- 浏览: 467233 次
- 性别:
- 来自: 杭州
文章分类
最新评论
-
ty1972873004:
sunwang810812 写道我运行了这个例子,怎么结果是这 ...
Java并发编程: 使用Semaphore限制资源并发访问的线程数 -
lgh1992314:
simpleDean 写道请问,Logger.setLevel ...
Java内置Logger详解 -
sunwang810812:
我运行了这个例子,怎么结果是这样的:2号车泊车6号车泊车5号车 ...
Java并发编程: 使用Semaphore限制资源并发访问的线程数 -
jp260715007:
nanjiwubing123 写道参考你的用法,用如下方式实现 ...
面试题--三个线程循环打印ABC10次的几种解决方法 -
cb_0312:
SurnameDictionary文章我没看完,现在懂了
中文排序
本文将介绍用来控制资源同时访问个数的Semaphore工具类, 然后采用Semaphore给出一个泊车的实例,最后给出Semaphore和CountDownLatch的几点比较.
1. Semaphore工具类介绍
/** * A counting semaphore. Conceptually, a semaphore maintains a set of * permits. Each {@link #acquire} blocks if necessary until a permit is * available, and then takes it. Each {@link #release} adds a permit, * potentially releasing a blocking acquirer. * However, no actual permit objects are used; the <tt>Semaphore</tt> just * keeps a count of the number available and acts accordingly. * * <p>Semaphores are often used to restrict the number of threads than can * access some (physical or logical) resource. */
从Semaphore的注释中可以看出如下几点:
1.从概念上讲,信号量维护了一个许可集。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。
2. Semaphore并不使用实际的许可对象,Semaphore 只对可用许可进行计数,并采取相应的行动。
3.Semaphore 通常用于限制可以访问某些资源(物理或逻辑的)的线程数目。
Semaphore中定义了一个内部类Sync,该类继承AbstractQueuedSynchronizer。
从代码中可以看出,Semaphore的方法基本上都调用了Sync的方法来实现。Smaphore还提供了公平和非公平的两种方式.
Semaphore工具类相关的类图以及详细代码如下:
/* * @(#)Semaphore.java 1.8 04/07/12 * * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.util.concurrent; import java.util.*; import java.util.concurrent.locks.*; import java.util.concurrent.atomic.*; /** * A counting semaphore. Conceptually, a semaphore maintains a set of * permits. Each {@link #acquire} blocks if necessary until a permit is * available, and then takes it. Each {@link #release} adds a permit, * potentially releasing a blocking acquirer. * However, no actual permit objects are used; the <tt>Semaphore</tt> just * keeps a count of the number available and acts accordingly. * * <p>Semaphores are often used to restrict the number of threads than can * access some (physical or logical) resource. For example, here is * a class that uses a semaphore to control access to a pool of items: * <pre> * class Pool { * private static final MAX_AVAILABLE = 100; * private final Semaphore available = new Semaphore(MAX_AVAILABLE, true); * * public Object getItem() throws InterruptedException { * available.acquire(); * return getNextAvailableItem(); * } * * public void putItem(Object x) { * if (markAsUnused(x)) * available.release(); * } * * // Not a particularly efficient data structure; just for demo * * protected Object[] items = ... whatever kinds of items being managed * protected boolean[] used = new boolean[MAX_AVAILABLE]; * * protected synchronized Object getNextAvailableItem() { * for (int i = 0; i < MAX_AVAILABLE; ++i) { * if (!used[i]) { * used[i] = true; * return items[i]; * } * } * return null; // not reached * } * * protected synchronized boolean markAsUnused(Object item) { * for (int i = 0; i < MAX_AVAILABLE; ++i) { * if (item == items[i]) { * if (used[i]) { * used[i] = false; * return true; * } else * return false; * } * } * return false; * } * * } * </pre> * * <p>Before obtaining an item each thread must acquire a permit from * the semaphore, guaranteeing that an item is available for use. When * the thread has finished with the item it is returned back to the * pool and a permit is returned to the semaphore, allowing another * thread to acquire that item. Note that no synchronization lock is * held when {@link #acquire} is called as that would prevent an item * from being returned to the pool. The semaphore encapsulates the * synchronization needed to restrict access to the pool, separately * from any synchronization needed to maintain the consistency of the * pool itself. * * <p>A semaphore initialized to one, and which is used such that it * only has at most one permit available, can serve as a mutual * exclusion lock. This is more commonly known as a [i]binary * semaphore[/i], because it only has two states: one permit * available, or zero permits available. When used in this way, the * binary semaphore has the property (unlike many {@link Lock} * implementations), that the "lock" can be released by a * thread other than the owner (as semaphores have no notion of * ownership). This can be useful in some specialized contexts, such * as deadlock recovery. * * <p> The constructor for this class optionally accepts a * [i]fairness[/i] parameter. When set false, this class makes no * guarantees about the order in which threads acquire permits. In * particular, [i]barging[/i] is permitted, that is, a thread * invoking {@link #acquire} can be allocated a permit ahead of a * thread that has been waiting - logically the new thread places itself at * the head of the queue of waiting threads. When fairness is set true, the * semaphore guarantees that threads invoking any of the {@link * #acquire() acquire} methods are selected to obtain permits in the order in * which their invocation of those methods was processed * (first-in-first-out; FIFO). Note that FIFO ordering necessarily * applies to specific internal points of execution within these * methods. So, it is possible for one thread