`

NoSQL概述

 
阅读更多


简介

  NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。nosql

状况

  计算机体系结构在数据存储方面要求具备庞大的水平扩展性①,而NoSQL致力于改变这一现状。Google的 BigTable 和Amazon 的Dynamo使用的就是NoSQL型数据库。

  NoSQL项目的名字上看不出什么相同之处,但是,它们通常在某些方面相同:它们可以处理超大量的数据。

  这场革命仍然需要等待。的确,NoSQL对大型企业来说还不是主流,但是,一两年之后很可能就会变个样子。在NoSQL运动的最新一次聚会中,来自世界各地的150人挤满了CBS Interactive的一间会议室。分享他们如何推翻缓慢而昂贵的关系数据库的暴政的经验,怎样使用更有效和更便宜的方法来管理数据。

  “关系型数据库给你强加了太多东西。它们要你强行修改对象数据,以满足RDBMS (relational database management system,关系型数据库管理系统)的需要,”在NoSQL拥护者们看来,基于NoSQL的替代方案“只是给你所需要的”。

  水平扩展性(horizontal scalability)指能够连接多个软硬件的特性,这样可以将多个服务器从逻辑上看成一个实体。

NoSQL

  随着互联网web2.0网站的兴起,非关系型的数据库成了一个极其热门的新领域,非关系数据库产品的发展非常迅速。而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,例如:

  1、High performance - 对数据库高并发读写的需求

  web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求。

  2、Huge Storage - 对海量数据的高效率存储和访问的需求

  对于大型的SNS网站,每天用户产生海量的用户动态,以国外的Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,

  3、High Scalability && High Availability- 对数据库的高可扩展性和高可用性的需求

  在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,为什么数据库不能通过不断的添加服务器节点来实现扩展呢?

  在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如:

  1、数据库事务一致性需求

  很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求也不高。因此数据库事务管理成了数据库高负载下一个沉重的负担。

  2、数据库的写实时性和读实时性需求

  对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的。并不要求这么高的实时性。

  3、对复杂的SQL查询,特别是多表关联查询的需求

  任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。

  因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生。

  NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。

  当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。从这些NoSQL项目的名字上看不出什么相同之处:Hadoop、Voldemort、Dynomite,还有其它很多。

  NoSQL与关系型数据库设计理念比较

  关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。

特点

  它们可以处理超大量的数据。

  它们运行在便宜的PC服务器集群上。

  PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

  它们击碎了性能瓶颈。

  NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

  “SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。

  没有过多的操作。

  虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。

  Bootstrap支持

  因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

优点

易扩展

  NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

  NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

  NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

  NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

缺点

  但是一些人承认,没有正式的官方支持,万一出了差错会是可怕的,至少很多管理人员是这样看。

  “我们确实需要做一些说服工作,但基本在他们看到我们的第一个原型运行良好之后,我们就能够说服他们,这是条正确的道路。”

  此外,nosql并未形成一定标准,各种产品层出不穷,内部混乱,各种项目还需时间来检验

NoSQL开源软件

Membase

  Membase 是 NoSQL 家族的一个新的重量级的成员。Membase是开源项目,源代码采用了Apache2.0的使用许可。该项目托管在GitHub.Source tarballs上,可以下载beta版本的Linux二进制包。该产品主要是由North Scale的memcached核心团队成员开发完成,其中还包括Zynga和NHN这两个主要贡献者的工程师,这两个组织都是很大的在线游戏和社区网络空间的供应商。

  Membase容易安装、操作,可以从单节点方便的扩展到集群,而且为memcached(有线协议的兼容性)实现了即插即用功能,在应用方面为开 发者和经营者提供了一个比较低的门槛。做为缓存解决方案,Memcached已经在不同类型的领域(特别是大容量的Web应用)有了广泛的使用,其中 Memcached的部分基础代码被直接应用到了Membase服务器的前端。

