logging to /app/hadoop/logs/hadoop-hadoop-zkfc-ClouderaHA2.out
A. 先各个节点启journalnode
hadoop-daemon.sh start journalnode
B. 在主master节点start-dfs.sh start-yarn.sh
[hadoop@cup-master-1 ~]$ start-dfs.sh
Starting namenodes on [cup-master-1 cup-master-2]
hadoop@cup-master-1's password: cup-master-2: starting namenode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-namenode-cup-master-2.out
cup-master-1: starting namenode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-namenode-cup-master-1.out
cup-slave-4: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-4.out
cup-slave-1: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-1.out
cup-slave-3: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-3.out
cup-slave-2: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-2.out
Starting ZK Failover Controllers on NN hosts [cup-master-1 cup-master-2]
hadoop@cup-master-1's password: cup-master-2: starting zkfc, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-zkfc-cup-master-2.out
cup-master-1: starting zkfc, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-zkfc-cup-master-1.out
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-1 ~]$ jps
30939 NameNode
28526 QuorumPeerMain
29769 JournalNode
31283 Jps
31207 DFSZKFailoverController
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-2 ~]$ jps
13197 DFSZKFailoverController
12305 NameNode
15106 Jps
[hadoop@cup-master-2 ~]$
[hadoop@cup-master-1 ~]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-resourcemanager-cup-master-1.out
cup-slave-4: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-4.out
cup-slave-1: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-1.out
cup-slave-3: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-3.out
cup-slave-2: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-2.out
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-1 ~]$ jps
30939 NameNode
28526 QuorumPeerMain
29769 JournalNode
31628 Jps
31207 DFSZKFailoverController
31365 ResourceManager
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-2 ~]$ jps
13197 DFSZKFailoverController
12305 NameNode
17092 Jps
由此得知HA只是针对HDFS, 与MR2无关
[hadoop@cup-slave-1 ~]$ jps
30692 JournalNode
31453 NodeManager
31286 DataNode
30172 QuorumPeerMain
31562 Jps
[hadoop@cup-slave-1 ~]$
HBASE HA CONF:
1. hbase-site.xml
<property>
<name>hbase.rootdir</name>
<value>hdfs://mycluster/hbase</value> <!-- hdfs://cup-master-1:9000 -->
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.master</name>
<value>cup-master-1:60000</value>
</property>
2. 将core-site.xml和hdfs-site.xml拷贝到hbase_home\conf\下
否则hbase无法启动,不认hdfs://mycluster
HA调试失败
还原的时候必须
1. 清空目录
NNs上: /home/hadoop/cdh42/cdhworkspace/dfs/name
DNs上: /home/hadoop/cdh42/cdhworkspace/dfs/data
JNs上: /home/hadoop/cdh42/cdhworkspace/dfs/jn
2. 做格式化操作
NNs上: hdfs namenode -format
Cannot start an HA namenode with name dirs that need recovery. Dir: Storage Directory /home/hadoop/cdh42/cdhworkspace/dfs/name state: NOT_FORMATTED
NNs上: hdfs namenode -format
format时要求ZK进程以及JN进程启动
zkServer.sh start
hadoop-daemon.sh start journalnode
Incompatible namespaceID for journal Storage Directory /home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster: NameNode has nsId 264369592 but storage has nsId 1178230309
修改/home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster/current/VERSION文件中的namespaceID
Incompatible clusterID for journal Storage Directory /home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster: NameNode has clusterId 'CID-34eabdd9-ca2c-48ff-9127-b6df81aded90' but storage has clusterId 'CID-c1012f1d-e2f1-4a0b-89f6-cafabef1cf7e'
修改/home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster/current/VERSION文件中的clusterId
Incompatible clusterIDs in /home/hadoop/cdh42/cdhworkspace/dfs/data: namenode clusterID = CID-34eabdd9-ca2c-48ff-9127-b6df81aded90; datanode clusterID = CID-c1012f1d-e2f1-4a0b-89f6-cafabef1cf7e
修改/home/hadoop/cdh42/cdhworkspace/dfs/data/current/VERSION文件中的clusterId
原因:每次format会新生成namespaceID以及clusterID
而此时cdhworkspace/dfs/name,cdhworkspace/dfs/data, cdhworkspace/dfs/jn里面的namespaceID以及clusterID是旧的,
所以要在format前清空所有机器上的所有目录
NNs上: /home/hadoop/cdh42/cdhworkspace/dfs/name
DNs上: /home/hadoop/cdh42/cdhworkspace/dfs/data
JNs上: /home/hadoop/cdh42/cdhworkspace/dfs/jn
HBASE调大
ulimit -a open files需要调大
dfs.replication.interval
dfs.datanode.handler.count
dfs.namenode.handler.count
HIVE集成HBASE 需要拷贝hbase配置文件到hadoop下:
hbase->hadoop:
hbase-0.94.2-cdh4.2.0/conf/hbase-site.xml copy to hadoop-2.0.0-cdh4.2.0/etc/hadoop/下
挂载ISO镜像文件:
mount -t iso9660 -o loop /*/*.iso /mnt
[contrib1]
name=Server
baseurl=file:///mnt/Server
gpgcheck=1
enabled=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
1. 晚上我查询研究了一下,目前主流的观点是rowkey: 10-100B,即rowkey长度控制在10到100个字节,
rowkey过长会降低memstore检索效率以及hfile的存储效率,有百害而无一利。
2. 我这边结合咱们的场景以及数据模型,推荐以下长度:
recommanded 8B=64b,16B=128b,24B=192b,32B=256b,最大不要超过32字节。
即分别是8字节, 16字节, 24字节以及32字节,皆取8的整数倍,原因是64位机器内存分配以8字节倍数对齐。
3. 以下为量化分析:
8B = 64b = 2^64 = 1.844674407371 * 10^19 --20bits long int --最大20位整数
16B = 128b = 2^128 = 3.4028236692094 * 10^38 --39bits long int --最大39位整数
24B = 192b = 2^192 = 6.2771017353867 * 10^57 --58bits long int --最大58位整数
32B = 256b = 2^256 = 1.1579208923732 * 10^77 --78bits long int --最大78位整数
而根据咱们的设计话单表ROWKEY按如下方式组织->
6156911095 8534567490 11000 45000 1111111111111111111
反转电话 10位
取反时间 10位
小区维度 10位
终端维度 19位
总共是49位整数,,所以建议直接采用该方案,ROWKEY按照24个字节走,最大支持58位整数,取57位,
这样仍然有8位的空余可用,如果不需要那就转字节的时候自动填零即可。
CDH2.0 native lib compiling
依赖包::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
maven
apr-1.4.6.tar.gz
apr-util-1.5.1.tar.gz
httpd-2.2.23.tar.gz
php-5.3.18.tar.gz
rrdtool-1.4.7.tar.gz
pcre-8.31.tar.gz
libconfuse-2.6-2.el5.rf.x86_64.rpm
libconfuse-devel-2.6-2.el5.rf.x86_64.rpm
libxml2-devel rpmbuild glib2-devel dbus-devel freetype-devel fontconfig-devel
gcc-c++ expat-devel python-devel libXrender-devel
yum -y install apr-devel apr-util check-devel cairo-devel pango-devel
pcre-devel
tcl-devel
zlib-devel
bzip2-devel
libX11-devel
readline-devel
libXt-devel
tk-devel
tetex-latex
rhbase:
libboost-dev libboost-test-dev libboost-program-options-dev libevent-dev
automake libtool flex bison pkg-config g++ libssl-dev
1. install lzo以及lzo-devel lzo-devel zlib-devel openssl-devel
dependancy: lzo-devel zlib-devel gcc autoconf automake libtool
2. install ProtocolBuffers: http://wiki.apache.org/hadoop/HowToContribute
3. $cd /home/hadoop/protobuf-2.5.0/ ##root用户
$./configure
$make
$make install
4. $cd /home/hadoop/protobuf-2.5.0/java ##hadoop用户
$mvn compile
$mvn install
5. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common
modify pom.xml: add
<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>
<version>2.5.0</version> <!-- 加上版本号,否则找不到包 -->
</dependency>
6. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn clean install -DskipTests -P native
******************注意, 因为hadoop-common-project/hadoop-common中包含snappy压缩的代码,
所以common本地库编译的时候最好事先安装好snappy,如snappy-1.1.0,否则使用snappy压缩时会提示:
this version of libhadoop was built without snappy support
snappy-1.1.0.tar.
http://code.google.com/p/hadoop-snappy/
$ mvn package [-Dsnappy.prefix=SNAPPY_INSTALLATION_DIR]
$mvn clean install -DskipTests -P native package -Dsnappy.prefix=SNAPPY_INSTALLATION_DIR
$mvn clean install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
##不加-Dsnappy.prefix=/root/snappy-1.1.0的话
会提示snappy native library was compiled without snappy support
this version of libhadoop was built without snappy support
http://code.google.com/p/hadoop-snappy/上有说明
copy to hadoop-common-project/hadoop-common----------------------------
7. copy /home/hadoop/protobuf-2.5.0/java/target/generated-sources/com/google/protobuf/DescriptorProtos.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/generated-sources/java/com/google/protobuf/
8. copy /home/hadoop/protobuf-2.5.0/java/src/main/java/com/google/protobuf/*.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/generated-sources/java/com/google/protobuf/
9. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
注意,没有clean,否则拷过去的java文件会被删除
main:
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] Apache Hadoop Main ................................ SUCCESS [1.427s]
[INFO] Apache Hadoop Project POM ......................... SUCCESS [0.986s]
[INFO] Apache Hadoop Annotations ......................... SUCCESS [0.933s]
[INFO] Apache Hadoop Project Dist POM .................... SUCCESS [0.852s]
[INFO] Apache Hadoop Assemblies .......................... SUCCESS [0.246s]
[INFO] Apache Hadoop Auth ................................ SUCCESS [0.645s]
[INFO] Apache Hadoop Auth Examples ....................... SUCCESS [0.827s]
[INFO] Apache Hadoop Common .............................. FAILURE [49.566s]
[INFO] Apache Hadoop Common Project ...................... SKIPPED
[INFO] Apache Hadoop HDFS ................................ SKIPPED
[INFO] Apache Hadoop HttpFS .............................. SKIPPED
[INFO] Apache Hadoop HDFS Project ........................ SKIPPED
[INFO] hadoop-yarn ....................................... SKIPPED
[INFO] hadoop-yarn-api ................................... SKIPPED
[INFO] hadoop-yarn-common ................................ SKIPPED
[INFO] hadoop-yarn-server ................................ SKIPPED
[INFO] hadoop-yarn-server-common ......................... SKIPPED
[INFO] hadoop-yarn-server-nodemanager .................... SKIPPED
[INFO] hadoop-yarn-server-web-proxy ...................... SKIPPED
[INFO] hadoop-yarn-server-resourcemanager ................ SKIPPED
[INFO] hadoop-yarn-server-tests .......................... SKIPPED
[INFO] hadoop-yarn-client ................................ SKIPPED
[INFO] hadoop-yarn-applications .......................... SKIPPED
[INFO] hadoop-yarn-applications-distributedshell ......... SKIPPED
[INFO] hadoop-mapreduce-client ........................... SKIPPED
[INFO] hadoop-mapreduce-client-core ...................... SKIPPED
[INFO] hadoop-yarn-applications-unmanaged-am-launcher .... SKIPPED
[INFO] hadoop-yarn-site .................................. SKIPPED
[INFO] hadoop-yarn-project ............................... SKIPPED
[INFO] hadoop-mapreduce-client-common .................... SKIPPED
[INFO] hadoop-mapreduce-client-shuffle ................... SKIPPED
[INFO] hadoop-mapreduce-client-app ....................... SKIPPED
[INFO] hadoop-mapreduce-client-hs ........................ SKIPPED
[INFO] hadoop-mapreduce-client-jobclient ................. SKIPPED
[INFO] Apache Hadoop MapReduce Examples .................. SKIPPED
[INFO] hadoop-mapreduce .................................. SKIPPED
[INFO] Apache Hadoop MapReduce Streaming ................. SKIPPED
[INFO] Apache Hadoop Distributed Copy .................... SKIPPED
[INFO] Apache Hadoop Archives ............................ SKIPPED
[INFO] Apache Hadoop Rumen ............................... SKIPPED
[INFO] Apache Hadoop Gridmix ............................. SKIPPED
[INFO] Apache Hadoop Data Join ........................... SKIPPED
[INFO] Apache Hadoop Extras .............................. SKIPPED
[INFO] Apache Hadoop Pipes ............................... SKIPPED
[INFO] Apache Hadoop Tools Dist .......................... SKIPPED
[INFO] Apache Hadoop Tools ............................... SKIPPED
[INFO] Apache Hadoop Distribution ........................ SKIPPED
[INFO] Apache Hadoop Client .............................. SKIPPED
[INFO] Apache Hadoop Mini-Cluster ........................ SKIPPED
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 58.143s
[INFO] Finished at: Tue Apr 09 14:31:49 CST 2013
[INFO] Final Memory: 67M/1380M
