over(Partition by...) 一个超级牛皮的ORACLE特有函数。 最近工作中才接触到这个功能强大而灵活的函数。 oracle的分析函数over 及开窗函数 一:分析函数over Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是 对于每个组返回多行,而聚合函数对于每个组只返回一行。 下面通过几个例子来说明其应用。 1:统计某商店的营业额。 date sale 1 20 2 15 3 14 4 18 5 30 规则:按天统计:每天都统计前面几天的总额 得到的结果: DATE SALE SUM ----- -------- ------ 1 20 20 --1天 2 15 35 --1天+2天 3 14 49 --1天+2天+3天 4 18 67 . 5 30 97 . 2:统计各班成绩第一名的同学信息 NAME CLASS S ----- ----- ---------------------- fda 1 80 ffd 1 78 dss 1 95 cfe 2 74 gds 2 92 gf 3 99 ddd 3 99 adf 3 45 asdf 3 55 3dd 3 78 通过: -- select * from ( select name,class,s,rank()over(partition by class order by s desc) mm from t2 ) where mm=1 -- 得到结果: NAME CLASS S MM ----- ----- ---------------------- ---------------------- dss 1 95 1 gds 2 92 1 gf 3 99 1 ddd 3 99 1 注意: 1.在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果 2.rank()和dense_rank()的区别是: --rank()是跳跃排序,有两个第二名时接下来就是第四名 --dense_rank()l是连续排序,有两个第二名时仍然跟着第三名 3.分类统计 (并显示信息) A B C -- -- ---------------------- m a 2 n a 3 m a 2 n b 2 n b 1 x b 3 x b 2 x b 4 h b 3 select a,c,sum(c)over(partition by a) from t2 得到结果: A B C SUM(C)OVER(PARTITIONBYA) -- -- ------- ------------------------ h b 3 3 m a 2 4 m a 2 4 n a 3 6 n b 2 6 n b 1 6 x b 3 9 x b 2 9 x b 4 9 如果用sum,group by 则只能得到 A SUM(C) -- ---------------------- h 3 m 4 n 6 x 9 无法得到B列值 ===== select * from test 数据: A B C 1 1 1 1 2 2 1 3 3 2 2 5 3 4 6 ---将B栏位值相同的对应的C 栏位值加总 select a,b,c, SUM(C) OVER (PARTITION BY B) C_Sum from test A B C C_SUM 1 1 1 1 1 2 2 7 2 2 5 7 1 3 3 3 3 4 6 6 ---如果不需要已某个栏位的值分割,那就要用 null eg: 就是将C的栏位值summary 放在每行后面 select a,b,c, SUM(C) OVER (PARTITION BY null) C_Sum from test A B C C_SUM 1 1 1 17 1 2 2 17 1 3 3 17 2 2 5 17 3 4 6 17 求个人工资占部门工资的百分比 SQL> select * from salary; NAME DEPT SAL ---------- ---- ----- a 10 2000 b 10 3000 c 10 5000 d 20 4000 SQL> select name,dept,sal,sal*100/sum(sal) over(partition by dept) percent from salary; NAME DEPT SAL PERCENT ---------- ---- ----- ---------- a 10 2000 20 b 10 3000 30 c 10 5000 50 d 20 4000 100 二:开窗函数 开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下: 1: over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数 over(partition by deptno)按照部门分区 2: over(order by salary range between 5 preceding and 5 following) 每行对应的数据窗口是之前行幅度值不超过5,之后行幅度值不超过5 例如:对于以下列 aa 1 2 2 2 3 4 5 6 7 9 sum(aa)over(order by aa range between 2 preceding and 2 following) 得出的结果是 AA SUM ---------------------- ------------------------------------------------------- 1 10 2 14 2 14 2 14 3 18 4 18 5 22 6 18 7 22 9 9 就是说,对于aa=5的一行 ,sum为 5-1<=aa<=5+2 的和 对于aa=2来说 ,sum=1+2+2+2+3+4=14 ; 又如 对于aa=9 ,9-1<=aa<=9+2 只有9一个数,所以sum=9 ; 3:其它: over(order by salary rows between 2 preceding and 4 following) 每行对应的数据窗口是之前2行,之后4行 4:下面三条语句等效: over(order by salary rows between unbounded preceding and unbounded following) 每行对应的数据窗口是从第一行到最后一行,等效: over(order by salary range between unbounded preceding and unbounded following) 等效 over(partition by null) 常用的分析函数如下所列: row_number() over(partition by ... order by ...) rank() over(partition by ... order by ...) dense_rank() over(partition by ... order by ...) count() over(partition by ... order by ...) max() over(partition by ... order by ...) min() over(partition by ... order by ...) sum() over(partition by ... order by ...) avg() over(partition by ... order by ...) first_value() over(partition by ... order by ...) last_value() over(partition by ... order by ...) lag() over(partition by ... order by ...) lead() over(partition by ... order by ...) 