  通过兼容多种编程语言和框架,Membase具备了很好的复用性。在安装和配置方面,Membase提供了有效的图形化界面和编程接口,包括可配置 的告警信息。

  Membase的目标是提供对外的线性扩展能力,包括为了增加集群容量,可以针对统一的节点进行复制。 另外,对存储的数据进行再分配仍然是必要的。

  这方面的一个有趣的特性是NoSQL解决方案所承诺的可预测的性能,类准确性的延迟和吞吐量。通过如下方式可以获得上面提到的特性:

  ◆ 自动将在线数据迁移到低延迟的存储介质的技术(内存,固态硬盘,磁盘)

  ◆ 可选的写操作一一异步,同步(基于复制,持久化)

  ◆ 反向通道再平衡[未来考虑支持]

  ◆ 多线程低锁争用

  ◆ 尽可能使用异步处理

  ◆ 自动实现重复数据删除

  ◆ 动态再平衡现有集群

  ◆ 通过把数据复制到多个集群单元和支持快速失败转移来提供系统的高可用性。

MongoDB

  MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。它的特点是高性能、易部署、易使用,存储数据非常方便。

         MongoDB[1]的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。MongoDB最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。

  主要功能特性:

  ◆ 面向集合存储,易存储对象类型的数据

  “面向集合”(Collenction-Oriented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个 集合在数据库中都有一个唯一的标识名,并且可以包含无限数目的文档。集合的概念类似关系型数据库(RDBMS)里的表(table),不同的是它不需要定 义任何模式(schema)。

  ◆ 模式自由

  模式自由(schema-free),意味着对于存储在mongodb数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。

  ◆支持动态查询

  ◆支持完全索引,包含内部对象

  ◆支持查询

  ◆支持复制和故障恢复

  ◆使用高效的二进制数据存储,包括大型对象(如视频等)

  ◆自动处理碎片,以支持云计算层次的扩展性

  ◆支持RUBY,PYTHON,JAVA,C++,PHP等多种语言

  ◆文件存储格式为BSON(一种JSON的扩展)

  BSON(Binary Serialized document Format)存储形式是指:存储在集合中的文档,被存储为键-值对的形式。键用于唯一标识一个文档,为字符串类型,而值则可以是各中复杂的文件类型。

  ◆可通过网络访问

  MongoDB服务端可运行在Linux、Windows或OS X平台,支持32位和64位应用,默认端口为27017。推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2GB。

  MongoDB把数据存储在文件中(默认路径为:/data/db),为提高效率使用内存映射文件进行管理。

Hypertable

  Hypertable是一个开源、高性能、可伸缩的数据库,它采用与Google的Bigtable相似的模型。在过去数年中,Google为在PC集群 上运行的可伸缩计算基础设施设计建造了三个关键部分。第一个关键的基础设施是Google File System(GFS),这是一个高可用的文件系统,提供了一个全局的命名空间。它通过跨机器(和跨机架)的文件数据复制来达到高可用性,并因此免受传统 文件存储系统无法避免的许多失败的影响,比如电源、内存和网络端口等失败。第二个基础设施是名为Map-Reduce的计算框架,它与GFS紧密协作,帮 助处理收集到的海量数据。第三个基础设施是Bigtable,它是传统数据库的替代。Bigtable让你可以通过一些主键来组织海量数据,并实现高效的 查询。Hypertable是Bigtable的一个开源实现,并且根据我们的想法进行了一些改进。

Apache Cassandra

  Apache Cassandra是一套开源分布式Key-Value存储系统。它最初由Facebook开发,用于储存特别大的数据。Facebook在使用此系统。Cassandra[2]是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比Dynomite(分布式的Key-Value存储系统)更丰富,但支持度却不如文档存储MongoDB。

  主要特性:

  ◆ 分布式

  ◆ 基于column的结构化

  ◆ 高伸展性

  Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。

  Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。)Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。