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.6:run (make) on project hadoop-common: An Ant BuildException has occured: Execute failed: java.io.IOException: Cannot run program "cmake" (in directory "/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/native"): java.io.IOException: error=2, No such file or directory -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR]
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR] mvn <goals> -rf :hadoop-common
10. install cmake ##root用户
$tar xvf cmake-*.*.*.tar.gz
$cd cmake-*.*.*
$./bootstrap
$make
$make install
11. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
注意,没有clean,执行该步骤之后才能生成
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common/target/generated-sources目录
copy to hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common----------------------------
12. copy /home/hadoop/protobuf-2.5.0/java/target/generated-sources/com/google/protobuf/DescriptorProtos.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common/target/generated-sources/proto/
13. copy /home/hadoop/protobuf-2.5.0/java/src/main/java/com/google/protobuf/*.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common/target/generated-sources/proto/
14. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
注意,没有clean
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] Apache Hadoop Main ................................ SUCCESS [1.302s]
[INFO] Apache Hadoop Project POM ......................... SUCCESS [0.861s]
[INFO] Apache Hadoop Annotations ......................... SUCCESS [0.765s]
[INFO] Apache Hadoop Project Dist POM .................... SUCCESS [1.010s]
[INFO] Apache Hadoop Assemblies .......................... SUCCESS [0.230s]
[INFO] Apache Hadoop Auth ................................ SUCCESS [0.614s]
[INFO] Apache Hadoop Auth Examples ....................... SUCCESS [0.741s]
[INFO] Apache Hadoop Common .............................. SUCCESS [23.666s]
[INFO] Apache Hadoop Common Project ...................... SUCCESS [0.075s]
[INFO] Apache Hadoop HDFS ................................ SUCCESS [31.895s]
[INFO] Apache Hadoop HttpFS .............................. SUCCESS [2.411s]
[INFO] Apache Hadoop HDFS Project ........................ SUCCESS [0.076s]
[INFO] hadoop-yarn ....................................... SUCCESS [0.265s]
[INFO] hadoop-yarn-api ................................... SUCCESS [6.371s]
[INFO] hadoop-yarn-common ................................ SUCCESS [1.907s]
[INFO] hadoop-yarn-server ................................ SUCCESS [0.107s]
[INFO] hadoop-yarn-server-common ......................... SUCCESS [1.211s]
[INFO] hadoop-yarn-server-nodemanager .................... SUCCESS [2.975s]
[INFO] hadoop-yarn-server-web-proxy ...................... SUCCESS [0.324s]
[INFO] hadoop-yarn-server-resourcemanager ................ SUCCESS [0.634s]
[INFO] hadoop-yarn-server-tests .......................... SUCCESS [0.367s]
[INFO] hadoop-yarn-client ................................ SUCCESS [0.194s]
[INFO] hadoop-yarn-applications .......................... SUCCESS [0.108s]
[INFO] hadoop-yarn-applications-distributedshell ......... SUCCESS [0.344s]
[INFO] hadoop-mapreduce-client ........................... SUCCESS [0.098s]
[INFO] hadoop-mapreduce-client-core ...................... SUCCESS [1.496s]
[INFO] hadoop-yarn-applications-unmanaged-am-launcher .... SUCCESS [0.231s]
[INFO] hadoop-yarn-site .................................. SUCCESS [0.200s]
[INFO] hadoop-yarn-project ............................... SUCCESS [0.172s]
[INFO] hadoop-mapreduce-client-common .................... SUCCESS [6.503s]
[INFO] hadoop-mapreduce-client-shuffle ................... SUCCESS [0.391s]
[INFO] hadoop-mapreduce-client-app ....................... SUCCESS [3.133s]
[INFO] hadoop-mapreduce-client-hs ........................ SUCCESS [1.250s]
[INFO] hadoop-mapreduce-client-jobclient ................. SUCCESS [3.092s]
[INFO] Apache Hadoop MapReduce Examples .................. SUCCESS [0.900s]
[INFO] hadoop-mapreduce .................................. SUCCESS [0.105s]
[INFO] Apache Hadoop MapReduce Streaming ................. SUCCESS [0.706s]
[INFO] Apache Hadoop Distributed Copy .................... SUCCESS [1.513s]
[INFO] Apache Hadoop Archives ............................ SUCCESS [0.828s]
[INFO] Apache Hadoop Rumen ............................... SUCCESS [1.201s]
[INFO] Apache Hadoop Gridmix ............................. SUCCESS [1.040s]
[INFO] Apache Hadoop Data Join ........................... SUCCESS [0.409s]
[INFO] Apache Hadoop Extras .............................. SUCCESS [0.545s]
[INFO] Apache Hadoop Pipes ............................... SUCCESS [9.772s]
[INFO] Apache Hadoop Tools Dist .......................... SUCCESS [0.467s]
[INFO] Apache Hadoop Tools ............................... SUCCESS [0.059s]
[INFO] Apache Hadoop Distribution ........................ SUCCESS [0.228s]
[INFO] Apache Hadoop Client .............................. SUCCESS [0.624s]
[INFO] Apache Hadoop Mini-Cluster ........................ SUCCESS [0.247s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 1:56.489s
[INFO] Finished at: Tue Apr 09 15:28:54 CST 2013
[INFO] Final Memory: 87M/744M
[INFO] ------------------------------------------------------------------------
15. 编译后的native文件:
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/native/target/usr/local/lib/
[hadoop@cup-master-1 src]$ find . -name *.a
./hadoop-hdfs-project/hadoop-hdfs/target/native/libposix_util.a
./hadoop-hdfs-project/hadoop-hdfs/target/native/libnative_mini_dfs.a
./hadoop-hdfs-project/hadoop-hdfs/target/native/target/usr/local/lib/libhdfs.a
./hadoop-common-project/hadoop-common/target/native/target/usr/local/lib/libhadoop.a
./hadoop-tools/hadoop-pipes/target/native/libhadooputils.a
./hadoop-tools/hadoop-pipes/target/native/libhadooppipes.a
./hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/target/native/libcontainer.a
1 192.168.101.120 cup-slave-4 192.168.101.150 user1/hadoop123
2 192.168.101.121 cup-slave-1 192.168.101.151 user1/hadoop123
3 192.168.101.122 cup-master-1 192.168.101.152 user1/hadoop123
4 192.168.101.123 cup-master-2 192.168.101.153 user1/hadoop123
5 192.168.101.124 cup-slave-3 192.168.101.154 user1/hadoop123
6 192.168.101.125 cup-slave-2 192.168.101.155 user1/hadoop123
临时文件目录:
C:\ProgramFilesDev\CDH4\on cup-master-1\
C:\ProgramFilesDev\CDH4\install files\
注意: 配置文件的编辑最好使用UltraEdit等工具编辑,不要使用写字板等工具,否则在linux下有可能会导致错误!!!!!!!!!
/etc/sysconfig/network: (永久修改主机名)
NETWORKING=yes
HOSTNAME=cup-master-1
GATEWAY=192.168.101.1
依次执行,GATEWAY一定要准确,可以执行$ifconfig查看Bcast属性
$source /etc/sysconfig/network
依次执行
修改hostname: ##这个步骤一定要执行,否则NN格式化的时候有可能会报UnknownHostEception:cup-master-1的错误
$hostname cup-master-1
$hostname cup-master-2
$hostname cup-slave-1
$hostname cup-slave-2
$hostname cup-slave-3
$hostname cup-slave-4
/etc/hosts中已经配置了的主机:
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.101.122 cup-master-1
192.168.101.123 cup-master-2
192.168.101.121 cup-slave-1
192.168.101.125 cup-slave-2
192.168.101.124 cup-slave-3
192.168.101.120 cup-slave-4
$source /etc/hosts
依次执行
DNS:
/etc/resolv.conf 增加
search localdomain
nameserver 192.168.101.110 ##dns ip
nameserver 8.8.8.8
依次执行
语言配置:
/etc/sysconfig/i18n
LANG=en_US
$source /etc/sysconfig/i18n
依次执行
$echo $LANG
进行查看
关闭防火墙 $sudo service iptables stop
查看防火墙 $sudo service iptables status
依次执行
永久关闭: $chkconfig iptables off
$iptables -F
$service iptables save
卸载openjdk:
1. rpm -qa|grep jdk
java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64
2. rpm -e java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64
安装jdk
1. JAVA SE 1.6以上,下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html
下载jdk-6u32-linux-x64.bin
2. cd /usr/jdk6
3. chmod 755 *.bin
4. ./jdk-6u32-linux-x64.bin
5. 配置环境变量
/etc/profile 文件末尾处添加:
/etc/profile:
#set java environment
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$CLASSPATH
JAVA_OPTS="$JAVA_OPTS -server"
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME JAVA_OPTS CLASSPATH PATH
#JAVA_OPTS="$JAVA_OPTS -server -Xms2g -Xmx12g -XX:NewSize=128m -XX:MaxNewSize=128m"
$source /etc/profile 使环境变量生效
ulimit 打开文件最大数限制设置--打开文件句柄最大数限制设置
ulimit -u
1. /etc/security/limits.conf
* soft nofile 655350
* hard nofile 655350
2. /etc/security/limits.d/90-nproc.conf
* soft nproc 10240
* hard nproc 60240
6. hadoop用户配置
/etc/sudoers 中root ALL=(ALL) ALL 下面添加
root ALL=(ALL) ALL
hadoop ALL=(ALL) ALL
$groupadd hadoop
$useradd hadoop –g hadoop
$passwd hadoop
7. root用户登录 cup-master-1 关闭防火墙 $service iptables stop 依次执行各节点
8. root-> /etc/ssh/sshd_config
#UseLogin no修改为
UseLogin yes
重启ssh: $service sshd restart
否则会报-bash: ulimit: open files: cannot modify limit: Operation not permitted
8. cup-master-1 --> 到其他节点的SSH无密码登陆配置:
hadoop用户登录 cup-master-1
$mkdir .ssh ------主节点不用建
$ssh-keygen –t rsa –f ~/.ssh/id_rsa –P ''
在cup-master-2、cup-slave-1、cup-slave-2、cup-slave-3、cup-slave-4节点新建.ssh目录:$mkdir .ssh
$scp .ssh/id_rsa.pub hadoop@cup-slave-1:/home/hadoop/.ssh/ 依次执行各节点
$scp .ssh/id_rsa.pub hadoop@cup-slave-2:/home/hadoop/sshcm1/
$scp .ssh/id_rsa.pub hadoop@cup-slave-3:/home/hadoop/sshcm1/
$scp .ssh/id_rsa.pub hadoop@cup-slave-4:/home/hadoop/sshcm1/
$scp .ssh/id_rsa.pub hadoop@cup-master-2:/home/hadoop/sshcm1/
hadoop用户登录 cup-master-1 配置本机
$cd ~/.ssh
$chmod 700 ~/.ssh
$cat id_rsa.pub >> authorized_keys
$chmod 600 .ssh/authorized_keys
hadoop用户登录 cup-slave-1 配置其他机器
$mkdir .ssh
$chmod 700 .ssh
$cd .ssh
$cat sshcm1/id_rsa.pub >> ~/.ssh/authorized_keys
$chmod 600 ~/.ssh/authorized_keys
其他节点依次用hadoop用户登录执行
hadoop用户登录 cup-master-1 测试无密码SSH登录: $ssh hadoop@cup-master-2 或者$ssh cup-master-2 其他节点依次执行
注意:
第一次连接的时候会有询问语句打出来,输入yes即可,,,
然后再~/.ssh/目录下回生成known_hosts文件,,,,,,
如果以后出现什么ssh无密码登陆的问题,可以删除该文件,重新做rsa数字签名,再重新做远程ssh登陆操作即可。
known_hosts文件:
cup-slave-1,192.168.98.225 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAr5bf6Fe2TRprWmB+RK1ZeriV+wwlwsIKLv9Y1sneLoXgPqIA9RBi9RodiWogImu5J8Ht4KZ2UyXIb/w2/NQeZKYJExpGlpXGSdKfDjDe+8wzXi01FPhkwzClhjstGNHaPwZVnDKtGERX4PE985xq9wOuyGl1AFAhYz8neCTpKqRGA+/cquulTTdwQ8mLsWumZHKNcgkGtGU6MvqbVt4mDNwEJmUizeThp/h03bCoSlg2YG9Zqf/W71WA9ZqCPB2nWBRn9buhHOvNaUTn6/6dQna8Quzg8DC9WGYgecLNUIt6LMSnQUgsONl2AiNbVN+W7DHA4BkuCIafXj7g5Hj8ow==
cup-slave-2,192.168.98.227 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAr5bf6Fe2TRprWmB+RK1ZeriV+wwlwsIKLv9Y1sneLoXgPqIA9RBi9RodiWogImu5J8Ht4KZ2UyXIb/w2/NQeZKYJExpGlpXGSdKfDjDe+8wzXi01FPhkwzClhjstGNHaPwZVnDKtGERX4PE985xq9wOuyGl1AFAhYz8neCTpKqRGA+/cquulTTdwQ8mLsWumZHKNcgkGtGU6MvqbVt4mDNwEJmUizeThp/h03bCoSlg2YG9Zqf/W71WA9ZqCPB2nWBRn9buhHOvNaUTn6/6dQna8Quzg8DC9WGYgecLNUIt6LMSnQUgsONl2AiNbVN+W7DHA4BkuCIafXj7g5Hj8ow==
9. cup-master-2 --> 到其他节点的SSH无密码登陆配置:
hadoop用户登录 cup-master-2
$mkdir .ssh
$ssh-keygen –t rsa –f ~/.ssh/id_rsa –P ''
在cup-master-1、cup-slave-1、cup-slave-2、cup-slave-3、cup-slave-4节点新建.ssh目录:$mkdir .ssh
$scp .ssh/id_rsa.pub hadoop@cup-master-1:/home/hadoop/sshcm2/ 依次执行各节点
$scp .ssh/id_rsa.pub hadoop@cup-slave-1:/home/hadoop/sshcm2/
$scp .ssh/id_rsa.pub hadoop@cup-slave-2:/home/hadoop/sshcm2/
$scp .ssh/id_rsa.pub hadoop@cup-slave-3:/home/hadoop/sshcm2/
$scp .ssh/id_rsa.pub hadoop@cup-slave-4:/home/hadoop/sshcm2/
hadoop用户登录 cup-master-2 配置本机
$cd ~/.ssh
$chmod 700 ~/.ssh
$cat id_rsa.pub >> authorized_keys
$chmod 600 .ssh/authorized_keys
hadoop用户登录 cup-slave-1 配置其他机器
$mkdir .ssh
$chmod 700 .ssh
$cd .ssh
$cat sshcm2/id_rsa.pub >> ~/.ssh/authorized_keys
$chmod 600 ~/.ssh/authorized_keys
其他节点依次用hadoop用户登录执行
hadoop用户登录 cup-master-2 测试无密码SSH登录: $ssh hadoop@cup-master-1 或者$ssh cup-master-1 其他节点依次执行
注意:
~/.ssh/authorized_keys 的权限必须为600,如果权限给的太高会报安全错误!