示例 SQL> select type,qty from test; TYPE QTY ---------- ---------- 1 6 2 9 SQL> select type,qty,to_char(row_number() over(partition by type order by qty))||'/'||to_char(count(*) over(partition by type)) as cnt2 from test; TYPE QTY CNT2 ---------- ---------- ------------ 3 1/2 1 6 2/2 2 5 1/3 7 2/3 2 9 3/3 SQL> select * from test; ---------- ------------------------------------------------- 1 11111 2 22222 3 33333 4 44444 SQL> select t.id,mc,to_char(b.rn)||'/'||t.id)e 2 from test t, (select rownum rn from (select max(to_number(id)) mid from test) connect by rownum <=mid ))L 4 where b.rn<=to_number(t.id) order by id ID MC TO_CHAR(B.RN)||'/'||T.ID --------- -------------------------------------------------- --------------------------------------------------- 1 11111 1/1 2 22222 1/2 2 22222 2/2 3 33333 1/3 3 33333 2/3 3 33333 3/3 44444 1/4 44444 2/4 4 44444 3/4CNOUG4 44444 4/4 10 rows selected ******************************************************************* 关于partition by 这些都是分析函数,好像是8.0以后才有的 row_number()和rownum差不多,功能更强一点(可以在各个分组内从1开时排序) rank()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内) dense_rank()l是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的 lag(arg1,arg2,arg3): arg1是从其他行返回的表达式 arg2是希望检索的当前行分区的偏移量。是一个正的偏移量,时一个往回检索以前的行的数目。 arg3是在arg2表示的数目超出了分组的范围时返回的值。 1. select deptno,row_number() over(partition by deptno order by sal) from emp order by deptno; 2. select deptno,rank() over (partition by deptno order by sal) from emp order by deptno; 3. select deptno,dense_rank() over(partition by deptno order by sal) from emp order by deptno; 4. select deptno,ename,sal,lag(ename,1,null) over(partition by deptno order by ename) from emp ord er by deptno; 5. select deptno,ename,sal,lag(ename,2,'example') over(partition by deptno order by ename) from em p order by deptno; 6. select deptno, sal,sum(sal) over(partition by deptno) from emp;--每行记录后都有总计值 select deptno, sum(sal) from emp group by deptno; 7. 求每个部门的平均工资以及每个人与所在部门的工资差额 select deptno,ename,sal , round(avg(sal) over(partition by deptno)) as dept_avg_sal, round(sal-avg(sal) over(partition by deptno)) as dept_sal_diff from emp; 本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/hoho_lolo/archive/2010/03/16/5386185.aspx
相关推荐
Oracle查询中的`OVER (PARTITION BY ..)`是一个窗口函数,它允许我们在数据集上执行计算,但不是在整个结果集上,而是针对每个分区。这部分功能非常强大,可以用于复杂的分析和排序任务,尤其是在处理分组数据时。在...
`OVER (PARTITION BY ...)` 和开窗函数在Oracle数据库中提供了极其强大的数据处理能力,特别是在需要进行复杂的数据分析或报表制作时。掌握这些技术对于提高数据库查询效率和数据处理能力至关重要。
Oracle分析函数是数据库查询中非常强大的工具,它们用于处理复杂的报表和统计需求,特别是在在线分析处理(OLAP)环境中。分析函数与聚合函数的主要区别在于,聚合函数对每个组只返回一行结果,而分析函数则可以针对...