CouchDB

          CouchDB[3]会为存储到数据库中的每一个文档分配一个文档级别的唯一标识符(id),同时每次将变动保存到数据库中时还会分配一个修订号(rev)。CouchDB还有一个更加商业化的“表亲”——Couchbase,不过它提供缓存功能,更好的分片,增量查询,更好的索引和一些其他的功能。其实Couchbase与CouchDB也是紧密相关的,Couchbase产品包含了CouchDB的一个副本。

  所用语言: Erlang

  特点:DB一致性,易于使用

  使用许可: Apache

  协议: HTTP/REST

  双向数据复制,持续进行或临时处理,处理时带冲突检查,因此,采用的是master-master复制

  MVCC – 写操作不阻塞读操作

  可保存文件之前的版本

  Crash-only(可靠的)设计

  需要不时地进行数据压缩

  视图:嵌入式 映射/减少

  格式化视图:列表显示

  支持进行服务器端文档验证

  支持认证

  根据变化实时更新

  支持附件处理

  因此, CouchApps(独立的 js应用程序)

  需要 jQuery程序库

  最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

  例如:CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

  和其他数据库比较,其突出特点是:

  ◆ 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。

  ◆ 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。

  ◆ 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。

  ◆ 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。

  ◆ 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。

  ◆ 分布式写操作 :有可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。

 
2
3
分享到:
评论
2 楼 夜辰2000 2013-09-10  
呵呵,共同学习
1 楼 罗丫丫 2013-09-09  
最近在学node.js  正好学习下

相关推荐

    基于物联网智能化平台的智慧园区解决方案PPT(28页).pptx

    智慧园区,作为现代城市发展的新形态,旨在通过高度集成的信息化系统,实现园区的智能化管理与服务。该方案提出,利用智能手环、定制APP、园区管理系统及物联网技术,将园区的各类设施与设备紧密相连,形成一个高效、便捷、安全的智能网络。从智慧社区到智慧酒店,从智慧景区到智慧康养,再到智慧生态,五大应用板块覆盖了园区的每一个角落,为居民、游客及工作人员提供了全方位、个性化的服务体验。例如,智能手环不仅能实现定位、支付、求助等功能,还能监测用户健康状况,让科技真正服务于生活。而智慧景区的建设,更是通过大数据分析、智能票务、电子围栏等先进技术,提升了游客的游玩体验,确保了景区的安全有序。 尤为值得一提的是,方案中的智慧康养服务,展现了科技对人文关怀的深刻体现。通过智慧手环与传感器,自动感知老人身体状态,及时通知家属或医疗机构,有效解决了“空巢老人”的照护难题。同时,智慧生态管理系统的应用,实现了对大气、水、植被等环境要素的实时监测与智能调控,为园区的绿色发展提供了有力保障。此外,方案还提出了建立全域旅游营销平台,整合区域旅游资源,推动旅游业与其他产业的深度融合,为区域经济的转型升级注入了新的活力。 总而言之,这份智慧园区建设方案以其前瞻性的理念、创新性的技术和人性化的服务设计,为我们展示了一个充满智慧与活力的未来园区图景。它不仅提升了园区的运营效率和服务质量,更让科技真正融入了人们的生活,带来了前所未有的便捷与舒适。对于正在规划或实施智慧园区建设的决策者而言,这份方案无疑提供了一份宝贵的参考与启示,激发了他们对于未来智慧生活的无限遐想与憧憬。

    MES制造企业生产过程执行系统:全方位协同管理,提升生产效率与质量的信息化管理平台,MES制造企业生产过程执行系统:全面协同管理,提升生产效率与质量管理水平,mes制造企业生产过程执行系统,是一套面向