$cat sshcm2/id_rsa.pub >> ~/.ssh/authorized_keys意思是将sshcm2/id_rsa.pub添加到~/.ssh/authorized_keys的末尾,即追加
1. hadoop用户登录 cup-master-1
安装hadoop, 部署namenode
上传hadoop介质hadoop-2.0.0-cdh4.1.2.tar.gz
$tar zxvf hadoop-2.0.0-cdh4.1.2.tar.gz 解压缩
2. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/hadoop-env.sh
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
2.1 /home/hadoop/.bash_profile:
# User specific environment and startup programs
HADOOP_HOME=/home/cup/hadoop-2.0.0-cdh4.2.1
HADOOP_MAPRED_HOME=$HADOOP_HOME
HADOOP_COMMON_HOME=$HADOOP_HOME
HADOOP_HDFS_HOME=$HADOOP_HOME
YARN_HOME=$HADOOP_HOME
HADOOP_CONF_HOME=${HADOOP_HOME}/etc/hadoop
YARN_CONF_DIR=${HADOOP_HOME}/etc/hadoop
ANT_HOME=/home/cup/apache-ant-1.8.4
MAVEN_HOME=/home/cup/apache-maven-3.0.4
ZOOKEEPER_HOME=/home/cup/zookeeper-3.4.5-cdh4.2.1
HBASE_HOME=/home/cup/hbase-0.94.2-cdh4.2.1
HADOOP_HOME_WARN_SUPPRESS=1
HADOOP_CLASSPATH=$CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/common:${HADOOP_HOME}/share/hadoop/common/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/hdfs:${HADOOP_HOME}/share/hadoop/hdfs/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/mapreduce:${HADOOP_HOME}/share/hadoop/mapreduce/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/tools/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=${HADOOP_HOME}/share/hadoop/yarn:${HADOOP_HOME}/share/hadoop/yarn/lib:$HADOOP_CLASSPATH
HADOOP_CLASSPATH=`$HBASE_HOME/bin/hbase classpath`:$HADOOP_CLASSPATH
JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$HBASE_HOME/bin:$ANT_HOME/bin:$MAVEN_HOME/bin:/home/cup/shell:$PATH
export JAVA_LIBRARY_PATH LD_LIBRARY_PATH HADOOP_CLASSPATH
export HADOOP_HOME HADOOP_MAPRED_HOME HADOOP_COMMON_HOME HADOOP_HDFS_HOME YARN_HOME
export ZOOKEEPER_HOME HBASE_HOME ANT_HOME MAVEN_HOME HADOOP_HOME_WARN_SUPPRESS PATH
# HIVE_HOME=/home/cup/hive-0.10.0-cdh4.2.1
# HADOOP_CLASSPATH=${HIVE_HOME}/lib:$HADOOP_CLASSPATH
# HIVE_CLASSPATH=$HBASE_HOME/conf
# PATH=$HIVE_HOME/bin:$PATH
# export HIVE_HOME HIVE_CLASSPATH HADOOP_CLASSPATH PATH
$source /home/hadoop/.bash_profile
Hadoop集群安装完毕后,第一件事就是修改bin/hadoop-evn.sh文件设置内存。主流节点内存配置为32GB,典型场景内存设置如下
NN: 15-25 GB
JT:2-4GB
DN:1-4 GB
TT:1-2 GB,Child VM 1-2 GB
集群的使用场景不同相关设置也有不同,如果集群有大量小文件,则要求NN内存至少要20GB,DN内存至少2GB。
3. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/core-site.xml
<property>
<name>fs.defaultFS</name>
<value>hdfs://cup-master-1:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/hadoopworkspace/tmp</value>
</property>
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>
$hadoop fs -rmr /xxx/xxx 不会被彻底删除,被你删除的数据将会mv到操作用户目录的".Trash"文件夹
value单位为分钟,开启垃圾箱后,如果希望文件直接被删除,可以在使用删除命令时添加“–skipTrash” 参数
$hadoop fs –rm –skipTrash /xxxx
4. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/hdfs-site.xml
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
5. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/mapred-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.job.tracker</name>
<value>hdfs://cup-master-1:9001</value>
<final>true</final>
</property>
<property>
<name>mapreduce.jobtracker.address</name>
<value>cup-master-1:9002</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>
<property>
<name>mapred.system.dir</name>
<value>/home/hadoop/hadoopworkspace/mapred/system</value>
<final>true</final>
</property>
<property>
<name>mapred.local.dir</name>
<value>/home/hadoop/hadoopworkspace/mapred/local</value>
<final>true</final>
</property>
6. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/yarn-site.xml
<property>
<name>yarn.resourcemanager.address</name>
<value>cup-master-1:8080</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>cup-master-1:8081</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>cup-master-1:8082</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
7. 各节点上hadoop用户登录,创建hadoop工作目录
$mkdir /home/hadoop/hadoopworkspace
6. /home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/slaves
cup-slave-1
cup-slave-2
cup-slave-3
cup-slave-4
/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/masters 该文件没有也可以
cup-master-1
cup-master-2
hadoop 压缩-----------------------------------------------------
7.0 拷贝native本地库文件/libhadoop/hadoop-lzo/hadoop-snappy
到 /home/hadoop/hadoop-2.0.0-cdh4.1.2/lib/native/
以及拷贝hadoop-lzo/hadoop-snappy相应的jar包
hadoop-snappy已经集成进了hadoop-common中,所以没有单独的jar包
1). snappy本身的链接库-/usr/local/lib/libsnappy*.*
2). hadoop-common的jar包-hadoop-common-2.0.0-cdh4.2.0.jar
源码在hadoop-2.0.0-cdh4.2.0\src\hadoop-common-project\hadoop-common\src\main\java\org\apache\hadoop\io\compress\snappy
3). hadoop-common的native链接库-libhadoop.a, libhadoop.so, libhadoop.so.1.0.0
源码在hadoop-2.0.0-cdh4.2.0\src\hadoop-common-project\hadoop-common\src\main\native\src\org\apache\hadoop\io\compress\snappy
snappy-1.1.0 #root用户安装
$./configure
$make
$make install
/usr/local/lib/libsnappy*.*
如果make时报
libtool: Version mismatch error. This is libtool 2.4.2 Debian-2.4.2-1ubuntu1, but the
libtool: definition of this LT_INIT comes from libtool 2.4.
libtool: You should recreate aclocal.m4 with macros from libtool 2.4.2 Debian-2.4.2-1ubuntu1
libtool: and run autoconf again.
则需要运行
$autoreconf -ivf
## $autoreconf --force --install
完了再$make
core-site.xml::::::::::::::::::::::::::::::::;
<property>
<name>io.compression.codecs</name> <value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.SnappyCodec,com.hadoop.compression.lzo.LzoCodec,org.apache.hadoop.io.compress.BZip2Codec</value>
</property>
<property>
<name>io.compression.codec.lzo.class</name>
<value>com.hadoop.compression.lzo.LzoCodec</value>
</property>
<property>
<name>io.compression.codec.snappy.class</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
## LzoCodec与SnappyCodec只能配置一个,按照哪个压缩配置哪个
mapred-site.xml: MR的输出使用snappy压缩:
<!-- enable snappy for MRv1 -->
<property>
<name>mapred.compress.map.output</name>
<value>true</value>
</property>
<property>
<name>mapred.map.output.compression.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapred.output.compression.type</name>
<value>BLOCK</value>
</property>
<!-- enable snappy for YARN -->
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
<name>mapred.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.type</name>
<value>BLOCK</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
7. DN节点多盘存储方案:
扩磁盘之前系统盘/几乎满了,利用率99%,
扩磁盘之后系统盘/的利用率下降为80%~90%左右,,
后面持续观察,,看看是否持续下降,,,,,,,
收回系统盘-->先停掉一个datanode,,让集群自动搬数据,,
优化方案-->
1)stop the entire cluster
2)mv /home/cup/hadoopworkspace/dfs/data/current/* /cup/d0/dfs2/data/current/
3)add /cup/d0/dfs2/data into the dfs.datanode.data.dir
4)start the entire cluster
7. 安装hadoop, 部署datanode
hadoop-->cup-master-1
$scp -rp hadoop-2.0.0-cdh4.1.2 hadoop@cup-master-2:/home/hadoop/ 依次执行各节点
8. $hdfs namenode -format 第一次需要格式化namenode
./start-dfs.sh
./start-yarn.sh
./stop-dfs.sh
./stop-yarn.sh
以上操作slave节点会被自动启动以及关闭
9. 浏览器中输入 http://192.168.101.122:8088可以查看hadoop集群状态
http://192.168.101.122:50070可以查看namenode状态
10. $jps 查看进程
NN: ResourceManager NameNode SecondaryNameNode
DN: NodeManager DataNode
1. zookeeper/hbase install
2. hadoop-->cup-master-1:
解压zookeeper-3.4.3-cdh4.1.2 hbase-0.92.1-cdh4.1.2
1. /etc/profile 文件末尾处添加:
见前述
$source /etc/profile 使环境变量生效
2. zookeeper install
/home/hadoop/zookeeper-3.4.3-cdh4.1.2/conf/zoo_sample.cfg 改名为 zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/home/hadoop/hadoopworkspace/zookeeper/data
dataLogDir=/home/hadoop/hadoopworkspace/zookeeper/log
clientPort=2181
server.1=cup-master-1:2888:3888
server.2=cup-slave-1:2888:3888
server.3=cup-slave-2:2888:3888
server.4=cup-slave-3:2888:3888
server.5=cup-slave-4:2888:3888
$mkdir /home/hadoop/hadoopworkspace/zookeeper/data 各节点依次执行,ZK不会自动创建
$mkdir /home/hadoop/hadoopworkspace/zookeeper/log 各节点依次执行,ZK不会自动创建
3. $scp -rp /home/hadoop/zookeeper-3.4.3-cdh4.1.2 hadoop@cup-slave-1:/home/hadoop/
4. create myid in dataDir 各节点依次执行
for cup-master-1, the content in myid file should be 1
for cup-slave-1, the content in myid file should be 2
4. 配置ZK自动清理策略
/home/hadoop/zookeeper-3.4.3-cdh4.1.2/conf/zoo.cfg
autopurge.purgeInterval=2
autopurge.snapRetainCount=10
5. /home/hadoop/zookeeper-3.4.3-cdh4.1.2/bin/
$ ./zkServer.sh start 各节点依次执行启动 (第一台机器启动时报大量错误,无妨,是因为还没有选出领导者的缘故)
6. $jps 进程查看
每个节点上都会多出一个 QuorumPeerMain 进程
7. hbase install
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/hbase-env.sh
export HADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
export HBASE_HOME=/home/hadoop/hbase-0.92.1-cdh4.1.2
export JAVA_HOME=/usr/jdk6/jdk1.6.0_32
export HBASE_MANAGES_ZK=false
export HBASE_HEAPSIZE=4000
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/hbase-site.xml
<property>
<name>hbase.rootdir</name>
<value>hdfs://cup-master-1:9000/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.master</name>
<value>cup-master-1:60000</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>cup-master-1,cup-slave-1,cup-slave-2,cup-slave-3,cup-slave-4</value>
</property>
<property>
<name>hbase.master.info.port</name>
<value>60010</value>
</property>
<property>
<name>hbase.master.port</name>
<value>60000</value>
</property>
<property>
<name>hbase.master.maxclockskew</name>
<value>600000</value>
<description>Time difference of regionserver from master</description>
</property>
hbase 压缩-----------------------------------------------------
hbase-site.xml===============================
<property>
<name>hbase.regionserver.codecs</name>
<value>snappy,lzo</value>
</property>
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/regionservers