to invoke * <tt>acquire</tt> before another, but reach the ordering point after * the other, and similarly upon return from the method. * Also note that the untimed {@link #tryAcquire() tryAcquire} methods do not * honor the fairness setting, but will take any permits that are * available. * * <p>Generally, semaphores used to control resource access should be * initialized as fair, to ensure that no thread is starved out from * accessing a resource. When using semaphores for other kinds of * synchronization control, the throughput advantages of non-fair * ordering often outweigh fairness considerations. * * <p>This class also provides convenience methods to {@link * #acquire(int) acquire} and {@link #release(int) release} multiple * permits at a time. Beware of the increased risk of indefinite * postponement when these methods are used without fairness set true. * * @since 1.5 * @author Doug Lea * */ public class Semaphore implements java.io.Serializable { private static final long serialVersionUID = -3222578661600680210L; /** All mechanics via AbstractQueuedSynchronizer subclass */ private final Sync sync; /** * Synchronization implementation for semaphore. Uses AQS state * to represent permits. Subclassed into fair and nonfair * versions. */ abstract static class Sync extends AbstractQueuedSynchronizer { Sync(int permits) { setState(permits); } final int getPermits() { return getState(); } final int nonfairTryAcquireShared(int acquires) { for (;;) { int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } protected final boolean tryReleaseShared(int releases) { for (;;) { int p = getState(); if (compareAndSetState(p, p + releases)) return true; } } final void reducePermits(int reductions) { for (;;) { int current = getState(); int next = current - reductions; if (compareAndSetState(current, next)) return; } } final int drainPermits() { for (;;) { int current = getState(); if (current == 0 || compareAndSetState(current, 0)) return current; } } } /** * NonFair version */ final static class NonfairSync extends Sync { NonfairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } } /** * Fair version */ final static class FairSync extends Sync { FairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { Thread current = Thread.currentThread(); for (;;) { Thread first = getFirstQueuedThread(); if (first != null && first != current) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } } } /** * Creates a <tt>Semaphore</tt> with the given number of * permits and nonfair fairness setting. * @param permits the initial number of permits available. This * value may be negative, in which case releases must * occur before any acquires will be granted. */ public Semaphore(int permits) { sync = new NonfairSync(permits); } /** * Creates a <tt>Semaphore</tt> with the given number of * permits and the given fairness setting. * @param permits the initial number of permits available. This * value may be negative, in which case releases must * occur before any acquires will be granted. * @param fair true if this semaphore will guarantee first-in * first-out granting of permits under contention, else false. */ public Semaphore(int permits, boolean fair) { sync = (fair)? new FairSync(permits) : new NonfairSync(permits); } /** * Acquires a permit from this semaphore, blocking until one is * available, or the thread is {@link Thread#interrupt interrupted}. * * <p>Acquires a permit, if one is available and returns immediately, * reducing the number of available permits by one. * <p>If no permit is available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until * one of two things happens: * [list] * <li>Some other thread invokes the {@link #release} method for this * semaphore and the current thread is next to be assigned a permit; or * <li>Some other thread {@link Thread#interrupt interrupts} the current * thread. * [/list] * * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@link Thread#interrupt interrupted} while waiting * for a permit, * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * * @throws InterruptedException if the current thread is interrupted * * @see Thread#interrupt */ public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1); } /** * Acquires a permit from this semaphore, blocking until one is * available. * * <p>Acquires a permit, if one is available and returns immediately, * reducing the number of available permits by one. * <p>If no permit is available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until * some other thread invokes the {@link #release} method for this * semaphore and the current thread is next to be assigned a permit. * * <p>If the current thread * is {@link Thread#interrupt interrupted} while waiting * for a permit then it will continue to wait, but the time at which * the thread is assigned a permit may change compared to the time it * would have received the permit had no interruption occurred. When the * thread does return from this method its interrupt status will be set. * */ public void acquireUninterruptibly() { sync.acquireShared(1); } /** * Acquires a permit from this semaphore, only if one is available at the * time of invocation. * <p>Acquires a permit, if one is available and returns