    MES制造企业生产过程执行系统:全方位协同管理,提升生产效率与质量的信息化管理平台,MES制造企业生产过程执行系统:全面协同管理,提升生产效率与质量管理水平,mes制造企业生产过程执行系统,是一套面向制造企业车间执行层的生产信息化管理系统。 MES 可以为企业提供包括制造数据管理、计划排产管理、生产调度管理、库存管理、质量管理、人力资源管理、工作中心 设备管理、工具工装管理、采购管理、成本管理、项目看板管理、生产过程控制、底层数据集成分析、上层数据集成分解等管理模块,为企业打造一个扎实、可靠、全面、可行的制造协同管理平台 ,MES制造企业生产过程执行系统;生产信息化管理;制造数据管理;计划排产管理;生产调度管理;库存管理;质量管理;人力资源管理;设备管理;数据集成分析,MES制造企业生产执行系统:全面协同管理平台助力制造企业高效运营

    C++指针与内存管理详解:避免常见错误及最佳实践

    内容概要:本文介绍了C++编程中常见指针错误及其解决方案,并涵盖了模板元编程的基础知识和发展趋势,强调了高效流操作的最新进展——std::spanstream。文章通过一系列典型错误解释了指针的安全使用原则,强调指针初始化、内存管理和引用安全的重要性。随后介绍了模板元编程的核心特性,展示了编译期计算、类型萃取等高级编程技巧的应用场景。最后,阐述了C++23中引入的新特性std::spanstream的优势,对比传统流处理方法展现了更高的效率和灵活性。此外,还给出了针对求职者的C++技术栈学习建议,涵盖了语言基础、数据结构与算法及计算机科学基础领域内的多项学习资源与实战练习。 适合人群:正在学习C++编程的学生、从事C++开发的技术人员以及其他想要深入了解C++语言高级特性的开发者。 使用场景及目标:帮助读者掌握C++中的指针规则,预防潜在陷阱;介绍模板元编程的相关技术和优化方法;使读者理解新引入的标准库组件,提高程序性能;引导C++学习者按照有效的路径规划自己的技术栈发展路线。 阅读建议:对于指针部分的内容,应当结合实际代码样例反复实践,以便加深理解和记忆;在研究模板元编程时,要从简单的例子出发逐步建立复杂模型的理解能力,培养解决抽象问题的能力;而对于C++23带来的变化,则可以通过阅读官方文档并尝试最新标准特性来加深印象;针对求职准备,应结合个人兴趣和技术发展方向制定合理的学习计划,并注重积累高质量的实际项目经验。

    VSC下垂控制策略仿真模型:基于MATLAB 2014a及更高版本的全面支持与应用实践,VSC下垂控制策略仿真模型MATLAB版本支持及功能解析,VSC下垂控制策略仿真模型,支持MATLAB2014a

    VSC下垂控制策略仿真模型:基于MATLAB 2014a及更高版本的全面支持与应用实践,VSC下垂控制策略仿真模型MATLAB版本支持及功能解析,VSC下垂控制策略仿真模型,支持MATLAB2014a及以上版本 ,VSC下垂控制策略; 仿真模型; MATLAB 2014a及以上版本; 核心关键词,MATLAB 2014a及以上版VSC下垂控制策略仿真模型研究

    信息技术知识赛系统设计与实现(代码+数据库+LW)

    摘  要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装信息技术知识赛系统软件来发挥其高效地信息处理的作用,可以规范信息管理流程,让管理工作可以系统化和程序化,同时,信息技术知识赛系统的有效运用可以帮助管理人员准确快速地处理信息。 信息技术知识赛系统在对开发工具的选择上也很慎重,为了便于开发实现,选择的开发工具为Eclipse,选择的数据库工具为Mysql。以此搭建开发环境实现信息技术知识赛系统的功能。其中管理员管理用户,新闻公告。 信息技术知识赛系统是一款运用软件开发技术设计实现的应用系统,在信息处理上可以达到快速的目的,不管是针对数据添加,数据维护和统计,以及数据查询等处理要求,信息技术知识赛系统都可以轻松应对。 关键词:信息技术知识赛系统;SpringBoot框架,系统分析,数据库设计