cup-slave-1
cup-slave-2
cup-slave-3
cup-slave-4
8. $ scp -rp hbase-0.92.1-cdh4.1.2 hadoop@cup-slave-1:/home/hadoop/ 其他slave节点依次执行
9. 注意时间同步master与各个slave之间需要进行时间同步(包括时区),时间差不能超过30000ms,否则hbase regionserver启动报org.apache.hadoop.hbase.ClockOutOfSyncException错误
9.1 手动同步时间
root用户登录
$date -s 20130219
$date -s 14:37:00
$ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
9.2 hbase-site.xml中增加
<property>
<name>hbase.master.maxclockskew</name>
<value>180000</value>
<description>Time difference of regionserver from master</description>
</property>
10. /home/hadoop/hbase-0.92.1-cdh4.1.2/bin/
$ ./start-hbase.sh slave节点会自动被启动
$ ./stop-hbase.sh slave节点会自动被关闭
11. http://192.168.101.122:50070可以查看namenode状态以及hdfs上的/hbase目录
http://192.168.101.122:60010可以查看hbase状态
12. 进程查看
NN:
13326 ResourceManager
18617 QuorumPeerMain
19630 Jps
12980 NameNode
13190 SecondaryNameNode
19411 HMaster
DN:
30404 Jps
30181 HRegionServer
27489 QuorumPeerMain
14014 DataNode
14148 NodeManager
HBASE测试snappy压缩:
$hbase org.apache.hadoop.hbase.util.CompressionTest /home/cup/kv.txt snappy
HBASE优化参数:
/etc/profile:
JAVA_OPTS="$JAVA_OPTS -server -Xms2g -Xmx12g -XX:NewSize=128m -XX:MaxNewSize=128m"
hbase-env.sh:
export HBASE_HEAPSIZE=4000
export HBASE_OPTS="$HBASE_OPTS -XX:NewSize=128m -XX:MaxNewSize=128m -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-master-$(hostname).log"
export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -Xmx12g -Xms12g -XX:NewSize=256m -XX:MaxNewSize=256m -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-regionserver-$(hostname).log"
export HBASE_OPTS="$HBASE_OPTS -Xms4g -Xmx4g -XX:NewSize=1g -XX:MaxNewSize=1g -XX:NewRatio=3 -XX:SurvivorRatio=6 -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=73 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-master-$(hostname).log"
export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -Xms12g -Xmx12g -XX:NewSize=3g -XX:MaxNewSize=3g -XX:NewRatio=3 -XX:SurvivorRatio=6 -XX:+HeapDumpOnOutOfMemoryError -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=73 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-hbase-hadoop-regionserver-$(hostname).log"
hbase-site.xml
hbase.client.write.buffer: 20MB
hbase.regionserver.handler.count: 100
hbase.hregion.memstore.flush.size: 384MB
hbase.hregion.max.filesize: 2GB
hbase.hstore.compactionThreshold: 3
hbase.hstore.blockingStoreFiles: 10
hbase.hstore.flush.thread: 20
hbase.hstore.compaction.thread: 15
hbase.master.distributed.log.splitting: false
zoo.cfg:
# The number of milliseconds of each tick
tickTime=30000
hbase的各种时间参数设置在[2*tickTime, 20*tickTime]范围之内
1. 集群中新增加一台机器,现有的集群节点不用重启,
首先做NN到新增加机器的SSH无密码登陆等基础安装配置,
再将新机器的主机名添加到
/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop/slaves
/home/hadoop/hbase-0.92.1-cdh4.1.2/conf/regionservers
中,再对hadoop以及hbase执行启动命令,现有节点上的进程不会被影响
2. Hadoop Balancer 可以使DataNode节点上选择策略重新平衡DataNode上的数据块的分布
/home/hadoop/hadoop-2.0.0-cdh4.1.2/sbin/start-balancer.sh –t 10%
这个命令中-t参数后面跟的是HDFS达到平衡状态的磁盘使用率偏差值。
如果机器与机器之间磁盘使用率偏差小于10%,那么我们就认为HDFS集群已经达到了平衡的状态。
1. Oozie install
/etc/profile:
OOZIE_HOME=/home/hadoop/oozie-3.2.0-cdh4.1.2
$OOZIE_HOME//oozie-server/bin/catalina.sh:
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
CATALINA_HOME=/home/cup/oozie-3.3.0-cdh4.2.1/oozie-server
$OOZIE_HOME/bin/oozie-setup.sh:
$oozie-setup.sh -extjs /home/hadoop/ext-2.2.zip -hadoop 0.20.200 $HADOOP_HOME
$oozie-setup.sh -extjs /home/hadoop/ext-2.2.zip -hadoop 2.0 $HADOOP_HOME
2. $OOZIE_HOME/bin/oozie-run.sh 启动oozie
5. oozie启动报找不到org/apache/hadoop/utils/ReflectionUtils类
将/home/hadoop/oozie-3.2.0-cdh4.1.2/libtools/*.jar copy to /home/hadoop/oozie-3.2.0-cdh4.1.2/oozie-server/webapps/oozie/WEB-INF/lib下
6. oozie启动报
REASON: org.apache.oozie.service.ServiceException: E0103: Could not load service classes, Schema 'SA' does not exist {SELECT t0.bean_type, t0.conf, t0.console_url, t0.cred, t0.data, t0.error_code, t0.error_message, t0.external_child_ids, t0.external_id, t0.external_status, t0.name, t0.retries, t0.stats, t0.tracker_uri, t0.transition, t0.type, t0.user_retry_count, t0.user_retry_interval, t0.user_retry_max, t0.end_time, t0.execution_path, t0.last_check_time, t0.log_token, t0.pending, t0.pending_age, t0.signal_value, t0.sla_xml, t0.start_time, t0.status, t0.wf_id FROM WF_ACTIONS t0 WHERE t0.bean_type = ? AND t0.id = ?} [code=30000, state=42Y07]
7. $OOZIE_HOME/bin/ooziedb.sh create -sqlfile oozie.sql -run
Validate DB Connection
DONE
Check DB schema does not exist
DONE
Check OOZIE_SYS table does not exist
DONE
Create SQL schema
DONE
Create OOZIE_SYS table
DONE
Oozie DB has been created for Oozie version '3.2.0-cdh4.1.2'
The SQL commands have been written to: oozie.sql
sql脚本保存到$OOZIE_HOME/bin/oozie.sql文件中.
8. oozie-site.xml:
<!-- Default proxyuser configuration for Hue -->
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.cup.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.cup.groups</name>
<value>*</value>
</property>
8.
Error occurred during initialization of VM
Incompatible minimum and maximum heap sizes specified
oozie-env.sh:
export CATALINA_OPTS="$CATALINA_OPTS -Xms2g -Xmx4g"
8. $OOZIE_HOME/bin/oozie-run.sh 启动oozie
$OOZIE_HOME/bin/oozie-run.sh & 后台启动oozie
最新:
$oozied.sh run
$ jps
28945 Bootstrap
9. $OOZIE_HOME/bin/oozie admin -oozie http://192.168.101.122:11000/oozie -status
System mode: NORMAL 则表示已经成功
http://192.168.101.122:11000/oozie就能看到Oozie的管理界面
重启机器hostname变了,集群启动不起来:
2. hostname变了,需要修改 /etc/sysconfig/network
/etc/sysconfig/network: (永久修改主机名)
NETWORKING=yes
HOSTNAME=cup-master-1
GATEWAY=192.168.101.1
依次执行
$source /etc/sysconfig/network
依次执行
3. /etc/profile 环境变量挪到hadoop用户下
5. 关闭防火墙 $sudo service iptables stop
查看防火墙 $sudo service iptables status
6. /etc/hosts:
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.101.122 cup-master-1
192.168.101.123 cup-master-2
192.168.101.121 cup-slave-1
192.168.101.125 cup-slave-2
192.168.101.124 cup-slave-3
192.168.101.120 cup-slave-4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
这一行不注释掉, hbase起不来,,,,,
7. 时间同步 date -s
HBASE启动不起来:
ERROR org.apache.hadoop.hbase.zookeeper.RecoverableZooKeeper: ZooKeeper exists failed after 3 retries
WARN org.apache.zookeeper.ClientCnxn: Session 0x0 for server null, unexpected error, closing socket connection and attempting reconnect
a. 关闭防火墙 $sudo service iptables stop
b. /etc/hosts 注释掉 ::1 localhost 这一行, 即禁用ipv6
c. 集群中节点时间同步
mysql5.1.67
8. $ sudo /etc/init.d/mysqld start 启动mysql $service mysqld start
$ sudo service mysqld status
$ mysql 进入mysql服务模式
mysql>
mysql>exit 退出进入bash shell命令行模式
$ /usr/bin/mysqladmin -u root password '123' 设置root用户密码
$ /usr/bin/mysqladmin -u root -h cup-master-1 password '123'
1. Hive Install
1.1 .bash_profile
HIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
export HIVE_HOME
HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/home/hadoop/hive-0.9.0-cdh4.1.2/lib:$CLASSPATH:$HADOOP_HOME/bin
1.2 $ cd /home/hadoop/hive-0.9.0-cdh4.1.2/conf
1.3 $ cp hive-default.xml.template hive-site.xml
1.4 hive-site.xml:
最上面添加:
<property>
<name>hive.aux.jars.path</name>
<value>file:///root/hive-0.10.0-cdh4.2.0/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/hbase-0.94.2-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/zookeeper-3.4.5-cdh4.2.0.jar</value>
</property>
hive.metastore.warehouse.dir: /home/hadoop/hive-0.9.0-cdh4.1.2/warehouse
hive.exec.scratchdir: /home/hadoop/hive-0.9.0-cdh4.1.2/hive-${user.name}
javax.jdo.option.ConnectionURL: jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true
javax.jdo.option.ConnectionDriverName: com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName: hive
javax.jdo.option.ConnectionPassword: hive
以下两处的description标签有语法错误,需要补上</description>:
1) hive.optimize.union.remove at line474
2) hive.mapred.supports.subdirectories at line 489
以下三处的partition-dir标签有语法错误,需要补上</partition-dir>:
1) hive.exec.list.bucketing.default.dir at line561
2) hive.exec.list.bucketing.default.dir at line562
3) hive.exec.list.bucketing.default.dir at line563
hive-env.sh:
export HADOOP_HOME=/home/cup/hadoop-2.0.0-cdh4.2.1
export HBASE_HOME=/home/cup/hbase-0.94.2-cdh4.2.1
export JAVA_HOME=/usr/jdk6/jdk1.6.0_32
export HIVE_CLASSPATH=$HBASE_HOME/conf
####export HIVE_AUX_JARS_PATH=/home/cup/hive-0.10.0-cdh4.2.1/lib:$HADOOP_CLASSPATH
export JAVA_LIBRARY_PATH=$JAVA_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
注释掉HIVE_AUX_JARS_PATH的原因:
因为hive提交mr任务的时候调用hive.aux.jars.path变量,
该变量的值应该为file:///root/hive-0.10.0-cdh4.2.0/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/hbase-0.94.2-cdh4.2.0.jar,file:///root/hive-0.10.0-cdh4.2.0/lib/zookeeper-3.4.5-cdh4.2.0.jar
这个是在hive-site.xml中配置,而
hive-env.sh中的export HIVE_AUX_JARS_PATH需要注释,
否则报java.io.FileNotFoundException: File file:/home/hadoop/hive-0.10.0-cdh4.4.0/lib:***** does not exist
就算不注释掉,也得修改为
export HIVE_AUX_JARS_PATH=file:///home/cup/hive-0.10.0-cdh4.2.1/lib
##使用HIVE脚本往外部表(映射到hbase的snappy压缩表)中insert数据时HIVE需要通过HIVE_AUX_JARS_PATH找到以下jar包:
hive-hbase-handler-0.10.0-cdh4.2.0.jar
hbase-0.94.2-cdh4.2.0.jar
zookeeper-3.4.5-cdh4.2.0.jar
所以此处需要配置为HIVE_AUX_JARS_PATH=/root/hive-0.10.0-cdh4.2.0/lib/:$HADOOP_CLASSPATH
添加$HADOOP_CLASSPATH是因为在HIVE里面添加外部表(与HBASE的snappy压缩表关联)时找不到snappy的类
将hadoop-common的jar包拷贝到/home/cup/hive-0.10.0-cdh4.2.1/lib下,
否则
Failed with exception java.io.IOException:java.io.IOException:
Cannot create an instance of InputFormat class org.apache.hadoop.mapred.TextInputFormat as specified in mapredWork!