immediately, * with the value <tt>true</tt>, * reducing the number of available permits by one. * * <p>If no permit is available then this method will return * immediately with the value <tt>false</tt>. * * <p>Even when this semaphore has been set to use a * fair ordering policy, a call to <tt>tryAcquire()</tt> [i]will[/i] * immediately acquire a permit if one is available, whether or not * other threads are currently waiting. * This "barging" behavior can be useful in certain * circumstances, even though it breaks fairness. If you want to honor * the fairness setting, then use * {@link #tryAcquire(long, TimeUnit) tryAcquire(0, TimeUnit.SECONDS) } * which is almost equivalent (it also detects interruption). * * @return <tt>true</tt> if a permit was acquired and <tt>false</tt> * otherwise. */ public boolean tryAcquire() { return sync.nonfairTryAcquireShared(1) >= 0; } /** * Acquires a permit from this semaphore, if one becomes available * within the given waiting time and the * current thread has not been {@link Thread#interrupt interrupted}. * <p>Acquires a permit, if one is available and returns immediately, * with the value <tt>true</tt>, * reducing the number of available permits by one. * <p>If no permit is available then * the current thread becomes disabled for thread scheduling * purposes and lies dormant until one of three things happens: * [list] * <li>Some other thread invokes the {@link #release} method for this * semaphore and the current thread is next to be assigned a permit; or * <li>Some other thread {@link Thread#interrupt interrupts} the current * thread; or * <li>The specified waiting time elapses. * [/list] * <p>If a permit is acquired then the value <tt>true</tt> is returned. * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@link Thread#interrupt interrupted} while waiting to acquire * a permit, * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * <p>If the specified waiting time elapses then the value <tt>false</tt> * is returned. * If the time is less than or equal to zero, the method will not wait * at all. * * @param timeout the maximum time to wait for a permit * @param unit the time unit of the <tt>timeout</tt> argument. * @return <tt>true</tt> if a permit was acquired and <tt>false</tt> * if the waiting time elapsed before a permit was acquired. * * @throws InterruptedException if the current thread is interrupted * * @see Thread#interrupt * */ public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } /** * Releases a permit, returning it to the semaphore. * <p>Releases a permit, increasing the number of available permits * by one. * If any threads are trying to acquire a permit, then one * is selected and given the permit that was just released. * That thread is (re)enabled for thread scheduling purposes. * <p>There is no requirement that a thread that releases a permit must * have acquired that permit by calling {@link #acquire}. * Correct usage of a semaphore is established by programming convention * in the application. */ public void release() { sync.releaseShared(1); } /** * Acquires the given number of permits from this semaphore, * blocking until all are available, * or the thread is {@link Thread#interrupt interrupted}. * * <p>Acquires the given number of permits, if they are available, * and returns immediately, * reducing the number of available permits by the given amount. * * <p>If insufficient permits are available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until * one of two things happens: * [list] * <li>Some other thread invokes one of the {@link #release() release} * methods for this semaphore, the current thread is next to be assigned * permits and the number of available permits satisfies this request; or * <li>Some other thread {@link Thread#interrupt interrupts} the current * thread. * [/list] * * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@link Thread#interrupt interrupted} while waiting * for a permit, * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * Any permits that were to be assigned to this thread are instead * assigned to other threads trying to acquire permits, as if * permits had been made available by a call to {@link #release()}. * * @param permits the number of permits to acquire * * @throws InterruptedException if the current thread is interrupted * @throws IllegalArgumentException if permits less than zero. * * @see Thread#interrupt */ public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); sync.acquireSharedInterruptibly(permits); } /** * Acquires the given number of permits from this semaphore, * blocking until all are available. * * <p>Acquires the given number of permits, if they are available, * and returns immediately, * reducing the number of available permits by the given amount. * * <p>If insufficient permits are available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until * some other thread invokes one of the {@link #release() release} * methods for this semaphore, the current thread is next to be assigned * permits and the number of available permits satisfies this request. * * <p>If the current thread * is {@link Thread#interrupt interrupted} while waiting * for permits then it will continue to wait and its position