    蓝桥杯python准备建议.zip

    蓝桥杯是全国范围内具有广泛影响力的编程竞赛,对于准备参加蓝桥杯 Python 组比赛的同学来说,系统化的学习和针对性的训练是取得好成绩的关键。本项目是一份详细的蓝桥杯 Python 组准备建议,涵盖基础知识、算法与数据结构、刷题策略、实战演练以及心态调整等方面。

    Simulink与Carsim联合仿真实现轨迹跟踪,考虑侧倾、曲率变化及侧偏刚度修正,考虑侧倾和曲率变化的轨迹跟踪:Simulink与Carsim联合仿真修正侧偏刚度技术解析,轨迹跟踪,考虑侧倾和曲率

    Simulink与Carsim联合仿真实现轨迹跟踪,考虑侧倾、曲率变化及侧偏刚度修正,考虑侧倾和曲率变化的轨迹跟踪:Simulink与Carsim联合仿真修正侧偏刚度技术解析,轨迹跟踪,考虑侧倾和曲率变化,同时修正侧偏刚度 simulink carsim联合仿真 ,轨迹跟踪; 侧倾和曲率变化; 侧偏刚度修正; Simulink; CarSim联合仿真,Simulink联合仿真:车辆轨迹跟踪及侧倾、曲率修正研究

    Unity-游戏开发-模型资源-科幻武器

    总共包含 32 款 AAA 级科幻武器。四种武器类型,每种有 8 种不同的纹理变化! 所有内容均采用 PBR 材质,可直接用于开发游戏!

    Linux环境下PyTorch深度学习框架的搭建指南(Anaconda、CUDA、PyCharm、Jupyter)

    内容概要:本文详细介绍了在Ubuntu Linux上如何从零开始构建完整的PyTorch深度学习环境。步骤涵盖了镜像源配置、必需环境安装、Anaconda安装及配置,CUDA和显卡驱动安装,Anaconda虚拟环境创建,PyTorch安装及其相关依赖库的安装方法。对于安装过程中可能出现的一些问题提供了相应的解决方案。此外还简要涉及了Python环境的维护、IDE PyCharm的安装方法以及如何启动Anaconda附带的Jupyter Notebook。 适合人群:希望深入了解Linux操作系统下的机器学习环境配置过程的初级开发者和技术爱好者,特别是有兴趣应用PyTorch从事科研项目的人群。 使用场景及目标:旨在帮助读者掌握基于Ubuntu平台配置高性能PyTorch环境的具体流程,从而能快速投入到实际开发工作中;同时为未来扩展更多AI/ML应用打下坚实基础。 其他说明:本教程假设读者已经有一定Linux命令行操作基础,并且拥有基本的Python编程能力。教程重点在于具体的技术步骤而非理论讲解,对于每一阶段都附带有详尽的操作截图辅助理解。

    IEEE9节点系统Simulink仿真:实现潮流计算与稳定性分析的电力仿真模型,基于Matlab Simulink的IEEE9节点系统仿真:潮流计算与稳定性分析,IEEE9节点系统Simulink仿真

    IEEE9节点系统Simulink仿真:实现潮流计算与稳定性分析的电力仿真模型,基于Matlab Simulink的IEEE9节点系统仿真:潮流计算与稳定性分析,IEEE9节点系统Simulink仿真 1.基础功能:基于Matlab simulink平台搭建IEEE9节点仿真模型,对电力系统进行潮流计算(与编程用牛拉法计算潮流结果一致) 2.拓展功能: 可在该IEEE9节系统仿真模型上进行暂态、静态稳定性仿真分析。 ,IEEE9节点系统; Simulink仿真; 潮流计算; 牛拉法; 暂态稳定性仿真分析; 静态稳定性仿真分析,基于Simulink的IEEE9节点系统仿真:潮流计算与稳定性分析

    欧姆龙NJ/NX系列PLC ST语言编程:Modbus RTU读写轮询与八从站通讯集成,搭配CF105模块使用,含FB功能块调用案例参考,欧姆龙NJ/NX系列PLC的ST语言编程:集成Modbus R