或者
Caused by: java.lang.IllegalArgumentException: Compression codec org.apache.hadoop.io.compress.Sna
ppyCodec not found.
at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:134)
at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:174)
at org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:45)
... 23 more
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.io.compress.Sna
ppyCodec not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1493)
at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:127)
... 25 more
hive-log4j.properties:
hive.log.dir=/home/cup/hive-0.10.0-cdh4.2.1/logs
hive.log.file=hive.log
重新启动mysql
$ mysql -u root -p 输入密码123
mysql>
mysql> create database hive;
## grant select on 数据库.* to 用户名@登录主机 identified by "密码"
mysql> grant all on hive.* to 'hive'@'localhost' identified by 'hive';
mysql> grant all on hive.* to 'hive'@'%' identified by 'hive';
mysql-connector-java-5.1.22-bin.jar 拷贝到/home/hadoop/hive-0.9.0-cdh4.1.2/lib下
1.5
hive --service hwi &
http://192.168.98.20:9999/hwi
hive --service hiveserver &
[hadoop@cup-master-1 bin]$ Starting Hive Thrift Server
$ jps
29082 RunJar
$nohup hive --service hiveserver &
[hadoop@cup-master-1 bin]$ nohup: ignoring input and appending output to `nohup.out'
或者可以按照完HUE后由HUE进行统一启动。
HIVE 集成 HBASE:
hive>create external table snappy_hive(key int, value string)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping"=":key,cf:value")
tblproperties ("hbase.table.name"="snappy_table");
hive>create table hive (key int,value string) row format delimited fields terminated by ',';
hive>load data local inpath '/home/cup/kv.txt' into table hive;
hive>insert overwrite table snappy_hive select * from hive;
snappy --- HIVE
To enable Snappy compression for Hive output when creating SequenceFile outputs, use the following settings:
SET hive.exec.compress.output=true;
SET hive.exec.compress.intermediate=true;
SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
SET mapred.output.compression.type=BLOCK;
SET hive.cli.print.header=true;
SET hive.cli.print.current.db=true;
# JVM reuse
Hadoop will typically launch map or reduce tasks in a forked JVM.
the JVM startup may create significant overhead, especially when launching
jobs with hundreds or thousands of tasks, most which have short execution times.
Reuse allows a JVM instance to be reused up to N times for the same job.
in mapred-site.xml:
<property>
<name>mapred.job.reuse.jvm.num.tasks</name>
<value>10</value>
</property>
hive.exec.scratchdir:
/home/cup/hive-0.10.0-cdh4.2.1/hive-${user.name}
hive.metastore.warehouse.dir:
/home/cup/hive-0.10.0-cdh4.2.1/warehouse
HIVE元数据库使用ORACLE:
1) 手动oracle版本的hive元数据库脚本 hive-0.10.0-cdh4.2.1\scripts\metastore\upgrade\oracle\hive-schema-0.10.0.oracle.sql
2) 修改hive-site.xml--jdbc连接
3) nohup hive --service hiveserver &
HIVE用户权限:
其他用户想执行HIVE需要配置以下几项:
.bash_profile
/home/hadoop/cdh42/cdhworkspace/tmp chmod 777
/home/hadoop/cdh42/hive-0.10.0-cdh4.2.0/logs chmod 777
hive>grant create/all on database default to user xhyt;
hive>show grant user xhyt on databaase default;
hive>grant select on table hive_t to user xhyt;
hive>grant select on table hive_t to group xhyt;
hbase-env.sh里面加了export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
hadoop-env.sh里面也加了export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HADOOP_HOME}/lib/native:/usr/lib64:/usr/local/lib
root用户下/etc/profile:
#set java environment
JAVA_HOME=/usr/jdk6/jdk1.6.0_32
CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$CLASSPATH
JAVA_OPTS="$JAVA_OPTS -server -Xms1024m -Xmx4096m"
PATH=$JAVA_HOME/bin:$PATH
export JAVA_HOME JAVA_OPTS CLASSPATH PATH
hadoop用户下/home/hadoop/.bash_profile:
# User specific environment and startup programs
HADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
HADOOP_MAPRED_HOME=$HADOOP_HOME
HADOOP_COMMON_HOME=$HADOOP_HOME
HADOOP_HDFS_HOME=$HADOOP_HOME
YARN_HOME=$HADOOP_HOME
ZOOKEEPER_HOME=/home/hadoop/zookeeper-3.4.3-cdh4.1.2
HBASE_HOME=/home/hadoop/hbase-0.92.1-cdh4.1.2
OOZIE_HOME=/home/hadoop/oozie-3.2.0-cdh4.1.2
CATALINA_HOME=$OOZIE_HOME/oozie-server
ANT_HOME=/home/hadoop/apache-ant-1.8.4
MAVEN_HOME=/home/hadoop/apache-maven-3.0.4
HADOOP_CLASSPATH=`$HBASE_HOME/bin/hbase classpath`
PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$ZOOKEEPER_HOME/bin:$HBASE_HOME/bin:$OOZIE_HOME/bin:$CATALINA_HOME/bin:$ANT_HOME/bin:$MAVEN_HOME/bin:$PATH
export HADOOP_CLASSPATH HADOOP_HOME HADOOP_MAPRED_HOME HADOOP_COMMON_HOME HADOOP_HDFS_HOME YARN_HOME ZOOKEEPER_HOME HBASE_HOME OOZIE_HOME CATALINA_HOME ANT_HOME MAVEN_HOME PATH
3. jdk内存调整大小 /etc/profile
export JAVA_OPTS="$JAVA_OPTS -server -Xms1024m -Xmx4096m"
$source /etc/profile
各节点依次执行
HADOOP机架感知-提高网络性能
core-site.xml:
<property>
<name>topology.script.file.name</name>
<value>/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop/rackaware.sh</value>
</property>
/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop/rackaware.sh
#!/bin/bash
HADOOP_CONF=/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop
while [ $# -gt 0 ] ; do
nodeArg=$1
exec< ${HADOOP_CONF}/topology.data
result=""
while read line ; do
ar=( $line )
if [ "${ar[0]}" = "$nodeArg" ] ; then
result="${ar[1]}"
fi
done
shift
if [ -z "$result" ] ; then
echo -n "/default/rack "
else
echo -n "$result "
fi
done
$chmod 755 rackaware.sh
/home/cup/hadoop-2.0.0-cdh4.2.1/etc/hadoop/topology.data
cup-master-1 /default/rack1
cup-master-2 /default/rack1
cup-slave-1 /default/rack1
cup-slave-2 /default/rack1
cup-slave-3 /default/rack1
cup-slave-4 /default/rack1
cup-slave-5 /default/rack1
cup-slave-6 /default/rack1
cup-slave-7 /default/rack2
cup-slave-8 /default/rack2
cup-slave-9 /default/rack2
cup-slave-10 /default/rack2
cup-slave-11 /default/rack2
cup-slave-12 /default/rack2
10.204.193.10 /default/rack1
10.204.193.11 /default/rack1
10.204.193.20 /default/rack1
10.204.193.21 /default/rack1
10.204.193.22 /default/rack1
10.204.193.23 /default/rack1
10.204.193.24 /default/rack1
10.204.193.25 /default/rack1
10.204.193.26 /default/rack2
10.204.193.27 /default/rack2
10.204.193.28 /default/rack2
10.204.193.29 /default/rack2
10.204.193.30 /default/rack2
10.204.193.31 /default/rack2
1. hue install (hadoop user experience)
$python 进入python解释器
ctrl+z退出python解释器
Required Dependencies:
gcc, g++,
libgcrypt-devel, libxml2-devel, libxslt-devel,
cyrus-sasl-devel, cyrus-sasl-gssapi,
mysql-devel, python-devel, python-setuptools, python-simplejson,
sqlite-devel, openldap-devel,
ant
libgcrypt-devel-1.4.5-9.el6.x86_64
libxslt-devel-1.1.26-2.el6.x86_64
cyrus-sasl-devel-2.1.23-13.el6.x86_64
mysql-devel-5.1.52.el6_0.1.x86_64
openldap-devel-2.4.23-20.el6.x86_64
install ant
install maven
$make
/home/hadoop/hue-2.1.0-cdh4.1.2/Makefile.vars:42: *** "Error: must have python development packages for 2.4, 2.5, 2.6 or 2.7. Could not find Python.h. Please install python2.4-devel, python2.5-devel, python2.6-devel or python2.7-devel". Stop.
/usr/include/python2.6/下只有pyconfig-64.h,没有Python.h文件
/home/hadoop/hue-2.1.0-cdh4.1.2/Makefile.vars中会进行判断
这是因为没有安装python-devel模块的原因
5. $ cd /home/hadoop/hue-2.1.0-cdh4.1.2
$ PREFIX=/home/hadoop/hue-2.1.0-cdh4.1.2-bin make install
$ sudo chmod 4750 apps/shell/src/shell/build/setuid
2. hadoop config
hdfs-site.xml:
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
core-site.xml:
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hue.groups</name>
<value>*</value>
</property>
httpfs-site.xml:
<property>
<name>httpfs.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>httpfs.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>httpfs.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>httpfs.proxyuser.hue.groups</name>
<value>*</value>
</property>
mapred-site.xml:
<property>
<name>jobtracker.thrift.address</name>
<value>0.0.0.0:9290</value>
</property>
<property>
<name>mapred.jobtracker.plugins</name>
<value>org.apache.hadoop.thriftfs.ThriftJobTrackerPlugin</value>
<description>Comma-separated list of jobtracker plug-ins to be activated.</description>
</property>
3. $ cd /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue
$ cp desktop/libs/hadoop/java-lib/hue-plugins-*.jar /home/hadoop/hadoop-2.0.0-cdh4.1.2/share/hadoop/mapreduce/lib
如果HUE安装主机和hadoop集群master主机不再同一个主机上,那么需要使用scp命令进行拷贝
HUE使用这个插件jar文件来与JobTracker通信
4. 重启hadoop集群
5. config oozie for hue
oozie-site.xml:
<property>
<name>oozie.service.ProxyUserService.proxyuser.hadoop.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hadoop.groups</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
<value>*</value>
</property>
<property>
<name>oozie.service.AuthorizationService.security.enabled</name>
<value>true</value>
</property>
6. 重启oozie
7. 确认关闭防火墙(HUE SERVER对外提供服务使用默认8888端口)
9. /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/desktop/conf/hue.ini
[desktop]
http_host=0.0.0.0
http_port=8888
[[database]]
engine=mysql
host=cup-master-1
port=3306
user=hue
password=hue
name=hue
[[hdfs_clusters]]
fs_defaultfs=hdfs://cup-master-1:9000
webhdfs_url=http://cup-master-1:50070/webhdfs/v1
hadoop_hdfs_home=/home/hadoop/hadoop-2.0.0-cdh4.1.2
hadoop_bin=/home/hadoop/hadoop-2.0.0-cdh4.1.2/bin/hadoop
hadoop_conf_dir=/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop
[[mapred_clusters]]
jobtracker_host=cup-master-1
jobtracker_port=8021
thrift_port=9290
hadoop_mapred_home=/home/hadoop/hadoop-2.0.0-cdh4.1.2
hadoop_bin=/home/hadoop/hadoop-2.0.0-cdh4.1.2/bin/hadoop
hadoop_conf_dir=/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop
[[yarn_clusters]]
resourcemanager_host=cup-master-1
resourcemanager_port=8032
hadoop_mapred_home=/home/hadoop/hadoop-2.0.0-cdh4.1.2
hadoop_bin=/home/hadoop/hadoop-2.0.0-cdh4.1.2/bin/hadoop
hadoop_conf_dir=/home/hadoop/hadoop-2.0.0-cdh4.1.2/etc/hadoop
[liboozie]
oozie_url=http://cup-master-1:11000/oozie
[beeswax]
hive_home_dir=/home/hadoop/hive-0.9.0-cdh4.1.2
hive_conf_dir=/home/hadoop/hive-0.9.0-cdh4.1.2/conf
HUE默认使用sqlite库,,,,
[[database]]