in the * queue is not affected. When the * thread does return from this method its interrupt status will be set. * * @param permits the number of permits to acquire * @throws IllegalArgumentException if permits less than zero. * */ public void acquireUninterruptibly(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.acquireShared(permits); } /** * Acquires the given number of permits from this semaphore, only * if all are available at the time of invocation. * * <p>Acquires the given number of permits, if they are available, and * returns immediately, with the value <tt>true</tt>, * reducing the number of available permits by the given amount. * * <p>If insufficient permits are available then this method will return * immediately with the value <tt>false</tt> and the number of available * permits is unchanged. * * <p>Even when this semaphore has been set to use a fair ordering * policy, a call to <tt>tryAcquire</tt> [i]will[/i] * immediately acquire a permit if one is available, whether or * not other threads are currently waiting. This * "barging" behavior can be useful in certain * circumstances, even though it breaks fairness. If you want to * honor the fairness setting, then use {@link #tryAcquire(int, * long, TimeUnit) tryAcquire(permits, 0, TimeUnit.SECONDS) } * which is almost equivalent (it also detects interruption). * * @param permits the number of permits to acquire * * @return <tt>true</tt> if the permits were acquired and <tt>false</tt> * otherwise. * @throws IllegalArgumentException if permits less than zero. */ public boolean tryAcquire(int permits) { if (permits < 0) throw new IllegalArgumentException(); return sync.nonfairTryAcquireShared(permits) >= 0; } /** * Acquires the given number of permits from this semaphore, if all * become available within the given waiting time and the * current thread has not been {@link Thread#interrupt interrupted}. * <p>Acquires the given number of permits, if they are available and * returns immediately, with the value <tt>true</tt>, * reducing the number of available permits by the given amount. * <p>If insufficient permits are available then * the current thread becomes disabled for thread scheduling * purposes and lies dormant until one of three things happens: * [list] * <li>Some other thread invokes one of the {@link #release() release} * methods for this semaphore, the current thread is next to be assigned * permits and the number of available permits satisfies this request; or * <li>Some other thread {@link Thread#interrupt interrupts} the current * thread; or * <li>The specified waiting time elapses. * [/list] * <p>If the permits are acquired then the value <tt>true</tt> is returned. * <p>If the current thread: * [list] * <li>has its interrupted status set on entry to this method; or * <li>is {@link Thread#interrupt interrupted} while waiting to acquire * the permits, * [/list] * then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * Any permits that were to be assigned to this thread, are instead * assigned to other threads trying to acquire permits, as if * the permits had been made available by a call to {@link #release()}. * * <p>If the specified waiting time elapses then the value <tt>false</tt> * is returned. * If the time is * less than or equal to zero, the method will not wait at all. * Any permits that were to be assigned to this thread, are instead * assigned to other threads trying to acquire permits, as if * the permits had been made available by a call to {@link #release()}. * * @param permits the number of permits to acquire * @param timeout the maximum time to wait for the permits * @param unit the time unit of the <tt>timeout</tt> argument. * @return <tt>true</tt> if all permits were acquired and <tt>false</tt> * if the waiting time elapsed before all permits were acquired. * * @throws InterruptedException if the current thread is interrupted * @throws IllegalArgumentException if permits less than zero. * * @see Thread#interrupt * */ public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout)); } /** * Releases the given number of permits, returning them to the semaphore. * <p>Releases the given number of permits, increasing the number of * available permits by that amount. * If any threads are trying to acquire permits, then one * is selected and given the permits that were just released. * If the number of available permits satisfies that thread's request * then that thread is (re)enabled for thread scheduling purposes; * otherwise the thread will wait until sufficient permits are available. * If there are still permits available * after this thread's request has been satisfied, then those permits * are assigned in turn to other threads trying to acquire permits. * * <p>There is no requirement that a thread that releases a permit must * have acquired that permit by calling {@link Semaphore#acquire acquire}. * Correct usage of a semaphore is established by programming convention * in the application. * * @param permits the number of permits to release * @throws IllegalArgumentException if permits less than zero. */ public void release(int permits) { if (permits < 0) throw new IllegalArgumentException(); sync.releaseShared(permits); } /** * Returns