    欧姆龙NJ/NX系列PLC ST语言编程:Modbus RTU读写轮询与八从站通讯集成,搭配CF105模块使用,含FB功能块调用案例参考,欧姆龙NJ/NX系列PLC的ST语言编程:集成Modbus RTU读写轮询与八个485从站通讯功能,搭配CF105模块使用,含通讯FB功能块与主程序调用案例,欧姆龙NJ,NX系列plc,ST语言编写,该程序包含ModbusRTU的读写轮询,带八个485从站,此程序必须搭配欧姆龙CF105模块才能使用。 通讯的程序都封装成FB功能块可以直接调用,主程序有调用案例参考 ,欧姆龙NJ; NX系列PLC; ST语言编写; ModbusRTU读写轮询; 485从站; 欧姆龙CF105模块; 通讯FB功能块; 主程序调用案例。,欧姆龙PLC ST语言Modbus RTU读写轮询程序:CF105模块八从站通讯应用

    数学建模相关主题资源2

    数学建模相关主题资源2

    Go语言教程&案例&相关项目资源

    Go语言教程&案例&相关项目资源

    企业微信会话存档+deepseek智能预警

    ### **软件更新公告:AI会话存档与分析功能全新上线!** 亲爱的用户, 我们很高兴地宣布,本次软件更新带来了全新的 **AI会话存档与分析功能**,旨在帮助企业更好地管理员工与客户的沟通内容,提升服务质量,优化运营效率。以下是本次更新的详细内容: --- #### **1. 会话存档** - **功能描述**:系统将自动拉取员工与客户的文本聊天内容,并完整存档,方便随时查阅。 - **使用场景**: - 查看员工与客户的历史沟通记录。 - 审计聊天内容,确保合规性。 - 为客户问题提供追溯依据。 --- #### **2. AI会话报告** - **功能描述**:结合 **DeepSeek AI** 技术,对员工发送给客户的聊天内容进行智能分析,判断是否存在以下行为: - **敲单行为**:识别员工是否诱导客户下单或进行不必要的推销。 - **辱骂客户**:检测聊天内容中是否存在不当言辞或辱骂行为。 - **索要回扣/红包**:分析员工是否向客户索要回扣、红包或其他不当利益。 - **使用场景**: - 实时监控员工与客户的沟通质量。

    点餐系统.zip

    毕业设计

    并联型APF有源电力滤波器Matlab Simulink仿真研究:涉及dq和αβ坐标系谐波无功检测与SVPWM调制方式的仿真介绍文档,基于Matlab Simulink仿真的并联型APF有源电力滤波器

    并联型APF有源电力滤波器Matlab Simulink仿真研究:涉及dq和αβ坐标系谐波无功检测与SVPWM调制方式的仿真介绍文档,基于Matlab Simulink仿真的并联型APF有源电力滤波器谐波及无功检测技术研究,包含PI控制与SVPWM调制方式的深入探讨,并联型APF 有源电力滤波器 Matlab Simulink仿真 *dq FBD谐波 无功检测 *两相旋转坐标系(dq)、两相静止坐标系(αβ)下的PI控制 *SVPWM调制方式 (含仿真介绍文档) ,核心关键词:并联型APF; 有源电力滤波器; Matlab Simulink仿真; dq FBD谐波无功检测; 两相旋转坐标系PI控制; 两相静止坐标系PI控制; SVPWM调制方式。,基于Matlab Simulink仿真的并联型APF有源电力滤波器研究:dq FBD谐波与无功检测的PI控制及SVPWM调制方式