# Database engine is typically one of:
# postgresql_psycopg2, mysql, or sqlite3
#
# Note that for sqlite3, 'name', below is a filename;
# for other backends, it is the database name.
engine=sqlite3
## host=
## port=
## user=
## password=
name=/home/cup/hue-2.2.0-cdh4.2.1-bin/hue/desktop/desktop.db
10. 初始化
重新启动mysql
$ mysql -u root -p 输入密码123
mysql>
mysql> create database hue;
## grant select on 数据库.* to 用户名@登录主机 identified by "密码"
mysql> grant all on hue.* to 'hue'@'localhost' identified by 'hue';
备份已有数据文件 /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/hue_dump.json
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/hue dumpdata > /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/hue_dump.json
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/hue syncdb --noinput
$ mysql -u hue -p hue -e "DELETE FROM hue.django_content_type;"
migrate之前备份的数据:
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/hue loaddata /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/hue_dump.json
11. .bash_profile:
HIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
HADOOP_CLASSPATH=`$HBASE_HOME/bin/hbase classpath`
HADOOP_CLASSPATH=/home/hadoop/hive-0.9.0-cdh4.1.2/lib:$HADOOP_CLASSPATH:$CLASSPATH:$HADOOP_HOME/bin
12. 启动
$ /home/hadoop/hue-2.1.0-cdh4.1.2-bin/hue/build/env/bin/supervisor
HUE会把HIVE一并启动
***停的时候需要使用root用户kill掉Runjar进程,,否则cup用户kill的时候
总是会自动重新启动
13. 查看
http://192.168.101.122:8888 hue/hue hadoop/hadoop
5. HUE shell配置
HUE supervisor进程查询 $ps -f -u cup
[cup@cup-master-1 ~]$ ps -f -u cup
UID PID PPID C STIME TTY TIME CMD
cup 7597 7594 0 17:18 ? 00:00:00 sshd: cup@pts/1
cup 7598 7597 0 17:18 pts/1 00:00:00 -bash
cup 7777 7598 0 17:19 pts/1 00:00:00 vim hive-site.xml
cup 7943 7940 0 17:21 ? 00:00:00 sshd: cup@pts/5
cup 7944 7943 0 17:21 pts/5 00:00:00 -bash
cup 9860 9857 0 17:32 ? 00:00:00 sshd: cup@pts/9
cup 9861 9860 0 17:32 pts/9 00:00:00 -bash
cup 10560 10558 0 17:36 ? 00:00:01 sshd: cup@pts/2
cup 10561 10560 0 17:36 pts/2 00:00:00 -bash
cup 10780 10560 0 17:38 ? 00:00:00 /usr/libexec/openssh/sftp-server
cup 11683 10561 0 17:47 pts/2 00:00:00 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 ./supervisor
cup 11687 11683 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/hue runspawningserver
cup 11689 11683 2 17:47 pts/2 00:00:17 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 11743 11687 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 -c import sys; from spawning import spawning_child; spawning_child.main() 11687 3 15 s
cup 11874 11873 0 17:49 pts/1 00:00:00 bash
cup 11896 7944 9 17:49 pts/5 00:00:44 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 12147 11874 4 17:50 pts/1 00:00:21 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 12351 11874 0 17:54 pts/1 00:00:00 vim hive-site.xml
cup 12748 10561 4 17:57 pts/2 00:00:00 ps -f -u cup
cup 24208 1 2 Jul09 ? 00:30:54 /usr/jdk6/jdk1.6.0_32/bin/java -Dproc_namenode -Xmx2000m -Djava.net.preferIPv4Stack=true -Xmx128m -Xmx128m -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-
cup 24660 1 0 Jul09 ? 00:02:07 /usr/jdk6/jdk1.6.0_32/bin/java -Dproc_zkfc -Xmx2000m -Djava.net.preferIPv4Stack=true -Xmx128m -Xmx128m -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4
cup 24842 1 0 Jul09 ? 00:11:10 /usr/jdk6/jdk1.6.0_32/bin/java -Dproc_resourcemanager -Xmx1000m -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dyarn.log.dir=/home/cup/hado
cup 25394 1 1 Jul09 ? 00:14:32 /usr/jdk6/jdk1.6.0_32/bin/java -XX:OnOutOfMemoryError=kill -9 %p -Xmx24000m -Xms24g -Xmx32g -XX:NewSize=1g -XX:MaxNewSize=1g -XX:NewRatio=3 -XX:Sur
cup 41822 41819 0 13:45 ? 00:00:00 sshd: cup
cup 51570 51568 0 Jul08 ? 00:00:00 sshd: cup@pts/3
cup 51571 51570 0 Jul08 pts/3 00:00:00 -bash
cup 56534 56531 0 Jul08 ? 00:00:01 sshd: cup@notty
cup 56535 56534 0 Jul08 ? 00:00:00 /usr/libexec/openssh/sftp-server
cup 58691 58688 0 09:46 ? 00:00:00 sshd: cup@pts/0
cup 58692 58691 0 09:46 pts/0 00:00:00 -bash
其中的
cup 11683 10561 0 17:47 pts/2 00:00:00 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 ./supervisor
cup 11687 11683 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/hue runspawningserver
cup 11689 11683 2 17:47 pts/2 00:00:17 /usr/jdk6/jdk1.6.0_32/bin/java -Xmx2000m -Djava.net.preferIPv4Stack=true -Dhadoop.log.dir=/home/cup/hadoop-2.0.0-cdh4.2.1/logs -Dhadoop.log.file=ha
cup 11743 11687 0 17:47 pts/2 00:00:02 /home/cup/hue-2.2.0-cdh4.2.1-bin/hue/build/env/bin/python2.6 -c import sys; from spawning import spawning_child; spawning_child.main() 11687 3 15 s
是HUE相关的进程,,
想要停掉HUE需要先kill -9 11689,即RunJar进程,,
再停掉11687(runspawningserver)以及11683(supervisor)
否则不停掉11689(hue runjar)下次启动hue时会报8002,8003端口的socket无法创建
HBASE优化参数:
hbase-env.sh:
export HBASE_HEAPSIZE=4000
hbase-site.xml:
hbase.client.write.buffer: 20MB
hbase.regionserver.handler.count: 100
hbase.hregion.memstore.flush.size: 384MB
hbase.hregion.max.filesize: 2GB
hbase.hstore.compactionThreshold: 3
hbase.hstore.blockingStoreFiles: 10
hbase.hstore.flush.thread: 20
hbase.hstore.compaction.thread: 15
zoo.cfg:
# The number of milliseconds of each tick
tickTime=30000
hbase的各种时间参数设置在[2*tickTime, 20*tickTime]范围之内
hbase-site.xml:
<property>
<name>hbase.rootdir</name>
<value>hdfs://cup-master-1:9000/hbase</value>
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.master</name>
<value>cup-master-1:60000</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name>
<value>cup-master-1,cup-slave-1,cup-slave-2,cup-slave-3,cup-slave-4</value>
</property>
<property>
<name>hbase.master.info.port</name>
<value>60010</value>
</property>
<property>
<name>hbase.master.port</name>
<value>60000</value>
</property>
<property>
<name>hbase.master.maxclockskew</name>
<value>180000</value>
<description>Time difference of regionserver from master</description>
</property>
<property>
<name>hbase.rpc.timeout</name>
<value>540000</value>
<description></description>
</property>
<property>
<name>ipc.socket.timeout</name>
<value>540000</value>
<description></description>
</property>
<property>
<name>hbase.regionserver.lease.period</name>
<value>540000</value>
<description>HRegion server lease period in milliseconds. Default is
60 seconds. Clients must report in within this period else they are
considered dead.
</description>
</property>
<property>
<name>zookeeper.session.timeout</name>
<value>540000</value>
<description>ZooKeeper session timeout.
HBase passes this to the zk quorum as suggested maximum time for a
session. See http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions
"The client sends a requested timeout, the server responds with the
timeout that it can give the client. "
In milliseconds.
</description>
</property>
<property>
<name>hbase.regionserver.restart.on.zk.expire</name>
<value>true</value>
<description>when timeout occurs, regionserver will be restarted but not to shut down</description>
</property>
<property>
<name>hbase.client.write.buffer</name>
<value>20971520</value> <!--20MB-->
<description>Default size of the HTable client write buffer in bytes.
A bigger buffer takes more memory -- on both the client and server
side since server instantiates the passed write buffer to process
it -- but a larger buffer size reduces the number of RPCs made.
For an estimate of server-side memory-used, evaluate
hbase.client.write.buffer * hbase.regionserver.handler.count
</description>
</property>
<property>
<name>hbase.regionserver.handler.count</name>
<value>100</value>
<description>Count of RPC Server instances spun up on RegionServers
Same property is used by the Master for count of master handlers.
Default is 10.
</description>
</property>
<property>
<name>hbase.hregion.memstore.flush.size</name>
<value>402653184</value> <!--384MB-->
<description>
Memstore will be flushed to disk if size of the memstore
exceeds this number of bytes. Value is checked by a thread that runs
every hbase.server.thread.wakefrequency.
</description>
</property>
<property>
<name>hbase.hregion.max.filesize</name>
<value>2147483648</value> <!--2GB-->
<description>
Maximum HStoreFile size. If any one of a column families' HStoreFiles has
grown to exceed this value, the hosting HRegion is split in two.
Default: 256M.
</description>
</property>
<property>
<name>hbase.hstore.compactionThreshold</name>
<value>3</value>
<description>
If more than this number of HStoreFiles in any one HStore
(one HStoreFile is written per flush of memstore) then a compaction
is run to rewrite all HStoreFiles files as one. Larger numbers
put off compaction but when it runs, it takes longer to complete.
</description>
</property>
<property>
<name>hbase.hstore.blockingStoreFiles</name>
<value>10</value>
<description>
If more than this number of StoreFiles in any one Store
(one StoreFile is written per flush of MemStore) then updates are
blocked for this HRegion until a compaction is completed, or
until hbase.hstore.blockingWaitTime has been exceeded.
</description>
</property>
<property>
<name>hbase.hstore.flush.thread</name>
<value>20</value>
</property>
<property>
<name>hbase.hstore.compaction.thread</name>
<value>15</value>
</property>
HADOOP2.0 HA (NO NN Federation)
1. SSH无密码登陆配置
2. 修改hadoop配置文件(cup-master-1,cup-slave-1,cup-slave-2,cup-slave-3,cup-slave-4)
配置文件如下:
vi core-site.xml:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value> <!--hdfs://cup-master-1:9000-->
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>cup-master-1:2181,cup-slave-1:2181,cup-slave-2:2181,cup-slave-3:2181,cup-slave-4:2181</value>
</property>
</configuration>
vi hdfs-site.xml
<configuration>
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>cup-master-1:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>cup-master-2:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>cup-master-1:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>cup-master-2:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://cup-master-1:8485;cup-slave-1:8485;cup-slave-2:8485;cup-slave-3:8485;cup-slave-4:8485/mycluster</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/jn</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>shell(/bin/true)</value>
</property>
或者是
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/exampleuser/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
<description>
SSH connection timeout, in milliseconds, to use with the builtin
sshfence fencer.
</description>
</property>
<property>
<name>dfs.datanode.max.transfer.threads</name>
<value>4096</value>
<description>
Specifies the maximum number of threads to use for transferring data
in and out of the DN.
</description>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hadoop/hadoopworkspace/dfs/data</value
</property>
</configuration>
[root@HA2kerberos conf]# vim slaves
cup-slave-1
cup-slave-2
cup-slave-3
cup-slave-4
3. master-1上的hadoop拷贝到master-2上 scp
4. 把各个zookeeper起来
5. 然后在某一个主节点执行hdfs zkfc -formatZK,创建命名空间
6. 在dfs.namenode.shared.edits.dir指定的各个节点
(qjournal://cup-master-1:8485;cup-slave-1:8485;cup-slave-2:8485;cup-slave-3:8485;cup-slave-4:8485/mycluster)
用./hadoop-daemon.sh start journalnode启日志程序
7. 在主namenode节点用hadoop namenode -format格式化namenode和journalnode目录
8. 在主namenode节点启动./hadoop-daemon.sh start namenode进程 ./start-dfs.sh
9. 在备namenode节点执行hdfs namenode -bootstrapStandby,
这个是把主namenode节点的目录格式化并把数据从主namenode节点的元数据拷本过来
然后用./hadoop-daemon.sh start namenode启动namenode进程!
6. ./hadoop-daemon.sh start zkfc 主备namenode两个节点都做
7. ./hadoop-daemon.sh start datanode所有datanode节点都做
先起namenode在起zkfc你会发现namenode无法active状态,当你把zkfc启动后就可以了!!!
以上的顺序不能变,我在做的过程就因为先把zkfc启动了,导到namenode起不来!!!
自动启动的时候能看出来,zkfc是最后才启动的!!