the current number of permits available in this semaphore. * <p>This method is typically used for debugging and testing purposes. * @return the number of permits available in this semaphore. */ public int availablePermits() { return sync.getPermits(); } /** * Acquire and return all permits that are immediately available. * @return the number of permits */ public int drainPermits() { return sync.drainPermits(); } /** * Shrinks the number of available permits by the indicated * reduction. This method can be useful in subclasses that use * semaphores to track resources that become unavailable. This * method differs from <tt>acquire</tt> in that it does not block * waiting for permits to become available. * @param reduction the number of permits to remove * @throws IllegalArgumentException if reduction is negative */ protected void reducePermits(int reduction) { if (reduction < 0) throw new IllegalArgumentException(); sync.reducePermits(reduction); } /** * Returns true if this semaphore has fairness set true. * @return true if this semaphore has fairness set true. */ public boolean isFair() { return sync instanceof FairSync; } /** * Queries whether any threads are waiting to acquire. Note that * because cancellations may occur at any time, a <tt>true</tt> * return does not guarantee that any other thread will ever * acquire. This method is designed primarily for use in * monitoring of the system state. * * @return true if there may be other threads waiting to acquire * the lock. */ public final boolean hasQueuedThreads() { return sync.hasQueuedThreads(); } /** * Returns an estimate of the number of threads waiting to * acquire. The value is only an estimate because the number of * threads may change dynamically while this method traverses * internal data structures. This method is designed for use in * monitoring of the system state, not for synchronization * control. * @return the estimated number of threads waiting for this lock */ public final int getQueueLength() { return sync.getQueueLength(); } /** * Returns a collection containing threads that may be waiting to * acquire. Because the actual set of threads may change * dynamically while constructing this result, the returned * collection is only a best-effort estimate. The elements of the * returned collection are in no particular order. This method is * designed to facilitate construction of subclasses that provide * more extensive monitoring facilities. * @return the collection of threads */ protected Collection<Thread> getQueuedThreads() { return sync.getQueuedThreads(); } /** * Returns a string identifying this semaphore, as well as its state. * The state, in brackets, includes the String * "Permits =" followed by the number of permits. * @return a string identifying this semaphore, as well as its * state */ public String toString() { return super.toString() + "[Permits = " + sync.getPermits() + "]"; } }
2. Semaphore工具类的使用案例
本文给出的一个示例模拟30辆车去泊车,而车位有10个的场景. 当车位满时,出来一辆车,才能有一辆车进入停车.
package my.concurrent.semaphore; import java.util.concurrent.Semaphore; public class Car implements Runnable { private final Semaphore parkingSlot; private int carNo; /** * @param parkingSlot * @param carName */ public Car(Semaphore parkingSlot, int carNo) { this.parkingSlot = parkingSlot; this.carNo = carNo; } public void run() { try { parkingSlot.acquire(); parking(); sleep(300); parkingSlot.release(); leaving(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } private void parking() { System.out.println(String.format("%d号车泊车", carNo)); } private void leaving() { System.out.println(String.format("%d号车离开车位", carNo)); } private static void sleep(long millis) { try { Thread.sleep(millis); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
package my.concurrent.semaphore; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; public class ParkingCars { private static final int NUMBER_OF_CARS = 30; private static final int NUMBER_OF_PARKING_SLOT = 10; public static void main(String[] args) { /* * 采用FIFO, 设置true */ Semaphore parkingSlot = new Semaphore(NUMBER_OF_PARKING_SLOT, true); ExecutorService service = Executors.newCachedThreadPool(); for (int carNo = 1; carNo <= NUMBER_OF_CARS; carNo++) { service.execute(new Car(parkingSlot, carNo)); } sleep(3000); service.shutdown(); /* * 输出还有几个可以用的资源数 */ System.out.println(parkingSlot.availablePermits() + " 个停车位可以用!"); } private static void sleep(long millis) { try { Thread.sleep(millis); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
一次运行的结果如下:
1号车泊车
4号车泊车
9号车泊车
2号车泊车
8号车泊车
10号车泊车
3号车泊车
12号车泊车
14号车泊车
6号车泊车
2号车离开车位
4号车离开车位
6号车离开车位
1号车离开车位
9号车离开车位
3号车离开车位
5号车泊车
8号车离开车位
10号车离开车位
11号车泊车
7号车泊车
12号车离开车位
13号车泊车
14号车离开车位
16号车泊车
17号车泊车
20号车泊车
19号车泊车
18号车泊车
15号车泊车
5号车离开车位
20号车离开车位
18号车离开车位
22号车泊车
11号车离开车位
7号车离开车位
13号车离开车位
15号车离开车位
21号车泊车
26号车泊车
23号车泊车
28号车泊车
25号车泊车
16号车离开车位
27号车泊车
17号车离开车位
30号车泊车
24号车泊车
29号车泊车
19号车离开车位
25号车离开车位
24号车离开车位
22号车离开车位
26号车离开车位
28号车离开车位
30号车离开车位
21号车离开车位
23号车离开车位
27号车离开车位
29号车离开车位
10 个停车位可以用!
3. Semaphore vs. CountDownLatch
相同点:
两者都是用于线程同步的工具类,都通过定义了一个继承AbstractQueuedSynchronizer的内部类Sync来实现具体的功能.
不同点:
1. Semaphore提供了公平和非公平两种策略, 而CountDownLatch则不具备.
2. CountDownLatch: 一个或者是一部分线程,等待另外一部线程都完成操作。
Semaphorr: 维护一个许可集.通常用于限制可以访问某些资源(物理或逻辑的)的线程数目.