Oracle 9i 分析函数是数据库查询中一种强大的工具,它们允许在单个查询中对一组行进行聚合操作,同时保留原始行的细节。在Oracle数据库系统中,分析函数为数据分析师和数据库管理员提供了深入洞察数据的能力,尤其在...
### Oracle分析函数OVER及开窗函数详解 #### 一、概述 在Oracle数据库中,分析函数(Analytic Functions)是一种非常强大的工具,用于处理复杂的查询需求。这些函数可以在一组相关的行上执行计算,并且每行返回一个...
### Oracle分析函数详解 #### 一、Oracle分析函数概述 Oracle分析函数是在处理大量数据时极为有用的一套工具,主要用于在线分析处理(OLAP)场景。这类函数可以在多个级别上进行数据聚合,并支持复杂的排序、分组...
Oracle分析函数是数据库管理系统Oracle中一组强大的工具,用于处理集合数据,特别是在复杂的报表和数据分析场景中。它们允许用户在单个SQL查询中执行聚合操作,同时保持行的原始顺序,这是传统的GROUP BY函数无法...
Oracle分析函数是数据库管理系统Oracle中的一种高级SQL特性,它允许用户在单个查询中对一组行进行计算,而无需使用子查询或自连接。这些函数极大地增强了数据分析和报告的能力,提高了查询性能。以下是对Oracle分析...
Oracle分析函数的语法通常包括`OVER()`子句,允许指定窗口或分区定义。这种强大的工具使得在复杂的SQL查询中实现数据统计和分析变得简单,减少了对复杂子查询的依赖,提高了性能。例如,`function_name(arg1,arg2,.....
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它允许用户对分组数据执行复杂的计算,并且结果可以根据特定条件进行动态调整。这种灵活性使得Oracle分析函数在处理复杂的数据集时非常...
Oracle数据库系统是世界上最...在实际工作中,结合PARTITION BY和OVER子句的使用,分析函数可以解决许多复杂的业务问题,提升数据处理能力。因此,对分析函数的深入理解是成为高级Oracle数据库开发人员的关键技能之一。
Oracle分析函数是数据库管理系统Oracle中的一个重要特性,它们在SQL查询中用于执行复杂的数据分析操作,尤其是在处理分组数据时。自Oracle 8.1.6版本开始引入分析函数,其核心区别于传统的聚合函数(如SUM、COUNT、...
Oracle 分析函数(用法+实例) Oracle 分析函数是 Oracle 8.1.6 版本中引入的高级应用,属于 Oracle 的一大亮点。分析函数可以分为四大类:排名函数、聚合函数、行比较函数和统计函数。下面将对分析函数的原理、...
Oracle 分析函数是一种强大的SQL工具,它允许你在处理数据时执行复杂的分析操作,而不像聚合...参考书籍如Tom Kyte的《Expert One-on-One》和Oracle 9i SQL Reference等,都是深入学习和理解Oracle分析函数的宝贵资源。
而在分析函数中,AVG会根据PARTITION BY和ORDER BY子句对每个分组或排序后的子集计算平均值。 2. SUM ( [ DISTINCT | ALL ] expr ) OVER ( analytic_clause ) SUM函数用于求和,同样有聚合和分析两种形式。聚合...
Oracle分析函数是Oracle数据库提供的用于数据分析的一组SQL扩展,它们能够对一组数据执行计算,并返回一组结果,这组结果通常会有一个多行的集合。与聚合函数不同,分析函数不会把多行聚合成单一结果,而是在原有...
Oracle分析函数是数据库管理系统Oracle中的一种高级查询工具,主要用于处理多行数据并返回与每一行相关的聚合信息。这些函数在在线分析处理(OLAP)环境中特别有用,因为它们能够对数据进行复杂的分析,例如计算累计...
### Oracle分析函数详解 #### 一、概述 Oracle分析函数是一种强大的工具,它自Oracle 8.1.6版本开始引入,并在后续版本中不断完善和发展。这类函数的主要用途在于能够针对一组数据执行复杂的聚合计算,并且不同于...
Oracle分析函数是数据库管理系统Oracle中的一个强大特性,它允许用户在SQL查询中执行复杂的分析操作。分析函数在处理报表和数据迁移任务时尤其有用,因为它们可以基于分组计算聚合值,并为每个分组返回多行,而不...