[hadoop@ClouderaHA1 sbin]$ ./start-dfs.sh
Starting namenodes on [ClouderaHA1 ClouderaHA2]
ClouderaHA1: starting namenode, logging to /app/hadoop/logs/hadoop-hadoop-namenode-ClouderaHA1.out
ClouderaHA2: starting namenode, logging to /app/hadoop/logs/hadoop-hadoop-namenode-ClouderaHA2.out
ClouderaHA3: starting datanode, logging to /app/hadoop/logs/hadoop-hadoop-datanode-ClouderaHA3.out
ClouderaHA1: starting datanode, logging to /app/hadoop/logs/hadoop-hadoop-datanode-ClouderaHA1.out
ClouderaHA2: starting datanode, logging to /app/hadoop/logs/hadoop-hadoop-datanode-ClouderaHA2.out
Starting ZK Failover Controllers on NN hosts [ClouderaHA1 ClouderaHA2]
ClouderaHA1: starting zkfc, logging to /app/hadoop/logs/hadoop-hadoop-zkfc-ClouderaHA1.out
ClouderaHA2: starting zkfc, logging to /app/hadoop/logs/hadoop-hadoop-zkfc-ClouderaHA2.out
A. 先各个节点启journalnode
hadoop-daemon.sh start journalnode
B. 在主master节点start-dfs.sh start-yarn.sh
[hadoop@cup-master-1 ~]$ start-dfs.sh
Starting namenodes on [cup-master-1 cup-master-2]
hadoop@cup-master-1's password: cup-master-2: starting namenode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-namenode-cup-master-2.out
cup-master-1: starting namenode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-namenode-cup-master-1.out
cup-slave-4: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-4.out
cup-slave-1: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-1.out
cup-slave-3: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-3.out
cup-slave-2: starting datanode, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-datanode-cup-slave-2.out
Starting ZK Failover Controllers on NN hosts [cup-master-1 cup-master-2]
hadoop@cup-master-1's password: cup-master-2: starting zkfc, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-zkfc-cup-master-2.out
cup-master-1: starting zkfc, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/hadoop-hadoop-zkfc-cup-master-1.out
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-1 ~]$ jps
30939 NameNode
28526 QuorumPeerMain
29769 JournalNode
31283 Jps
31207 DFSZKFailoverController
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-2 ~]$ jps
13197 DFSZKFailoverController
12305 NameNode
15106 Jps
[hadoop@cup-master-2 ~]$
[hadoop@cup-master-1 ~]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-resourcemanager-cup-master-1.out
cup-slave-4: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-4.out
cup-slave-1: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-1.out
cup-slave-3: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-3.out
cup-slave-2: starting nodemanager, logging to /home/hadoop/hadoop-2.0.0-cdh4.1.2/logs/yarn-hadoop-nodemanager-cup-slave-2.out
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-1 ~]$ jps
30939 NameNode
28526 QuorumPeerMain
29769 JournalNode
31628 Jps
31207 DFSZKFailoverController
31365 ResourceManager
[hadoop@cup-master-1 ~]$
[hadoop@cup-master-2 ~]$ jps
13197 DFSZKFailoverController
12305 NameNode
17092 Jps
由此得知HA只是针对HDFS, 与MR2无关
[hadoop@cup-slave-1 ~]$ jps
30692 JournalNode
31453 NodeManager
31286 DataNode
30172 QuorumPeerMain
31562 Jps
[hadoop@cup-slave-1 ~]$
HBASE HA CONF:
1. hbase-site.xml
<property>
<name>hbase.rootdir</name>
<value>hdfs://mycluster/hbase</value> <!-- hdfs://cup-master-1:9000 -->
</property>
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>
<property>
<name>hbase.master</name>
<value>cup-master-1:60000</value>
</property>
2. 将core-site.xml和hdfs-site.xml拷贝到hbase_home\conf\下
否则hbase无法启动,不认hdfs://mycluster
HA调试失败
还原的时候必须
1. 清空目录
NNs上: /home/hadoop/cdh42/cdhworkspace/dfs/name
DNs上: /home/hadoop/cdh42/cdhworkspace/dfs/data
JNs上: /home/hadoop/cdh42/cdhworkspace/dfs/jn
2. 做格式化操作
NNs上: hdfs namenode -format
Cannot start an HA namenode with name dirs that need recovery. Dir: Storage Directory /home/hadoop/cdh42/cdhworkspace/dfs/name state: NOT_FORMATTED
NNs上: hdfs namenode -format
format时要求ZK进程以及JN进程启动
zkServer.sh start
hadoop-daemon.sh start journalnode
Incompatible namespaceID for journal Storage Directory /home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster: NameNode has nsId 264369592 but storage has nsId 1178230309
修改/home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster/current/VERSION文件中的namespaceID
Incompatible clusterID for journal Storage Directory /home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster: NameNode has clusterId 'CID-34eabdd9-ca2c-48ff-9127-b6df81aded90' but storage has clusterId 'CID-c1012f1d-e2f1-4a0b-89f6-cafabef1cf7e'
修改/home/hadoop/cdh42/cdhworkspace/dfs/jn/mycluster/current/VERSION文件中的clusterId
Incompatible clusterIDs in /home/hadoop/cdh42/cdhworkspace/dfs/data: namenode clusterID = CID-34eabdd9-ca2c-48ff-9127-b6df81aded90; datanode clusterID = CID-c1012f1d-e2f1-4a0b-89f6-cafabef1cf7e
修改/home/hadoop/cdh42/cdhworkspace/dfs/data/current/VERSION文件中的clusterId
原因:每次format会新生成namespaceID以及clusterID
而此时cdhworkspace/dfs/name,cdhworkspace/dfs/data, cdhworkspace/dfs/jn里面的namespaceID以及clusterID是旧的,
所以要在format前清空所有机器上的所有目录
NNs上: /home/hadoop/cdh42/cdhworkspace/dfs/name
DNs上: /home/hadoop/cdh42/cdhworkspace/dfs/data
JNs上: /home/hadoop/cdh42/cdhworkspace/dfs/jn
HBASE调大
ulimit -a open files需要调大
dfs.replication.interval
dfs.datanode.handler.count
dfs.namenode.handler.count
HIVE集成HBASE 需要拷贝hbase配置文件到hadoop下:
hbase->hadoop:
hbase-0.94.2-cdh4.2.0/conf/hbase-site.xml copy to hadoop-2.0.0-cdh4.2.0/etc/hadoop/下
挂载ISO镜像文件:
mount -t iso9660 -o loop /*/*.iso /mnt
[contrib1]
name=Server
baseurl=file:///mnt/Server
gpgcheck=1
enabled=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
1. 晚上我查询研究了一下,目前主流的观点是rowkey: 10-100B,即rowkey长度控制在10到100个字节,
rowkey过长会降低memstore检索效率以及hfile的存储效率,有百害而无一利。
2. 我这边结合咱们的场景以及数据模型,推荐以下长度:
recommanded 8B=64b,16B=128b,24B=192b,32B=256b,最大不要超过32字节。
即分别是8字节, 16字节, 24字节以及32字节,皆取8的整数倍,原因是64位机器内存分配以8字节倍数对齐。
3. 以下为量化分析:
8B = 64b = 2^64 = 1.844674407371 * 10^19 --20bits long int --最大20位整数
16B = 128b = 2^128 = 3.4028236692094 * 10^38 --39bits long int --最大39位整数
24B = 192b = 2^192 = 6.2771017353867 * 10^57 --58bits long int --最大58位整数
32B = 256b = 2^256 = 1.1579208923732 * 10^77 --78bits long int --最大78位整数
而根据咱们的设计话单表ROWKEY按如下方式组织->
6156911095 8534567490 11000 45000 1111111111111111111
反转电话 10位
取反时间 10位
小区维度 10位
终端维度 19位
总共是49位整数,,所以建议直接采用该方案,ROWKEY按照24个字节走,最大支持58位整数,取57位,
这样仍然有8位的空余可用,如果不需要那就转字节的时候自动填零即可。
CDH2.0 native lib compiling
依赖包::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
maven
apr-1.4.6.tar.gz
apr-util-1.5.1.tar.gz
httpd-2.2.23.tar.gz
php-5.3.18.tar.gz
rrdtool-1.4.7.tar.gz
pcre-8.31.tar.gz
libconfuse-2.6-2.el5.rf.x86_64.rpm
libconfuse-devel-2.6-2.el5.rf.x86_64.rpm
libxml2-devel rpmbuild glib2-devel dbus-devel freetype-devel fontconfig-devel
gcc-c++ expat-devel python-devel libXrender-devel
yum -y install apr-devel apr-util check-devel cairo-devel pango-devel
pcre-devel
tcl-devel
zlib-devel
bzip2-devel
libX11-devel
readline-devel
libXt-devel
tk-devel
tetex-latex
rhbase:
libboost-dev libboost-test-dev libboost-program-options-dev libevent-dev
automake libtool flex bison pkg-config g++ libssl-dev
1. install lzo以及lzo-devel lzo-devel zlib-devel openssl-devel
dependancy: lzo-devel zlib-devel gcc autoconf automake libtool
2. install ProtocolBuffers: http://wiki.apache.org/hadoop/HowToContribute
3. $cd /home/hadoop/protobuf-2.5.0/ ##root用户
$./configure
$make
$make install
4. $cd /home/hadoop/protobuf-2.5.0/java ##hadoop用户
$mvn compile
$mvn install
5. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common
modify pom.xml: add
<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>
<version>2.5.0</version> <!-- 加上版本号,否则找不到包 -->
</dependency>
6. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn clean install -DskipTests -P native
******************注意, 因为hadoop-common-project/hadoop-common中包含snappy压缩的代码,
所以common本地库编译的时候最好事先安装好snappy,如snappy-1.1.0,否则使用snappy压缩时会提示:
this version of libhadoop was built without snappy support
snappy-1.1.0.tar.
http://code.google.com/p/hadoop-snappy/
$ mvn package [-Dsnappy.prefix=SNAPPY_INSTALLATION_DIR]
$mvn clean install -DskipTests -P native package -Dsnappy.prefix=SNAPPY_INSTALLATION_DIR
$mvn clean install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
##不加-Dsnappy.prefix=/root/snappy-1.1.0的话
会提示snappy native library was compiled without snappy support
this version of libhadoop was built without snappy support
http://code.google.com/p/hadoop-snappy/上有说明
copy to hadoop-common-project/hadoop-common----------------------------
7. copy /home/hadoop/protobuf-2.5.0/java/target/generated-sources/com/google/protobuf/DescriptorProtos.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/generated-sources/java/com/google/protobuf/
8. copy /home/hadoop/protobuf-2.5.0/java/src/main/java/com/google/protobuf/*.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/generated-sources/java/com/google/protobuf/
9. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
注意,没有clean,否则拷过去的java文件会被删除
main:
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] Apache Hadoop Main ................................ SUCCESS [1.427s]
[INFO] Apache Hadoop Project POM ......................... SUCCESS [0.986s]
[INFO] Apache Hadoop Annotations ......................... SUCCESS [0.933s]
[INFO] Apache Hadoop Project Dist POM .................... SUCCESS [0.852s]
[INFO] Apache Hadoop Assemblies .......................... SUCCESS [0.246s]
[INFO] Apache Hadoop Auth ................................ SUCCESS [0.645s]
[INFO] Apache Hadoop Auth Examples ....................... SUCCESS [0.827s]
[INFO] Apache Hadoop Common .............................. FAILURE [49.566s]
[INFO] Apache Hadoop Common Project ...................... SKIPPED
[INFO] Apache Hadoop HDFS ................................ SKIPPED
[INFO] Apache Hadoop HttpFS .............................. SKIPPED
[INFO] Apache Hadoop HDFS Project ........................ SKIPPED
[INFO] hadoop-yarn ....................................... SKIPPED
[INFO] hadoop-yarn-api ................................... SKIPPED
[INFO] hadoop-yarn-common ................................ SKIPPED
[INFO] hadoop-yarn-server ................................ SKIPPED
[INFO] hadoop-yarn-server-common ......................... SKIPPED
[INFO] hadoop-yarn-server-nodemanager .................... SKIPPED
[INFO] hadoop-yarn-server-web-proxy ...................... SKIPPED
[INFO] hadoop-yarn-server-resourcemanager ................ SKIPPED
[INFO] hadoop-yarn-server-tests .......................... SKIPPED
[INFO] hadoop-yarn-client ................................ SKIPPED
[INFO] hadoop-yarn-applications .......................... SKIPPED
[INFO] hadoop-yarn-applications-distributedshell ......... SKIPPED
[INFO] hadoop-mapreduce-client ........................... SKIPPED
[INFO] hadoop-mapreduce-client-core ...................... SKIPPED