3. CountDownLatch中计数是不能被重置的。CountDownLatch适用于一次同步。当使用CountDownLatch时,任何线程允许多次调用countDown(). 那些调用了await()方法的线程将被阻塞,直到那些没有被阻塞线程调用countDown()使计数到达0为止
。
Semaphore允许线程获取许可, 未获得许可的线程需要等待.这样防止了在同一时间有太多的线程执行.Semaphore的值被获取到后是可以释放的,并不像CountDownLatch那样一直减到0。
4. 使用CountDownLatch时,它关注的一个线程或者多个线程需要在其它在一组线程完成操作之后,在去做一些事情。比如:服务的启动等。使用Semaphore时,它关注的是某一个资源最多同时能被几个线程访问.
评论
2 楼
ty1972873004
2017-08-15
sunwang810812 写道
我运行了这个例子,怎么结果是这样的:
2号车泊车
6号车泊车
5号车泊车
3号车泊车
4号车泊车
9号车泊车
10号车泊车
1号车泊车
7号车泊车
8号车泊车
11号车泊车
6号车离开车位
12号车泊车
2号车离开车位
5号车离开车位
13号车泊车
14号车泊车
16号车泊车
9号车离开车位
3号车离开车位
17号车泊车
4号车离开车位
18号车泊车
10号车离开车位
20号车泊车
1号车离开车位
7号车离开车位
22号车泊车
21号车泊车
8号车离开车位
11号车离开车位
19号车泊车
12号车离开车位
23号车泊车
13号车离开车位
25号车泊车
24号车泊车
26号车泊车
30号车泊车
18号车离开车位
20号车离开车位
15号车泊车
29号车泊车
16号车离开车位
17号车离开车位
14号车离开车位
27号车泊车
22号车离开车位
21号车离开车位
28号车泊车
19号车离开车位
23号车离开车位
15号车离开车位
29号车离开车位
30号车离开车位
26号车离开车位
24号车离开车位
25号车离开车位
28号车离开车位
27号车离开车位
10 个停车位可以用!
这里初始就进去11辆车......为什么呢?
2号车泊车
6号车泊车
5号车泊车
3号车泊车
4号车泊车
9号车泊车
10号车泊车
1号车泊车
7号车泊车
8号车泊车
11号车泊车
6号车离开车位
12号车泊车
2号车离开车位
5号车离开车位
13号车泊车
14号车泊车
16号车泊车
9号车离开车位
3号车离开车位
17号车泊车
4号车离开车位
18号车泊车
10号车离开车位
20号车泊车
1号车离开车位
7号车离开车位
22号车泊车
21号车泊车
8号车离开车位
11号车离开车位
19号车泊车
12号车离开车位
23号车泊车
13号车离开车位
25号车泊车
24号车泊车
26号车泊车
30号车泊车
18号车离开车位
20号车离开车位
15号车泊车
29号车泊车
16号车离开车位
17号车离开车位
14号车离开车位
27号车泊车
22号车离开车位
21号车离开车位
28号车泊车
19号车离开车位
23号车离开车位
15号车离开车位
29号车离开车位
30号车离开车位
26号车离开车位
24号车离开车位
25号车离开车位
28号车离开车位
27号车离开车位
10 个停车位可以用!
这里初始就进去11辆车......为什么呢?
你的车坏了
1 楼
sunwang810812
2016-09-02
我运行了这个例子,怎么结果是这样的:
2号车泊车
6号车泊车
5号车泊车
3号车泊车
4号车泊车
9号车泊车
10号车泊车
1号车泊车
7号车泊车
8号车泊车
11号车泊车
6号车离开车位
12号车泊车
2号车离开车位
5号车离开车位
13号车泊车
14号车泊车
16号车泊车
9号车离开车位
3号车离开车位
17号车泊车
4号车离开车位
18号车泊车
10号车离开车位
20号车泊车
1号车离开车位
7号车离开车位
22号车泊车
21号车泊车
8号车离开车位
11号车离开车位
19号车泊车
12号车离开车位
23号车泊车
13号车离开车位
25号车泊车
24号车泊车
26号车泊车
30号车泊车
18号车离开车位
20号车离开车位
15号车泊车
29号车泊车
16号车离开车位
17号车离开车位
14号车离开车位
27号车泊车
22号车离开车位
21号车离开车位
28号车泊车
19号车离开车位
23号车离开车位
15号车离开车位
29号车离开车位
30号车离开车位
26号车离开车位
24号车离开车位
25号车离开车位
28号车离开车位
27号车离开车位
10 个停车位可以用!
这里初始就进去11辆车......为什么呢?