    Swift编程语言详解:从基础语法到Swift 6新特性及跨平台发展趋势

    内容概要:本文详细介绍了苹果公司推出的编程语言 Swift,涵盖其基本概念、语法特点、环境搭建以及从 Swift 3 到 Swift 6 的重要更新与发展历程。Swift 是一门专注于 iOS、macOS、watchOS 和 tvOS 开发的语言,语法简洁,比 Objective-C 更易于学习和使用。文章首先简要介绍了 Swift 的基础知识,包括变量和常量、基本数据类型、控制流语句、函数定义、类和结构体,以及高级特性如可选类型、强制解包、可选绑定、闭包和协议。接着探讨了 Swift 的历史演变及其在不同操作系统(Linux 和 Windows)上的应用,尤其是 Swift 在 2015 年开源后的快速发展。最新的 Swift 6 版本引入了诸如编译时数据竞争保护等多项创新特性,极大地提升了并发编程的安全性和易用性。最后讨论了开发者的看法及其应用场景的可能性。 适合人群:具有一定编程基础的研发人员,尤其是那些有兴趣深入了解苹果生态系统或跨平台开发的技术爱好者。 使用场景及目标:帮助读者快速掌握 Swift 编程语言的核心概念和技术栈;指导初学者如何配置和使用 Xcode 编写首个 Swift 应用程序;分析最新发布的 Swift 6 更新亮点,并提供从 Swift 5 迁移到 Swift 6 期间可能遇到的问题及解决方法。 阅读建议:建议新手先掌握基本的 Swift 语法和面向对象编程思想再深入研究高级主题;同时密切关注官方发布的最新动态和支持资料,及时更新对 Swift 技术的认知;针对想要过渡到 Swift 6 的团队,务必进行充分的学习准备并在实践中积累经验以克服潜在困难。此外,考虑到 Swift 正逐渐扩展到非苹果平台的应用开发中,请对 Swift 在不同平台下的表现保持敏感并积极探索跨平台解决方案。

    024.JSP+SQL网上教学系统.zip

    毕业设计

    BLDC无刷直流电机与PMSM永磁同步电机的传感器/无传感器驱动算法全攻略:涵盖STM32F1实战代码与原理图,BLDC无刷直流电机与PMSM永磁同步电机的传感器/无传感器驱动算法集合,STM32F1

    BLDC无刷直流电机与PMSM永磁同步电机的传感器/无传感器驱动算法全攻略:涵盖STM32F1实战代码与原理图,BLDC无刷直流电机与PMSM永磁同步电机的传感器/无传感器驱动算法集合,STM32F1代码全解析与分享,BLDC无刷直流电机和PMSM永磁同步电机 可提供所有代码中所有算法的,每个代码都亲自验证过。 基于STM32F1的有传感器和无传感驱动 直流无刷电机有传感器和无传感驱动程序, 无传感的实现是基于反电动势过零点实现的,有传感的霍尔实现。 永磁同步电机有感无感程序,有感为霍尔FOC和编码器方式, 无感为滑模观测器方式。 有原理图和文档,识的赶紧,物超所值。 提供里面所有代码,所有算法的。 提供里面所有代码,所有算法的。 ,BLDC无刷直流电机; PMSM永磁同步电机; 算法验证; STM32F1驱动; 有传感器驱动; 无传感驱动; 反电动势过零点; 霍尔实现; 霍尔FOC; 编码器方式; 换滑模观测器; 原理图; 文档。,基于STM32F1的BLDC与PMSM电机驱动解决方案:全算法代码与原理图详解

    永磁同步电机矢量控制仿真研究:无SVPWM发波策略分析,永磁同步电机矢量控制仿真研究:不含SVPWM发波的算法优化分析,永磁同步电机矢量控制仿真,不带SVPWM发波 ,永磁同步电机; 矢量控制; 仿

    永磁同步电机矢量控制仿真研究:无SVPWM发波策略分析,永磁同步电机矢量控制仿真研究:不含SVPWM发波的算法优化分析,永磁同步电机矢量控制仿真,不带SVPWM发波 ,永磁同步电机; 矢量控制; 仿真; 不带SVPWM发波; 控制系统,永磁同步电机矢量控制仿真:非SVPWM发波技术探讨

Global site tag (gtag.js) - Google Analytics