[INFO] hadoop-yarn-applications-unmanaged-am-launcher .... SKIPPED
[INFO] hadoop-yarn-site .................................. SKIPPED
[INFO] hadoop-yarn-project ............................... SKIPPED
[INFO] hadoop-mapreduce-client-common .................... SKIPPED
[INFO] hadoop-mapreduce-client-shuffle ................... SKIPPED
[INFO] hadoop-mapreduce-client-app ....................... SKIPPED
[INFO] hadoop-mapreduce-client-hs ........................ SKIPPED
[INFO] hadoop-mapreduce-client-jobclient ................. SKIPPED
[INFO] Apache Hadoop MapReduce Examples .................. SKIPPED
[INFO] hadoop-mapreduce .................................. SKIPPED
[INFO] Apache Hadoop MapReduce Streaming ................. SKIPPED
[INFO] Apache Hadoop Distributed Copy .................... SKIPPED
[INFO] Apache Hadoop Archives ............................ SKIPPED
[INFO] Apache Hadoop Rumen ............................... SKIPPED
[INFO] Apache Hadoop Gridmix ............................. SKIPPED
[INFO] Apache Hadoop Data Join ........................... SKIPPED
[INFO] Apache Hadoop Extras .............................. SKIPPED
[INFO] Apache Hadoop Pipes ............................... SKIPPED
[INFO] Apache Hadoop Tools Dist .......................... SKIPPED
[INFO] Apache Hadoop Tools ............................... SKIPPED
[INFO] Apache Hadoop Distribution ........................ SKIPPED
[INFO] Apache Hadoop Client .............................. SKIPPED
[INFO] Apache Hadoop Mini-Cluster ........................ SKIPPED
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 58.143s
[INFO] Finished at: Tue Apr 09 14:31:49 CST 2013
[INFO] Final Memory: 67M/1380M
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.6:run (make) on project hadoop-common: An Ant BuildException has occured: Execute failed: java.io.IOException: Cannot run program "cmake" (in directory "/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/native"): java.io.IOException: error=2, No such file or directory -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR]
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR] mvn <goals> -rf :hadoop-common
10. install cmake ##root用户
$tar xvf cmake-*.*.*.tar.gz
$cd cmake-*.*.*
$./bootstrap
$make
$make install
11. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
注意,没有clean,执行该步骤之后才能生成
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common/target/generated-sources目录
copy to hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common----------------------------
12. copy /home/hadoop/protobuf-2.5.0/java/target/generated-sources/com/google/protobuf/DescriptorProtos.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common/target/generated-sources/proto/
13. copy /home/hadoop/protobuf-2.5.0/java/src/main/java/com/google/protobuf/*.java to
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-common/target/generated-sources/proto/
14. $cd /home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src
$mvn install -DskipTests -P native package -Dsnappy.prefix=/root/snappy-1.1.0
注意,没有clean
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO]
[INFO] Apache Hadoop Main ................................ SUCCESS [1.302s]
[INFO] Apache Hadoop Project POM ......................... SUCCESS [0.861s]
[INFO] Apache Hadoop Annotations ......................... SUCCESS [0.765s]
[INFO] Apache Hadoop Project Dist POM .................... SUCCESS [1.010s]
[INFO] Apache Hadoop Assemblies .......................... SUCCESS [0.230s]
[INFO] Apache Hadoop Auth ................................ SUCCESS [0.614s]
[INFO] Apache Hadoop Auth Examples ....................... SUCCESS [0.741s]
[INFO] Apache Hadoop Common .............................. SUCCESS [23.666s]
[INFO] Apache Hadoop Common Project ...................... SUCCESS [0.075s]
[INFO] Apache Hadoop HDFS ................................ SUCCESS [31.895s]
[INFO] Apache Hadoop HttpFS .............................. SUCCESS [2.411s]
[INFO] Apache Hadoop HDFS Project ........................ SUCCESS [0.076s]
[INFO] hadoop-yarn ....................................... SUCCESS [0.265s]
[INFO] hadoop-yarn-api ................................... SUCCESS [6.371s]
[INFO] hadoop-yarn-common ................................ SUCCESS [1.907s]
[INFO] hadoop-yarn-server ................................ SUCCESS [0.107s]
[INFO] hadoop-yarn-server-common ......................... SUCCESS [1.211s]
[INFO] hadoop-yarn-server-nodemanager .................... SUCCESS [2.975s]
[INFO] hadoop-yarn-server-web-proxy ...................... SUCCESS [0.324s]
[INFO] hadoop-yarn-server-resourcemanager ................ SUCCESS [0.634s]
[INFO] hadoop-yarn-server-tests .......................... SUCCESS [0.367s]
[INFO] hadoop-yarn-client ................................ SUCCESS [0.194s]
[INFO] hadoop-yarn-applications .......................... SUCCESS [0.108s]
[INFO] hadoop-yarn-applications-distributedshell ......... SUCCESS [0.344s]
[INFO] hadoop-mapreduce-client ........................... SUCCESS [0.098s]
[INFO] hadoop-mapreduce-client-core ...................... SUCCESS [1.496s]
[INFO] hadoop-yarn-applications-unmanaged-am-launcher .... SUCCESS [0.231s]
[INFO] hadoop-yarn-site .................................. SUCCESS [0.200s]
[INFO] hadoop-yarn-project ............................... SUCCESS [0.172s]
[INFO] hadoop-mapreduce-client-common .................... SUCCESS [6.503s]
[INFO] hadoop-mapreduce-client-shuffle ................... SUCCESS [0.391s]
[INFO] hadoop-mapreduce-client-app ....................... SUCCESS [3.133s]
[INFO] hadoop-mapreduce-client-hs ........................ SUCCESS [1.250s]
[INFO] hadoop-mapreduce-client-jobclient ................. SUCCESS [3.092s]
[INFO] Apache Hadoop MapReduce Examples .................. SUCCESS [0.900s]
[INFO] hadoop-mapreduce .................................. SUCCESS [0.105s]
[INFO] Apache Hadoop MapReduce Streaming ................. SUCCESS [0.706s]
[INFO] Apache Hadoop Distributed Copy .................... SUCCESS [1.513s]
[INFO] Apache Hadoop Archives ............................ SUCCESS [0.828s]
[INFO] Apache Hadoop Rumen ............................... SUCCESS [1.201s]
[INFO] Apache Hadoop Gridmix ............................. SUCCESS [1.040s]
[INFO] Apache Hadoop Data Join ........................... SUCCESS [0.409s]
[INFO] Apache Hadoop Extras .............................. SUCCESS [0.545s]
[INFO] Apache Hadoop Pipes ............................... SUCCESS [9.772s]
[INFO] Apache Hadoop Tools Dist .......................... SUCCESS [0.467s]
[INFO] Apache Hadoop Tools ............................... SUCCESS [0.059s]
[INFO] Apache Hadoop Distribution ........................ SUCCESS [0.228s]
[INFO] Apache Hadoop Client .............................. SUCCESS [0.624s]
[INFO] Apache Hadoop Mini-Cluster ........................ SUCCESS [0.247s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 1:56.489s
[INFO] Finished at: Tue Apr 09 15:28:54 CST 2013
[INFO] Final Memory: 87M/744M
[INFO] ------------------------------------------------------------------------
15. 编译后的native文件:
/home/hadoop/cdh42/hadoop-2.0.0-cdh4.2.0/src/hadoop-common-project/hadoop-common/target/native/target/usr/local/lib/
[hadoop@cup-master-1 src]$ find . -name *.a
./hadoop-hdfs-project/hadoop-hdfs/target/native/libposix_util.a
./hadoop-hdfs-project/hadoop-hdfs/target/native/libnative_mini_dfs.a
./hadoop-hdfs-project/hadoop-hdfs/target/native/target/usr/local/lib/libhdfs.a
./hadoop-common-project/hadoop-common/target/native/target/usr/local/lib/libhadoop.a
./hadoop-tools/hadoop-pipes/target/native/libhadooputils.a
./hadoop-tools/hadoop-pipes/target/native/libhadooppipes.a
./hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/target/native/libcontainer.a
发表评论
-
hadoop 集群调度 Azkaban2搭建
2014-05-22 16:14 4166介绍 Azkaban是由Linkedin开源的一个批量工 ... -
awk替换
2013-07-23 13:37 817awk操作多个文件 ARGIND==1 时,处理第一个加发的文 ... -
awk去掉重复记录
2013-07-20 16:48 750awk '!a[$0]++' xhyt_app_001.txt ... -
awk中按文件大小分解文件并重命名
2013-06-18 14:26 1325由于处理数据过于庞大,需要规定文件大小,此文中文件大小按过滤的 ... -
Linux 命令行里的“瑞士军刀”
2013-06-08 09:19 732本文转载自: 外刊IT评论 http://www.aqee.n ... -
.sh 方式调用awk及一些常规信息处理
2013-06-03 12:39 966awkshtest.sh 内容如下: #!/bin/sh aw ... -
My SQL 常用函数
2013-04-01 23:03 917一、数学函数 ABS(x) ... -
Eclipse3.8安装axis2插件 异常解决 java.lang.reflect.InvocationTargetException
2013-03-14 09:03 1678eclipse3.8安装axis2 插件时出现An error ... -
axis2 搭建webservice
2013-01-29 09:15 2211准备工作: 1.下载axis2相关文件 http://ww ... -
oracle 随机取数
2012-11-23 14:09 815select a.machine_name 平台名, ... -
window.showModalDialog给父窗口赋值
2012-08-22 10:21 1968window.open 打开窗口时,可以很轻松的取得其 ... -
DIV动态创建与删除
2012-08-22 10:17 641JS添加方法: function copySelectInf ...
相关推荐
hadoop 2.0 详细安装手册。hadoop 2.0 详细安装手册。
涉及到了Hadoop2.0、Hbase、Sqoop、Flume、Hive、Zookeeper的具体环境搭建
### Hadoop 2.0基本架构和发展趋势 #### 什么是Hadoop 2.0? Hadoop 2.0是Apache Hadoop的一个重大升级版本,它引入了YARN(Yet Another Resource Negotiator)作为其核心组件之一,以解决Hadoop 1.x版本中...
本文档提供了Hadoop 2.0在Linux系统上安装部署的详细步骤和方法。 一、准备工作 首先,需要准备足够的硬件资源和软件包。硬件方面,测试环境通常需要一台配置较高(建议内存不小于4GB)的PC或服务器,而生产环境则...
本文是详细的Hadoop2.0安装方法步骤
hadoop2.0版本安装手册,包含hadoop、hive、hbase、mahout、sqoop、spark、storm、整个体系的安装配置
【Hadoop 2.0 部署详解】 在大数据处理领域,Apache Hadoop 是一个不可或缺的开源框架,尤其在大规模数据存储和处理方面表现出强大的能力。Hadoop 2.0 引入了高可用性(HA)特性,极大地提高了系统的稳定性。本文将...
【实战Hadoop 2.0】是一套深入学习Hadoop生态系统的PPT文档,涵盖了Hadoop分布式文件系统(HDFS)、资源调度器YARN、数据分析工具Spark、Ambari管理平台等多个关键组件。以下是这些核心知识点的详细解析: 1. **...
开源思想,少要积分,仅供学习参考。 Hadoop2.0 从0到HA安装运行步骤。 开源思想,少要积分,仅供学习参考。 Hadoop2.0 从0到HA安装运行步骤。
### Hadoop 2.0:从YARN到下一代大数据处理平台 #### 1. Hadoop 2.0:新时代的大数据处理平台 Hadoop 2.0是Apache Hadoop的一个重要版本,它标志着Hadoop从单一的MapReduce计算框架转变为一个更加通用、可扩展和...
在大数据领域,Hadoop 2.0 是一个关键的分布式计算框架,它为海量数据处理提供了强大支持。本文将深入探讨Hadoop 2.0的主要组件、架构、以及其相较于Hadoop 1.0的改进。 一、Hadoop 2.0概述 Hadoop 2.0是Apache软件...
6.1 Hadoop 2.0 大家族概述 Hadoop 2.0 是一个开源的分布式计算框架,是Hadoop生态系统的核心组成部分,它在Hadoop 1.0的基础上进行了重大改进,引入了YARN(Yet Another Resource Negotiator),使得系统更加灵活和...
1. 安装Java环境:Hadoop依赖Java,需要先安装JDK,并设置好JAVA_HOME环境变量。 2. 下载Hadoop 2.0发行版,解压到服务器。 3. 配置环境变量:在bashrc或profile文件中设置HADOOP_HOME和PATH。 4. 根据集群规模,...
3. **5.3 Hadoop 2.0 部署**:这部分会介绍如何安装和配置Hadoop 2.0环境,包括不同部署模式的选择,如单机模式、伪分布式模式和完全分布式模式。 4. **5.4 Hadoop 2.0 体系架构**:详细解析Hadoop 2.0的组件,如...
Hadoop2.0安装部署、MapReduce编程实践: 1.Hadoop 2.0体系介绍 2.Hadoop 2.0安装部署方法 3.MapReduce编程实践 4.MapReduce和关系型数据库计算速度比较
【Hadoop2.0的新特性】 在大数据处理领域,Hadoop是一个不可或缺的开源框架,其发展历经多个版本,其中Hadoop2.0是重要的里程碑,它针对Hadoop1.0的一些关键问题进行了显著的改进。本章节我们将深入探讨Hadoop2.0的...
3. **Hadoop 2.0 部署**:讲解如何在不同的硬件和网络环境中安装、配置和管理Hadoop 2.0集群,包括单机模式、伪分布式和完全分布式模式。 4. **Hadoop 2.0 体系架构**: - **公共组件 Common**:这部分涉及Hadoop...
- **安装JDK 1.8**:Hadoop2.0需要Java 1.8环境支持。 - **创建用户**:推荐使用非root用户(例如work用户)进行安装和管理,避免权限问题。 - **SSH免密登录配置**:通过创建密钥、授权和文件权限设置实现免密登录...
第 4 章 安装部署 Hive 444.1 解压并安装 Hive 44
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据...