2号车泊车
6号车泊车
5号车泊车
3号车泊车
4号车泊车
9号车泊车
10号车泊车
1号车泊车
7号车泊车
8号车泊车
11号车泊车
6号车离开车位
12号车泊车
2号车离开车位
5号车离开车位
13号车泊车
14号车泊车
16号车泊车
9号车离开车位
3号车离开车位
17号车泊车
4号车离开车位
18号车泊车
10号车离开车位
20号车泊车
1号车离开车位
7号车离开车位
22号车泊车
21号车泊车
8号车离开车位
11号车离开车位
19号车泊车
12号车离开车位
23号车泊车
13号车离开车位
25号车泊车
24号车泊车
26号车泊车
30号车泊车
18号车离开车位
20号车离开车位
15号车泊车
29号车泊车
16号车离开车位
17号车离开车位
14号车离开车位
27号车泊车
22号车离开车位
21号车离开车位
28号车泊车
19号车离开车位
23号车离开车位
15号车离开车位
29号车离开车位
30号车离开车位
26号车离开车位
24号车离开车位
25号车离开车位
28号车离开车位
27号车离开车位
10 个停车位可以用!
这里初始就进去11辆车......为什么呢?
发表评论
-
工厂类中移除if/else语句
2016-07-10 19:52 910面向对象语言的一个强大的特性是多态,它可以用来在代码中移除 ... -
Java编程练手100题
2014-12-11 17:13 6734本文给出100道Java编程练手的程序。 列表如下: 面 ... -
数组复制的三种方法
2014-11-30 12:57 2223本文将给出三种实现数组复制的方法 (以复制整数数组为例)。 ... -
数组复制的三种方法
2014-11-30 12:54 0本文将给出三种实现数组复制的方法 (以复制整数数组为例)。 ... -
四种复制文件的方法
2014-11-29 13:21 1745尽管Java提供了一个类ava.io.File用于文件的操 ... -
判断一个字符串中的字符是否都只出现一次
2014-11-25 12:58 2733本篇博文将给大家带来几个判断一个字符串中的字符是否都只出现一 ... -
使用正则表达式判断一个数是否为素数
2014-11-23 13:35 2174正则表达式能够用于判断一个数是否为素数,这个以前完全没有想过 ... -
几个可以用英文单词表达的正则表达式
2014-11-21 13:12 3758本文,我们将来看一下几个可以用英文单词表达的正则表达式。这些 ... -
(广度优先搜索)打印所有可能的括号组合
2014-11-20 11:58 1960问题:给定一个正整n,作为括号的对数,输出所有括号可能 ... -
随机产生由特殊字符,大小写字母以及数字组成的字符串,且每种字符都至少出现一次
2014-11-19 14:48 3984题目:随机产生字符串,字符串中的字符只能由特殊字符 (! ... -
找出1到n缺失的一个数
2014-11-18 12:57 3184题目:Problem description: You h ... -
EnumSet的几个例子
2014-11-14 16:24 8758EnumSet 是一个与枚举类型一起使用的专用 Set 实现 ... -
给定两个有序数组和一个指定的sum值,从两个数组中各找一个数使得这两个数的和与指定的sum值相差最小
2014-11-12 11:24 3334题目:给定两个有序数组和一个指定的sum值,从两个数组 ... -
Java面试编程题练手
2014-11-04 22:49 6706面试编程 写一个程序,去除有序数组中的重复数字 编 ... -
Collections用法整理
2014-10-22 20:55 9851Collections (java.util.Collect ... -
The Code Sample 代码实例 个人博客开通
2014-09-04 18:48 1423个人博客小站开通 http://thecodesample. ... -
Collections.emptyXXX方法
2014-06-08 13:37 2148从JDK 1.5开始, Collections集合工具类中预先 ... -
这代码怎么就打印出"hello world"了呢?
2014-06-08 00:37 7400for (long l = 4946144450195624L ... -
最短时间过桥
2014-04-21 22:03 4158本文用代码实现最短时间过桥,并且打印如下两个例子的最小过桥时间 ... -
将数组分割成差值最小的子集
2014-04-20 22:34 2906本文使用位掩码实现一个功能 ==》将数组分割成差值最小的子集 ...
相关推荐
2. **并发控制**:Java提供了多种并发控制机制,如synchronized关键字、volatile变量、java.util.concurrent包下的锁和同步工具类(如ReentrantLock、Semaphore、CountDownLatch、CyclicBarrier)。这些机制用于解决...
Java并发工具类库(java.util.concurrent)是并发编程中的另一个重要主题,包括Atomic类(提供原子操作)、Semaphore(信号量)、CountDownLatch(计数器门锁)、CyclicBarrier(循环栅栏)和Exchanger(交换器)等...
《Java并发编程:设计原则与模式(第二版)》是一本深入探讨Java平台上的多线程和并发编程的权威著作。这本书旨在帮助开发者理解和掌握如何有效地编写可扩展且高效的并发程序。以下是书中涵盖的一些关键知识点: 1....
《Java并发编程:设计原则与模式2中文版》是一本深度探讨Java开发中并发编程的专著,旨在帮助开发者理解和掌握在多线程环境下编写高效、安全、可维护的代码。这本书涵盖了Java并发编程的核心概念、最佳实践以及常用...
5. **读写锁模式**:允许多个读取者同时访问资源,但限制写入者独占资源。ReentrantReadWriteLock提供了这种功能。 6. **线程局部变量(ThreadLocal)**:为每个线程提供独立的变量副本,避免共享状态引起的并发...
5. **原子类与并发工具类**:介绍了java.util.concurrent.atomic包中的原子类,如AtomicInteger、AtomicLong等,以及Semaphore、CountDownLatch、CyclicBarrier等并发工具类的使用场景和最佳实践。 6. **线程通信**...
4. **线程池**:Java的Executor框架提供了一种管理线程的方式,通过ThreadPoolExecutor可以创建线程池,有效控制并发线程的数量,避免系统资源的过度消耗。 5. **并发集合**:Java的并发集合类库,如...
其中包括`Semaphore`(信号量)用于限制同时访问特定资源的线程数量,`CountDownLatch`(倒计时器)用于一次性阻塞多个线程,直到某个事件发生,以及`CyclicBarrier`(循环栅栏)让一组线程等待其他线程到达特定点后...
《Java并发编程:设计原则与模式(第二版)》是一本深入探讨Java多线程编程技术的权威著作。这本书详细阐述了如何在Java环境中高效、安全地进行并发编程,涵盖了多线程设计的关键原则和常见模式。对于Java开发者来说...
《Java并发编程实战》这本书是关于Java语言中并发编程技术的经典著作。它详细介绍了如何在Java环境中有效地实现多线程程序和并发控制机制。在Java平台上,由于其本身提供了强大的并发编程支持,因此,掌握并发编程...
以上知识点覆盖了Java并发编程的主要方面,包括线程管理、同步机制、并发工具、设计模式、并发集合以及并发编程的最佳实践等,是理解和掌握Java并发编程的关键。在实际开发中,理解和熟练运用这些知识可以编写出高效...
3. **Semaphore**:信号量,用于限制同时访问特定资源的线程数量。 4. **ExecutorService**:线程池服务,管理线程的生命周期,可以提交任务并控制并发级别。 五、并发编程最佳实践 1. **避免共享可变状态**:尽...
4. **线程池**:Java的Executor框架是管理线程的重要工具,书中会详细介绍ThreadPoolExecutor的工作原理,以及如何配置和使用线程池来优化并发性能。 5. **并发设计模式**:书中可能会介绍一些常见的并发设计模式,...
- **Executor框架**:Java提供的线程池实现,通过ThreadPoolExecutor配置线程池参数,优化系统资源利用。 - **Executors工厂方法**:如newFixedThreadPool、newSingleThreadExecutor、newWorkStealingPool等,用于...
Semaphore 的构造函数接受一个整数参数,表示允许访问资源的线程数量。在上面的代码中,我们创建了一个 Semaphore 对象,初始值为 10,然后启动多个线程,每个线程都尝试获取Semaphore,直到所有线程都获取到...
理解Java内存模型(JMM)对于理解并发编程中的可见性和有序性问题至关重要,它定义了线程如何共享和访问内存。 以上就是“Java并发编程_设计原则和模式”主题涵盖的主要知识点。通过深入学习这些内容,开发者可以更...
在Java中,同步是控制多个线程访问共享资源的方式,主要通过`synchronized`关键字和`wait()`, `notify()`, `notifyAll()`方法实现。书中的内容可能会涵盖如何使用这些机制来确保数据的一致性和完整性。 锁机制是...
2. **同步控制**:Java中的`synchronized`关键字用于控制对共享资源的访问,它可以修饰方法或代码块,确保同一时间只有一个线程能执行特定的代码。此外,`ReentrantLock`类提供了更细粒度的锁控制。 3. **并发容器*...
3. **并发工具类**:Java并发包(java.util.concurrent)包含了许多工具类,如Semaphore(信号量)、CyclicBarrier(回环屏障)、CountDownLatch(计数器门锁)和ThreadPoolExecutor(线程池)。这些工具可以帮助...
- **ExecutorService**:Java并发框架中的核心组件,用于管理线程池,提高线程复用率。 - **Future和Callable**:`Future`接口代表异步计算的结果,`Callable`接口定义了计算任务,可以返回结果。 - **Semaphore*...